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Introduction

Problem Definition

Privacy-aware recommendation with explicit feedback
Input: A set of rating records for each user u, i.e.,
Ru = {(u, i , rui); i ∈ Iu}, where Iu is a set of items rated by user u
and rui is the rating assigned to item i by user u.
Goal: Estimate the preference of user u to the unrated items
without exposing the rating scores and the rating behaviors of
each user u (i.e., Ru and Iu), which is the main difference
between federated recommendation and traditional
recommendation.
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Introduction

Motivation

Some very recent works propose to randomly sample some unrated
items for each user and then assign some virtual ratings, so that the
server can not identify the scores and the set of rated items easily
during the server-client interactions. However, the virtual ratings
assigned to the randomly sampled items will inevitably introduce some
noise to the model training process, which will then cause loss in
recommendation performance.
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Introduction

Notations (1/2)

Table: Some notations and their explanations.

Notation Explanation
n number of users (i.e., clients)
m number of items
R = {1, . . . , 5} rating range
rui ∈ R rating of user u to item i
R = {(u, i, rui )} rating records in training data
Ru rating records w.r.t. user u in R
Rte = {(u, i, rui )} rating records in test data
I the whole set of items
Iu items rated by user u
I′u , |I′u | = ρ|Iu | sampled unrated items w.r.t. user u from I\Iu
U the whole set of users
Ui users who rated item i
U ′i users who virtually rated item i
U ′ũi users who virtually rated item i w.r.t. denoiser ũ
Ũ = {ũ} denoising clients (denoisers)
yui ∈ {0, 1} indicator variable

Liang, Pan and Ming (Shenzhen U.) FedRec++ AAAI 2021 4 / 34



Introduction

Notations (2/2)

Table: Some notations and their explanations (cont.).

Notation Explanation
d ∈ R number of latent dimensions
Uu·,U′u· ∈ R1×d user-specific latent feature vector
Vi· ∈ R1×d item-specific latent feature vector
r̂ui predicted rating of user u to item i
γ learning rate
ρ sampling parameter
c number of clients in training
η number of denoising clients
λ tradeoff parameter
T iteration number
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Related Work

Probabilistic Matrix Factorization (PMF)

In PMF [Mnih and Salakhutdinov, 2007], the rating of a user u to an
item i is calculated via the inner product of their latent feature vectors,
i.e., r̂ui = Uu·V T

i· , where Uu·,Vi· ∈ R1×d .
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Related Work

Federated Recommendation with Explicit Feedback
(FedRec) (1/2)
In FedRec [Lin et al., 2020], in order to protect a user’s rating behaviors, i.e., the set of
items Iu rated by a user u, the authors design an effective hybrid filling (HF) strategy
to randomly sample some unrated items. Firstly, it randomly samples |I′u| unrated
items of user u from I\Iu , where |I′u| = ρ|Iu| with ρ ∈ {1, 2, 3}. Secondly, it uses the
average rating or predicted rating of user u to a sampled item i as a virtual rating r ′ui .
Thirdly, it calculates the gradients of user u to the rated items and the unrated items,
i.e., ∇Vi·, i ∈ Iu ∪ I′u , and then uploads these gradients to the server. In this way,
FedRec with the HF strategy achieves the purpose of protecting the user’s original
rating records and the rating behaviors in the preference modeling process. In
particular, the virtual rating r ′ui is as follows,

r ′ui =


∑m

k=1 yuk ruk∑m
k=1 yuk

, t<Tpredict

U ′u·V
T
i· , t ≥ Tpredict

(1)

where t denotes the number of iterations that have been executed in model training,
and Tpredict is a parameter that determines when to start using the predicted rating as a
virtual rating to a sampled rated item i .
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Related Work

Federated Recommendation with Explicit Feedback
(FedRec) (2/2)
In FedRec with PMF [Mnih and Salakhutdinov, 2007] as the backbone model, the gradient of
each item i is as follows,

∇Vi· =

∑
u∈Ui∪U′i

∇V HF
EF (u, i)

|Ui ∪ U ′i |
. (2)

Notice that Ui ∪ U ′i denotes the users that have rated or virtually rated item i , and

∇V HF
EF (u, i) =

{
(Uu·V T

i· − rui )Uu· + λVi·, yui = 1

(Uu·V T
i· − r ′ui )Uu· + λVi·, yui = 0

(3)

where rui and r ′ui are the true observed rating and the virtual rating of user u to item i ,
respectively.

