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ABSTRACT
Sequential recommendation has been a hot research topic because
of its practicability and high accuracy by capturing the sequential
information. As deep learning (DL) based methods being widely
adopted to model the local and dynamic preferences beneath users’
behavior sequences, the modeling of users’ global and static prefer-
ences tends to be underestimated that usually, only some simple
and crude users’ latent representations are introduced. Moreover,
most existing methods hold an assumption that users’ intention
can be fully captured by considering the historical behaviors, while
neglect the possible uncertainty of users’ intention in reality, which
may be influenced by the appearance of the candidate items to be
recommended. In this paper, we thus focus on these two issues, i.e.,
the imperfect modeling of users’ global preferences in most DL-
based sequential recommendation methods and the uncertainty of
users’ intention brought by the candidate items, and propose a novel
solution named fusing item similarity models with self-attention
networks (FISSA) for sequential recommendation. Specifically, we
treat the state-of-the-art self-attentive sequential recommendation
(SASRec) model as the local representation learning module to cap-
ture the dynamic preferences beneath users’ behavior sequences
in our FISSA, and further propose a global representation learning
module to improve the modeling of users’ global preferences and a
gating module that balances the local and global representations
by taking the information of the candidate items into account. The
global representation learning module can be seen as a location-
based attention layer, which is effective to fit in well with the par-
allelization training process of the self-attention framework. The
gating module calculates the weight by modeling the relationship
among the candidate item, the recently interacted item and the
global preference of each user using an MLP layer. Extensive empir-
ical studies on five commonly used datasets show that our FISSA
significantly outperforms eight state-of-the-art baselines in terms
of two commonly used metrics.
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1 INTRODUCTION
A recommendation system is an intelligent tool to alleviate the
problem of information overload especially when users’ intents are
uncertain. Traditional recommendation systems deal with general
recommendation only, in which the user-item interaction records
can be placed in a 2-D ratingmatrix, so that predictions are achieved
by filling the vacancies of this matrix. Different from general rec-
ommendation, sequential recommendation treats users’ historical
records as sequences of items rather than sets of items, in order to
predict exactly the next item that they will interact with. Sequential
recommendation is now widely studied, because it is more con-
sistent with real-world situations and is expected to obtain more
accurate result with more information considered.

Now that the global and static preference of users have been well
explored in general recommendation, an intuitive way to develop a
sequential recommendation method is to model the local and dy-
namic preference and combine it with the global one. This is exactly
what the state-of-the-art factorized personalized Markov chains
(FPMC) [32] does. Specifically, FPMC consists of two parts, i.e., the
traditional matrix factorization (MF) model that factorizes the one-
class feedback matrix, and a novel MF model that factorizes the
transition matrix generated through personalized Markov chains.
An improved model called Fossil[8] replaces the former component
of FPMC with the factored item similarity model (FISM) [15], ex-
tends the latter component to a higher-order version by including
multiple transition matrices and also introduces some personalized
weighting factors to balance these global and local preferences.

Recently, more and more deep learning (DL) based methods are
adopted to model the dynamic interest. One of the earliest works
that apply recurrent neural networks (RNNs) for sequential recom-
mendation is GRU4Rec [13], which progressively learns the user
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preference at each step. Caser [38] utilize convolutional neural
networks (CNNs) to learn complex (i.e., point-level, union-level
and skipping) short-term interest by sliding filters. In many other
works, the attention mechanism has become a remarkable compo-
nent to discover users’ intention unshackled from the fixed order.
SASRec [16] stacks multiple self-attention blocks to capture both
the long- and short-term transitions within sequences efficiently.
However, most of these DL-based methods do not pay enough
attention to the static representation learning, let along the com-
bination of the static and dynamic representations, e.g., in Caser,
the learnable users’ latent representations and the concatenation
operation are simply adopted, which makes them still be challenged
by models with well-designed global representations and balanced
combination approach like Fossil.

Besides, almost all of the existing sequential recommendation
methods rely on an idealistic assumption that users’ intention can be
fully captured by using their historical behaviors, i.e., the interaction
between the final representation of a user’s preference and a new
item (or a candidate item to be recommended) is usually executed
at the last step of the algorithms, before which the information
of the candidate item is never used for the preference learning.
Actually, users’ intention can be uncertain especially when they
are involved in a longstanding habitual behavior (e.g., purchase)
sequence rather than a short-lived activity (e.g., listen to music)
session. A proper way to tell whether a new item can attract a user
is to consider how it can arouse different parts of the user’s interest
(i.e., the short-term one and the long-term one).

Based on the above analysis, in this paper, we propose a novel
solution named fusing item similarity models with self-attention
networks (or FISSA in short) for sequential recommendation. Our
FISSA not only joins the effective global representation learning
to the well-established method, i.e., self-attentive sequential rec-
ommendation (SASRec) [16], but also balances a user’s short-term
and long-term interest for each candidate item. Specifically, our
model contains three main components, i.e., a local representation
learning module, a global representation learning module, and a
gating module to balance these two kinds of representations. For
local representation learning, we follow SASRec because it has
achieved excellent performance, and enhancing the dynamic inter-
est modeling is not our focus in this paper. For global representation
learning, we apply a location-based attention layer to achieve an
attentive version of FISM [15], in which a query vector shared by all
the sequences are introduced, so as to distinguish the importance
of different items for generating the global representation of the
sequences. Inspired by neural attentive item similarity (NAIS) [9]
that weighs items by considering their relations to the candidate
item, we design a gating network based on a multilayer perceptron
(MLP) that decides the contribution ratio of the local and global
representations by considering the relationship among the candi-
date item, the recently interacted item and the global preference of
a target user.

We summarize our main contributions as follows:

• We propose a novel solution named FISSA to deal with two is-
sues, i.e., the imperfect modeling of users’ global preferences
in most DL-based sequential recommendation methods and

the uncertainty of users’ intention which may be influenced
by the candidate items.

• We design a global representation learning module to effec-
tively capture users’ global preferences in our FISSA, which
can be seen as a location-based attention layer that fits inwell
with the parallelization training process of the self-attention
framework.

• We design an MLP-based gating module in our FISSA, which
balances the local and global representations by taking the
information of the candidate items into account, so as to deal
with the uncertainty of the users’ intention at the same time.

• We conduct extensive empirical studies on five commonly
used datasets and show that our FISSA significantly out-
performs eight state-of-the-art baselines. In particular, our
FISSA surpasses SASRec by 10.11% and 10.05% on average
in terms of Rec@10 and NDCG@10, respectively. We also
conduct ablation studies and discuss some options for the
details of the global and gating modules, etc.

2 REALTEDWORK
In this section, we review the state-of-the-art methods for general
recommendation and sequential recommendation, respectively, and
point out the relationship and differences between our FISSA and
those works, as well as how our FISSA significantly advances the
closely related works for the studied problem.

2.1 General Recommendation
Collaborative filtering (CF) methods often treat the users’ behavior
history as a set of user-item interaction pairs. There are three main
branches of CF methods, i.e., neighborhood-based methods [1, 34],
matrix factorization (MF) based methods [28, 31] and hybrid meth-
ods [15, 17]. MF-based methods have been popular because of their
high efficiency and accuracy. In early works of MF-based meth-
ods [28, 31], user-specific and item-specific latent representation
vectors are directly learned by executing singular value decomposi-
tion (SVD) on the rating matrix, and a predicted rating is obtained
via the inner product of the two corresponding vectors. Later, there
are suggestions [15, 17] (e.g., FISM [15]) to obtain the represen-
tation of a user by summarizing the representation of his/her in-
teracted items. In this way, the predicted rating can be regarded
as the factored similarity between the user’s historical items and
the candidate item, which provides the MF-based model with good
interpretability as neighborhood-based models. Also, the compos-
ite user representation is more informative to tackle the limited
number of users’ records. Lately, deep learning (DL) based meth-
ods [2, 10, 21, 42] are adopted to enhance the above methods. For
example, neural collaborative filtering (NCF) [10] uses multilayer
perceptron (MLP) to learn the user-specific and item-specific latent
representation vectors and can be easily combined with the tradi-
tional MF models. In another model called attentive collaborative
filtering (ACF) [2], the attention mechanism is applied to weigh
different historical items and build a more comprehensive model.
Neural attentive item similarity (NAIS) [9] also applies the attention
mechanism but focuses on distinguishing more important items
for the candidate item rather than for the user. There are also other
DL-based methods that use an autoencoder (AE) [21, 22, 42] or
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restricted Boltzmann machines (RBMs) [33] for general recommen-
dation. In this paper, we achieve an attentive form of FISM [15] to
obtain the global representation of a user’s behavior sequence, and
design an item similarity gating for balancing the local and global
representations by modeling the relationship among the candidate
item, the recently interacted item and the global preference of the
user.