Although FedRec achieves privacy protection in rating prediction, the randomly sampled items in
the hybrid filling strategy introduces some noise to the recommendation model, which inevitably
affects the performance. This motivates us to design a lossless version of FedRec, which is
critical to be deployed in a real-world application.
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Related Work

Secure Distributed Collaborative Filtering (SDCF)

SDCF [Jiang et al., 2019] uses stochastic gradient langevin dynamics
(SGLD) [Welling and Teh, 2011] as a gradient descent method so as to
defend differential attacks and prevent users’ latent factors being leaked to
the server. However, there may still be the leakage of the users’ rating
behaviors. For this reason, SDCF uses a two-stage randomized response
algorithm to perturb the rated items and unrated items of each user, and then
uploads the corresponding items’ gradients to the server. Finally, SDCF can
thus protect the users’ rating behaviors similar to that of FedRec by uploading
the virtually rated items’ gradients.

As another issue, users have no ratings for the unrated items, hence the
users can not calculate the values of the loss in the unrated items’ gradients
via rui − Uu·V T

i· (i.e., eui), i ∈ I\Iu. To solve this problem, SDCF samples
some virtual eui , i ∈ I\Iu from the distribution of eui , i ∈ Iu of the user u.
However, this strategy will also introduce some noise to the gradient at each
iteration of model training.
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Related Work

Decentralized Distributed Matrix Factorization (1/2)

Decentralized matrix factorization (DMF) [Chen et al., 2018] is a distributed
POI recommendation framework for protecting users’ rating data and solving
the problem of computation and storage in the server. DMF keeps users’
rating data in the corresponding local clients and utilizes these rating data to
calculate the global items’ latent factors and the local items’ latent factors.
And then each client synchronously sends the global items’ gradients to
his/her neighboring clients who are chosen by a random walk method.

Although this framework saves the resource of the server and avoids the risk
of the rating data of all the users being leaked from the server to malicious
attackers, there still exists the leakage of users’ rating behaviors. Specifically,
each user will receive the items’ gradients from their own neighbors at each
iteration of model training, and these items’ gradients contain the items’ IDs.
Hence, this user will know the rated items of its neighbors, i.e., rating
behaviors of its neighbors.
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Related Work

Decentralized Distributed Matrix Factorization (2/2)

PDMFRec [Duriakova et al., 2019] is also a decentralized distributed POI
recommendation framework with a novel, user-centric and privacy-enhanced
matrix factorization method. This framework builds a user’s adjacency graph
in trustworthy clients via co-rated items between users, which solves the
privacy problem of user geographic location leaked by
DMF [Chen et al., 2018] when constructing the user adjacency graph.
Furthermore, PDMFRec also proposes two privacy-protection settings that
allow users to control the privacy-protection level. In the first setting, it allows
each user to only choose parts of the rated items to take part in the
construction of the user’s adjacency graph. In the second setting, the rated
items hidden by each user in the first setting also do not take part in model
training. Compared with DMF, PDMFRec has comparable performance,
better privacy-protection level, i.e., protecting the users’ rating behaviors and
ensuring the anonymity of the sending client. The anonymity of the sending
client in PDMFRec inspires us to design an effective noise elimination
strategy to prevent the denoising clients from colluding with the server, which
will be described in detail later.
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Method

Our Solution: FedRec++

Figure: Illustration of the interactions between the server and each client in
our loss federated recommendation (FedRec++). Notice that
FedRec [Lin et al., 2020] is a special case of our FedRec++ without the
denoising clients.
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Method

Eliminate the Gradient Noise in the Server (1/3)

In the beginning, the server initializes the model parameters Vi·, i ∈ I, and sends
them to each client, i.e., step 1 in Figure 1. When each ordinary client u ∈ U\Ũ
completes the computation of the item gradients, i.e., ∇V HF

EF (u, i), i ∈ Iu ∪ I′u , by using
the local rating data, the server will receive the item gradients from each ordinary
client u ∈ U\Ũ , i.e., step 2 in Figure 1. Then the server can calculate the summation
of the gradients of each item i ∈ I as follows,

∇Vi· =
∑

u∈U\Ũ

∇V HF
EF (u, i), (4)

where U\Ũ denotes the ordinary clients (excluding the denoising clients). Since
∇V HF