2.2 Sequential Recommendation
The earliest works on sequential recommendation use Markov
chains (MCs) to model the first-order transition between items
[49], or a Markov decision processes (MDP) [35] to handle long-
term effects. Later, factorized personalized MCs [32] are proposed
and extended to a higher-order version [8], which are inspired by
and combined with general MF-based methods [15, 31]. To maintain
the triangle inequality for the sparse transition data, metric embed-
ding [5] and translation-based [7, 19] methods are proposed. While
recently most researchers follow the crowd to adopt DL-basedmeth-
ods to capture the nonlinearity and dynamic features for sequential
recommendation. RNN-based models [4, 12, 13, 20, 30, 37, 47] are
nearly the first to be adopted because of their natural instincts
to model sequences step-by-step. To avoid the vanishing gradient
problem brought by RNNs, other DL-based methods that use CNNs
[38, 48] are also carried out, with additional characteristics such as
multiple and flexible filter sizes to refine the short-term features.
Based on RNNs and CNNs, the applications of some emerging net-
work models come into vogue. For example, memory networks
[3, 14], graph neural networks (GNN) [26, 29, 41, 43] that cooperate
with the attention mechanism are used to extract short-term fea-
tures with more consistency or adjacency consideration. Note that
the attention mechanism is also proved to be effective on its own
with proper hierarchical structure [16, 23, 46]. In this paper, we
base our local representation learning module on the self-attentive
sequential recommendation (SASRec) model [16], which is found
to be an outstanding sequential recommendation model with satis-
factory conciseness and efficiency. Note that different from other
works that improve SASRec by introducing graph neural networks
[43] or bidirectional structure [36], which still focus on the local
and dynamic preference modeling, our proposed FISSA aims at
combining SASRec with an effective global and static preference
learning model in a balanced way. Another improved work of SAS-
Rec (i.e., consistency-aware recommendation (CAR) [11]) that is
similar to our FISSA is further discussed in Section 4.

For dealing with the uncertainty of users’ intention in sequences,
existing works mainly focus on distinguishing the importance of
the items in sequences. For example, in a recent work, a model
named streaming session-based recommendation (SSR) [6] focuses
on streaming session data and introduces an MF-based attention
into the RNN-based session encoder, so that a user’s intention in
the current session is related to the long-term preferences from
the historical sessions. Different from this work, we focus on some
longstanding habitual behaviors (e.g., review, check-in, purchase,
etc.), and thus only consider one sequence for each user. Moreover,
in addition to learning the importance of each item in the sequence
through a self-attentive model, we separately model the short-term

and long-term preferences of a user and then balance them ac-
cording to different candidate items, which means that our FISSA
captures the changing intention influenced by the appearance of
the candidate items and is more well rounded.

3 PROPOSED METHOD
In this section, we propose our FISSA, i.e., fusing item similarity
models with self-attention networks for sequential recommenda-
tion. Without loss of generality, we have a recommendation system
with implicit feedback given by a set of users U to a set of items
I. For sequential recommendation, we denote the records of each
user u ∈ U as an item sequence (ordered by the interaction time)
as Su = {su1 , s

u
2 , . . . , s

u
|Su |

}, su· ∈ I. Our goal is to provide a rec-
ommendation list for each user u, in which we expect the real next
interacted item su

|Su |+1 ∈ I\Su to appear and be ranked as high
as possible.