EF (u, i) with i ∈ Iu ∪ I′u contain the gradients of client u to unrated items I′u , the
server can not identify each client u’s rated items Iu easily. Hence, the rating
behaviors of each client u are protected. Notice that ∇Vi· in Eq.(4) is not immediately
divided by |Ui ∪ U ′i | as that in FedRec [Lin et al., 2020] via Eq.(2), but is divided by the
number of users that have rated item i , i.e., |Ui |, after noise elimination for more
accurate preference modeling. We will show the details in Eq.(5) and Eq.(6).
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Method

Eliminate the Gradient Noise in the Server (2/3)

The gradient noise (i.e., ∇V HF
EF (u, i), i ∈ I′u) from each ordinary client u ∈ U\Ũ will

inevitably bias the modeling of the user’s preferences, which will be more serious
when a larger value of ρ is used [Lin et al., 2020]. In order to eliminate the gradient
noise in ∇Vi· in Eq.(4), we design a specific algorithm for noise elimination in the
server. Firstly, the server randomly selects some denoising clients Ũ ⊂ U as
denoisers, which will be used to collect the gradient noise, i.e., ∇V HF

EF (u, i), i ∈ I′u ,
u ∈ U\Ũ , from the ordinary clients. Secondly, each denoising client ũ sends the
summation of the noisy gradients of the ordinary clients (i.e., ∇V S(ũ, i)) to the server
in order to eliminate the noise in ∇Vi· in Eq.(4), which corresponds to step 3 in
Figure 1. Notice that the server will also receive the number of users who virtually
rated item i , i.e., |U ′ũi |, from each denoising client ũ ∈ Ũ in step 3 in Figure 1. Thirdly,
once the server has received ∇V S(ũ, i) from all the denoisers Ũ , the server can
eliminate the gradient noise in ∇Vi· in Eq.(4) as follows,

∇Vi· ← ∇Vi· −
∑
ũ∈Ũ

∇V S(ũ, i), (5)

where ∇V S(ũ, i) also contains the gradients for item i of the denoiser ũ itself, i.e.,
∇V HF

EF (ũ, i), i ∈ Iũ . We will describe the details in Eq.(9).
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Method

Eliminate the Gradient Noise in the Server (3/3)

After the server has eliminated the gradient noise in ∇Vi·, the server
can then calculate the number of users who rated item i , i.e.,
|Ui | = |Ui ∪ U ′i | −

∑
ũ∈Ũ |U

′ũ
i |, and update Vi· as follows,

Vi· ← Vi· − γ
∇Vi·
|Ui |

, (6)

where γ denotes the learning rate. We depict the whole process of
eliminating the gradient noise in the server in Algorithm 1.
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Method

Eliminate the Gradient Noise in the Client (1/3)

After each client u ∈ U has received the item-specific latent feature vectors Vi·, i ∈ I
from the server, i.e., step 1 in Figure 1, each client u ∈ U can use its own local rating
data to calculate the gradient ∇Uu·,

∇Uu· =

∑
i∈Iu

(−euiVi· + λUu·)

|Iu|
, (7)

where eui = rui − r̂ui . Moreover, we can calculate the gradients ∇V HF
EF (u, i), i ∈ Iu ∪ I′u

via Eq.(3), which is the same as that in FedRec [Lin et al., 2020].

Notice that ∇Uu· is used to update Uu· locally in each client, and ∇V HF
EF (u, i) are sent

to the server to update Vi· with the denoising information, i.e., step 2 in Figure 1.

Notice that if a client u is a denoising client, it only needs to calculate the gradients
∇V HF

EF (u, i) with i ∈ Iu rather than the gradients ∇V HF
EF (u, i) with i ∈ Iu ∪ I′u , because

the gradients ∇V HF
EF (u, i) with i ∈ Iu would be mixed with the gradient noise of the

ordinary clients before being sent to the server. Hence, the privacy of the denoising
client u does not leak towards the server, i.e., the rating behaviors of client u are
protected.
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Method

Eliminate the Gradient Noise in the Client (2/3)

When each ordinary client u ∈ U\Ũ sends∇VHF
EF (u, i) with i ∈ Iu ∪ I′u to the server, they need to send the gradient noise

(i.e.,∇VN(u, i), i ∈ I′u ) to a denoising client ũ ∈ Ũ at the same time, i.e., from the ordinary clients to the denoising clients of

step 2 in Figure 1. We have the gradients∇VN(u, i) as follows,

∇VN(u, i) = ∇VHF
EF (u, i), i ∈ I′u , (8)

where I′u denotes the sampled unrated items w.r.t. user u. Notice that transferring information between clients is a prominent
specialty of the decentralized distributed framework. In our FedRec++, we adopt this specialty by sending gradient noise to the
denoising clients, which can help eliminate the gradient noise.

For each denoising client ũ ∈ Ũ , it does not need to send∇VHF
EF (ũ, i), i ∈ Iũ to the server immediately, because they can

send∇VS(ũ, i) containing∇VHF
EF (ũ, i), i ∈ Iũ to the server after collecting the gradient noise from the ordinary clients. We

have∇VS(ũ, i) as follows,

∇VS(ũ, i) =
∑

u→ũ

∇VN(u, i)−∇VHF
EF (ũ, i), i ∈ Iũ , (9)

where the first term denotes the summation of the gradient noise sent to the denoising client ũ. Notice that the server can then
use Eq.(5) to completely remove the noise, and the resulting∇Vi· on the left side of Eq.(5) contains the pure gradient of the
rated item by the corresponding ordinary and/or denoising clients (i.e., users).
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Method

Eliminate the Gradient Noise in the Client (3/3)

Notice that each ordinary client u ∈ U\Ũ only sends its own gradient noise to one
denoising client. And each denoising client ũ does not need to send its own gradient
noise (i.e., ∇V N(ũ, i)) to other denoisers, because each denoiser ũ does not need to
send the gradient noise ∇V HF

EF (ũ, i), i ∈ I′ũ to the server and thus the server does not
need to eliminate the gradient noise in ∇V HF

EF (ũ, i), ũ ∈ Ũ . When each denoiser ũ
calculates the summation of the gradient noise from the ordinary clients, they can also
calculate the number of users who virtually rated item i w.r.t. the denoiser ũ at the
same time, i.e., |U ′ũi |. After each denoiser ũ ∈ Ũ obtains ∇V S(ũ, i), they send
∇V S(ũ, i) and |U ′ũi | to the server, i.e., step 3 in Figure 1. Notice that ∇V S(ũ, i) in
Eq.(9) will not leak the privacy of the denoising clients towards the server, because
∇V S(ũ, i) contains the gradient noise information of the ordinary client u ∈ U\Ũ . We
describe the whole process of eliminating the gradient noise in the client in
Algorithm 2.
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Method

Algorithm(1/2)

Algorithm 1 The algorithm of FedRec++ in the server.

1: Randomly select some clients as denoisers, i.e., Ũ .
2: Initialize the model parameters Vi·, i = 1, 2, . . . ,m and send them to each client u ∈ U .
3: for t = 1, 2, . . . , T do
4: for each client u ∈ U in parallel do
5: ClientTraining(Vi·, i = 1, 2, . . . ,m; TRAINING; u; ũ; Ũ ; t).
6: end for
7: Synchronize(). /*Wait for the clients to complete calculation.*/
8: for i = 1, 2, . . . ,m do
9: Calculate the gradient∇Vi· via Eq.(4) and also |Ui ∪ U′i |.
10: end for
11: for each client ũ ∈ Ũ in parallel do
12: ClientTraining(NULL; COLLECTING; 0; ũ; NULL; 0).
13: end for
14: Synchronize(). /*Wait for all the clients to complete.*/
15: for i = 1, 2, . . . ,m do
16: Eliminate the gradient noise in∇Vi· via Eq.(5).
17: Calculate the number of users who rated item i , i.e., |Ui | = |Ui ∪ U′i | −

∑
ũ∈Ũ |U

′ũ
i |.

18: Update Vi· via Eq.(6).
19: end for
20: Decrease the learning rate γ ← 0.9γ.
21: end for
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Method

Algorithm(2/2)

Algorithm 2 ClientTraining(Vi·, i = 1, 2, . . . ,m; OPERATION; u; ũ; Ũ ; t), i.e., the algorithm of FedRec++ in the client.

1: if OPERATION == TRAINING then
2: Sample items I′u from I\Iu with |I′u | = ρ|Iu |.
3: Assign Uu· to U′u·, and then update U′u· via U′u· ← U′u· − γ∇U′u· in Tlcoal iterations.

4: Assign a virtual rating for item i , i ∈ I′u via Eq.(1).
5: Calculate the gradient∇Uu· via Eq.(7) and then update Uu· via Uu· ← Uu· − γ∇Uu·.
6: for i ∈ Iu ∪ I′u do

7: Calculate∇VHF
EF (u, i) via Eq.(3).