We illustrate our FISSA in Figure 1, which contains three main
components, including a local representation learning module, a
global representation learning module, and a gating module to
balance these two kinds of representations. In this paper, we use
capital letters in bold to denote matrices and their lowercase form
to denote the corresponding row vectors.

3.1 Local Representation Learning
First of all, we fix the input sequence of each user u by extracting
his/her latestL behaviors, which is abbreviated asSu = {s1, s2, . . . , sL}
(usually a relatively large value of L, e.g., L = 50 for our stud-
ied datasets, is chosen to reserve the whole sequences of most
users, and padding items are appended at the beginning of the
sequences when needed). Let M ∈ R |I |×d denote the learnable
item embedding matrix with d as the latent dimensionality. We
can then represent the input sequence as an embedding matrix
E = [ms1 ;ms2 ; . . . ;msL ] ∈ R

L×d .
Following [16], we use a hierarchical self-attention network to

capture both the short-term and long-term item transitions in the
sequence. In order to capture the influence of the position, we
add a learnable position embedding matrix P = [p1;p2; . . . ;pL] ∈
RL×d to the input embedding matrix E ∈ RL×d , and obtain an
input matrix X (0) = [x1;x2; . . . ;xL] ∈ RL×d for the self-attention
network:

x (0)
ℓ
=msℓ + pℓ , ℓ ∈ {1, 2, . . . ,L}. (1)

Then, we feed the sequence X (0) ∈ RL×d into a series of stacked
self-attention blocks (SABs). The output of the bth block is as fol-
lows:

X (b) = SAB(b)(X (b−1)),b ∈ {1, 2, . . . ,B}, (2)

where the self-attention block SAB(b)(·) is first introduced in [39].
Omitting the normalization layers with residual connection, each
self-attention block can be viewed as a self-attention layer SAL(·)
followed by a feed-forward layer FFL(·) as follows:

SAB(X ) = FFL(SAL(X )), (3)

X ′ = SAL(X ) = so f tmax(
QKT
√
d

)∆ ·V , (4)

FFL(X ′) = ReLU (X ′W 1 + 1Tb1)W 2 + 1Tb2, (5)
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Figure 1: The network architecture of our proposed FISSA. At the beginning, the input sequence (in the upper left corner) is
represented as an embedding matrix E, in which each item embeddingm · is from the item embedding matrixM ∈ R |I |×d that
works as a dictionary. The local representation learning module (in the top half) consists of a series of stacked self-attention
blocks SAB(·) (see Eqs.(2∼5)). The global representation learning module (in the bottom left corner) is actually a location-
based attention layer LBA(·) (see Eq.(7)). In the gating module (in the bottom right corner), the item similarity gating function
ISG(·, ·, ·) (see Eq.(9)) outputs the balanced weights of the local and global representations by taking the representations of the
candidate itemmi , the recently interacted itemmsℓ and the user’s global preference y as inputs.

where X ∈ RL×d is the position-aware input matrix, Q = XWQ ,
K = XW K and V = XWV withWQ ,W K ,WV ∈ Rd×d are the
projected query, key and value matrices, respectively, to improve
the flexibility. Note thatW 1,W 2 ∈ Rd×d and b1,b2 ∈ R1×d are
weights and biases for the two layers of convolution, 1 is a unit row
vector of size 1 × L and ∆ is the causality mask, i.e., a unit lower
triangular matrix of size L × L, to preserve the transitions from
previous steps only. The normalization and dropout layers we use
in this module are the same with that in [39].

In this module, we take the output vector x (B)
ℓ

∈ R1×d from the
top self-attention block as the local representation, which stands for
the dynamic preference at the ℓth step in the user behavior sequence.
It is shown in [16] that the hierarchical structure is important for
the local representation. Specifically, the bottom self-attention block
(i.e., SAB(1)(·)) tends to capture the long-term dependencies, while
higher blocks may pay attention to more recent ones.