8: end for
9: Upload∇VHF

EF (u, i) with i ∈ Iu ∪ I′u to the server.

10: if u is not a denoising client then
11: Calculate∇VN(u, i) with i ∈ I′u via Eq.(8), and send∇VN(u, i) with i ∈ I′u to a denoiser ũ ∈ Ũ .

12: else
13: Calculate∇VS(u, i) via Eq.(9).
14: end if
15: else if OPERATION == COLLECTING then
16: Receive the gradient noise∇VN(u, i) with i ∈ I′u from user u ∈ U\Ũ .

17: Calculate the summation of the gradient noise
∑

u→ũ ∇VN(u, i) and the number of users who virtually rated item i

w.r.t. the denoiser ũ, i.e., |U′ũi |.

18: Send the sum of gradient noise∇VS(ũ, i) and |U′ũi | to the server.

19: end if
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Method

Discussions

The designed noise elimination strategy in the server and in the client are actually
quite generic and can be applied to other recommendation methods. For example, as
introduced before, SDCF [Jiang et al., 2019] uses a two-stage random response
algorithm to perturb the rated items Iu and the unrated items I′′u of each user, and
then calculates the gradients ∇V SDCF

i· with i ∈ I′′u of each user to the unrated items.
The gradients ∇V SDCF

i· with i ∈ I′′u can be rewritten as follows,

∇V SDCF
i· = γ(euiUu· + Vi·Λ)− N(0, γI), i ∈ I′′u , (10)

where γ is the learning rate, eui with i ∈ I′′u are sampled from the distribution of eui

with i ∈ Iu , Λ is a diagonal matrix related to the Gamma distribution of the
regularization term of Vi·, and I is an identity matrix with appropriate dimension. We
can see that the gradients ∇V SDCF

i· with i ∈ I′′u are similar to the gradient noise
∇V N(u, i) with i ∈ I′u in Eq.(8) in our FedRec++. Hence, we can eliminate the noise
introduced by the two-stage random response algorithm in SDCF via the denoising
strategy in our FedRec++.
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Method

Privacy Analysis

Firstly, each user’s original rating records are always kept locally in the client in the whole
process, which ensures the security of the original data.

Secondly, our FedRec++ adopts a hybrid filling strategy [Lin et al., 2020] to assign a virtual
rating to each randomly sampled unrated item, which protects the users’ rating behaviors.

Thirdly, each ordinary client u transfers the gradients of the sampled unrated items (i.e.,
the gradient noise ∇V N(u, i), i ∈ I′u) to a denoising client, which again does not reveal the
user’s rating behaviors (i.e., Iu).

Fourthly, the denoising client cannot identify the source (i.e., the sender) of the gradient,
because the gradient does not contain the sensitive information of user ID, which
guarantees the anonymity of each ordinary client [Duriakova et al., 2019].

Finally, even if the server colludes with the denoising clients, the server cannot obtain the
rating behaviors of a specific user according to the gradient noise of the ordinary clients as
collected by the denoising clients because of the anonymity of the clients (i.e., the
denoising clients do not know which ordinary client the gradient noise belongs to). Hence,
the server cannot obtain a user u’s rating behaviors Iu via comparing the item ID of
∇V HF

EF (u, i), i ∈ Iu ∪ I′u uploaded to the server by user u and ∇V N(u, i), i ∈ I′u sent to a
denoising client by user u.
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Experiments

Datasets and Evaluation Metrics

Besides using the two datasets in FedRec [Lin et al., 2020], i.e.,
MovieLens 100K (ML100K) and MovieLens 1M (ML1M), we also
include a subset from Netflix (NF5K5K). Specifically, ML100K
contains 100,000 ratings of 1,682 movies from 943 users; ML1M
contains 1,000,209 ratings of 3,952 movies from 6,040 users;
and NF5K5K contains 7,944,473 ratings of 5,000 most popular
movies from 5,000 most active users.

We use two commonly used evaluation metrics, i.e., RMSE and
MAE, for performance evaluation. Notice that the losslessness of
our denoising strategy is independent of the datasets and the
evaluation metrics.
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Experiments

Parameter Settings

For parameter configurations, we mainly follow FedRec [Lin et al., 2020]. In particular,
we fix the number of latent features d = 20 and the number of iterations T = 100. We
search the best value of the learning rate γ ∈ {0.7, 0.8, . . . , 1.4}, and have γ = 0.8,
γ = 0.8 and γ = 1.0 on ML100K, ML1M and NF5K5K, respectively. We search the
best value of the tradeoff parameter on the regularization terms α ∈ {0.1, 0.01, 0.001},
and have α = 0.001 on all the three datasets. We use different values of the sampling
parameter ρ ∈ {0, 1, 2, 3}. We choose the best value of the iteration number Tpredict for
starting filling the sampled unrated items via Eq.(1) and the iteration number Tlocal for
locally training U ′u· both from {5, 10, 15}, and have (Tpredict,Tlocal) = (10, 10),
(Tpredict,Tlocal) = (5, 15) and (Tpredict,Tlocal) = (5, 15) on ML100K with ρ = 1, ρ = 2 and
ρ = 3, respectively; and have (Tpredict,Tlocal) = (10, 15), (Tpredict,Tlocal) = (10, 15) and
(Tpredict,Tlocal) = (10, 15) on ML1M with ρ = 1, ρ = 2 and ρ = 3, respectively; and
have (Tpredict,Tlocal) = (5, 10), (Tpredict,Tlocal) = (5, 10) and (Tpredict,Tlocal) = (5, 15) on
NF5K5K with ρ = 1, ρ = 2 and ρ = 3, respectively. All the hyper parameters are
searched according to the MAE performance on the first copy of each dataset.
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Experiments

Baselines

In order to study the effectiveness of our FedRec++, in particular of the
merit of losslessness, we compare our FedRec++ with the most
closely related work, i.e., FedRec [Lin et al., 2020].

In both FedRec and our FedRec++, we use
PMF [Mnih and Salakhutdinov, 2007] as the backbone model and the
hybrid filling strategy for virtual ratings [Lin et al., 2020].
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Experiments

Results(1/6)

Table: Recommendation performance of FedRec and our FedRec++ with different values of ρ ∈ {1, 2, 3}. Notice that we fix
c = n and η = 1 in our FedRec++, and copy the results of FedRec on ML100K and ML1M from [Lin et al., 2020] for reference
and direct comparison.

Data Algorithm MAE RMSE ρ

ML100K

FedRec 0.7418± 0.0048 0.9424± 0.0064 0
FedRec 0.7440± 0.0043 0.9432± 0.0056 1FedRec++ 0.7417± 0.0049 0.9422± 0.0063
FedRec 0.7445± 0.0045 0.9431± 0.0057 2FedRec++ 0.7422± 0.0047 0.9430± 0.0061
FedRec 0.7447± 0.0043 0.9431± 0.0054 3FedRec++ 0.7416± 0.0049 0.9421± 0.0064

ML1M

FedRec 0.7193± 0.0012 0.9106± 0.0015 0
FedRec 0.7217± 0.0011 0.9129± 0.0012 1FedRec++ 0.7198± 0.0011 0.9113± 0.0013
FedRec 0.7239± 0.0011 0.9152± 0.0011 2FedRec++ 0.7195± 0.0011 0.9109± 0.0013
FedRec 0.7263± 0.0010 0.9178± 0.0010 3FedRec++ 0.7196± 0.0013 0.9109± 0.0015

NF5K5K

FedRec 0.7139± 0.0007 0.9090± 0.0008 0
FedRec 0.7148± 0.0004 0.9102± 0.0005 1FedRec++ 0.7137± 0.0008 0.9088± 0.0012
FedRec 0.7152± 0.0005 0.9104± 0.0005 2FedRec++ 0.7137± 0.0002 0.9089± 0.0002
FedRec 0.7160± 0.0007 0.9110± 0.0005 3FedRec++ 0.7138± 0.0005 0.9090± 0.0004
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Experiments

Results(2/6)

Observations:
The performance of our FedRec++ with ρ ∈ {1,2,3} is almost the
same with that of FedRec with ρ = 0 (i.e., without introducing
gradient noise), which means that our FedRec++ is able to
completely eliminate the noise introduced when assigning virtual
ratings to the sampled unrated items (i.e., the denoising strategy
is lossless). The results are very promising and clearly show that
our FedRec++ ensures privacy in model training without
sacrificing the recommendation accuracy.

The performance of FedRec decreases with a larger value of ρ for
higher security, which is expected because the volume of noise is
proportional to the value of ρ. On the contrary, the performance of
our FedRec++ does not decrease accordingly, which means that it
can well eliminate the noise regardless of a small or large value of
ρ.
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ML100K ML1M

Figure: Recommendation performance of FedRec and our FedRec++ with
different values of c ∈ {0.2n,0.6n,n} and ρ ∈ {1,2,3}. Notice that we fix
η = 1 and the results on NF5K5K are similar to that on ML100K.
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Results(4/6)

Observations:
When c = 0.2n, the performance of FedRec decreases fast as ρ increases, and
the overall performance of our FedRec++ is significantly better than that of
FedRec on each corresponding value of ρ, which again shows the effectiveness
of the noise elimination strategy in our FedRec++. Because there are fewer
clients participating in model training when c = 0.2n, the model training is
insufficient and the error is higher as expected. Hence, when c = 0.2n, the
performance of both FedRec and our FedRec++ with ρ = 1, 2, 3 are worse than
that in Table 3.

When c ∈ {0.6n, n}, the performance of FedRec on ML100K does not decrease
much with the increased values of ρ, while its performance on ML1M decreases.
This means that we may choose to use the noise elimination strategy in our
FedRec++ appropriately for different datasets. Importantly, the performance of
our FedRec++ with ρ ∈ {1, 2, 3} is almost the same with that in Table 3, which
means that we may only use 60% clients in model training to achieve
comparable performance as that of using all the clients.
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Table: Average communication cost per iteration of each denoising client, each
ordinary client and each (denoising or ordinary) client in our FedRec++ with different
numbers of denoising clients η ∈ {0, 1, n/4, n/2}. Notice that we fix c = n and ρ = 1.
The unit of each cost is 80 bytes occupied by one latent vector.

Data Denoising Ordinary Client ηClient Client

ML100K

0 170 170 0
81,550 254 258 1

571 256 350 n/4
251 256 294 n/2

ML1M

0 265 265 0
804,058 397 399 1

903 397 551 n/4
393 397 460 n/2

NF5K5K

0 2535 2535 0
6,324,227 3799 3801 1

7309 3800 4608 n/4
3537 3799 4172 n/2
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Experiments

Results(6/6)

Observations:
Using more denoising clients (i.e., a larger value of η) can more efficiently process the
gradient noise in parallel, which thus reduces the cost of each denoising client.

The cost of each ordinary client is almost the same when η ∈ {1, n/4, n/2}, which is
expected since it is independent of the number of denoising clients.

When η ∈ {n/4, n/2}, the cost of each client is higher than that when η ∈ {0, 1}, because

there are more denoising clients sending gradients to the server. Quantitatively, the cost of

each client is at most 350− 170 = 180, 551− 265 = 286, and 4608− 2535 = 2073 more

on ML100K, ML1M and NF5K5K, respectively. Because there are 100 iterations in model

training, the averaged additional communication costs for each client are

180× 80× 100 bytes = 1.37 MB, 286× 80× 100 bytes = 2.18 MB, and

2073× 80× 100 bytes = 15.8 MB, on ML100K, ML1M and NF5K5K, respectively. We can

see that the noise elimination strategy in our FedRec++ only consumes a small amount of

communication cost of clients, which shows another merit of our FedRec++.
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Conclusions

In this paper, we study an emerging problem, i.e., privacy-aware
recommendation with explicit feedback. In particular, we propose a novel and
lossless federated recommendation method called FedRec++, for which we use
some denoising clients to completely eliminate the noise caused by the assigned
virtual ratings to some randomly sampled items.

We also conduct privacy analysis to show that our FedRec++ is able to protect
the user privacy well. Moreover, our FedRec++ is a generic solution, which
embodies FedRec [Lin et al., 2020] as a special case, and the denoising strategy
can also be used in the other privacy-aware recommendation method such as
SDCF [Jiang et al., 2019].

Experimental results on three public datasets show the effectiveness (i.e.,
losslessness) and efficiency (i.e., low communication cost) of our FedRec++.
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Future Work

We are interested in generalizing our FedRec++ to some models with
ranking losses (e.g., pairwise loss [Rendle et al., 2009] or listwise
loss [Wu et al., 2018]), neural network models, and some vertical
federated machine learning
settings [Yang et al., 2019, Zhang et al., 2020]. We are also interested
in federating some more advanced recommendation models such as
those based on deep learning
techniques [He et al., 2017, Liang et al., 2018, Sun et al., 2019].
Moreover, we will further explore the applicability of the denoising
strategy to other works.
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