3.2 Global Representation Learning
Though applying the attention mechanism to avoid rigorous or-
dering of the previous items, the local representation still ignores
the variable ordering of the current item and its subsequent items.
A simple way to deal with this issue is to generate a global and
non-causal representation of each user’s behavior sequence, so that
more available information from the future can be utilized for the
prediction at each step in the sequence during training.

By referring to factored item similarity model (FISM) [15] for
general recommendation, we propose an attentive version of FISM
for global representation learning, which is well adapted to the
parallelization training process of the self-attention framework (i.e.,
including all the steps of a sequence in one training sample). Note
that the global representation learning module is independent of
the local one.

In FISM [15], the preference of useru on the interacted item su
ℓ+1

at the (ℓ + 1)th step is generated as the uniform aggregation of the
representation of the other interacted items:

ỹuℓ+1 =
1√

|Su\{su
ℓ+1}|

∑
i′∈Su \{su

ℓ+1 }

mi′ . (6)

In this way, the predicted rating ru
ℓ+1,su

ℓ+1
= ỹuℓ+1m

T
su
ℓ+1

can be
regarded as a factored similarity between the historical items of
user u and the candidate item su

ℓ+1. Another understanding of FISM
is that with the benefit of utilizing the shared item representation,
sequences with similar items tend to have similar representations.
We believe that this effect can be enhanced if more representative
items are noticed. So instead of an aggregation with average weight-
ing, we introduce a learnable query vector qS ∈ R1×d shared by
all sequences to figure out the most representative items in the
sequences. Omitting the superscript u, the global representation of
the sequence can then be formalized as follows:

y = LBA(E) = so f tmax(qS (EW ′
K )

T )EW ′
V , (7)

where E ∈ RL×d is the initial input matrix as mentioned in the first
paragraph of Section 3.1,W ′

K ,W
′
V ∈ Rd×d are projection matrices

to be learned, similar toWQ ,W K ,WV in Eq.(4). Such an atten-
tion layer is also known as a location-based attention layer LBA(·)
described in [24], in which neither personalized nor contextual
information is embedded in the query vector. Note that besides
the query condition, the main differences of the attention layer in
Eq.(7) and Eq.(4) also include that the position information P and
the causality constraint ∆ are abandoned here.

It is worth mentioning that in our case, the global representation
of the sequence is the same to all steps, which means that the corre-
sponding parameters in Eq.(7) are updated only once in a training
epoch even for predictions in many (e.g., L) steps. So a dropout
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layer is very important during training to generalize the global
representation to all steps, i.e., we have the global representation
matrix Y ∈ RL×d as follows:

yℓ = Dropout(y), ℓ ∈ {1, 2, . . . ,L}. (8)

In a related work to ours that also improves SASRec by intro-
ducing the global representation [11], the authors still keep the
position information and the causality constraint, which is found
to be a sub-optimal choice in our empirical studies in Session 4.

3.3 Item Similarity Gating
To combine the local representation and the global representation,
we may naturally think of concatenation or summation. Our early
attempts have shown that summation is always better than con-
catenation. In [11], the authors suggest a weighted summation to
balance the two representations by considering the consistency of
the item lists (corresponding to the sequences in our case), which
performs better in their cases. However, these approaches of com-
bination are still based on the historical information only, which
may be idealistic as discussed in Section 1.

To deal with the the issue of the uncertainty of users’ intention
in sequential recommendation and inspired by neural attentive
item similarity (NAIS) [9], we propose an item similarity gating
module, which calculates the weight of the local representation
and global representation by modeling the item similarity between
the candidate item i ∈ I and the recently interacted item sℓ , as
well as the item similarity between the candidate item i and the
aggregation of the historical items i ′ ∈ Su . To simplify the model,
we 1) determine the output value of the gating function д as the
weight of the local representation and restrict it to 0 < д < 1, so
that the weight of global representation is automatically obtained
as 1 − д; and 2) feed the three kinds of ‘items’ (i.e., the candidate
item i , the recently interacted item sℓ and the aggregation of the
historical items i ′ ∈ Su ) into the gating function by one step, which
means that the two pairs of item similarities are integrated into the
relationship among the candidate item, the recently interacted item
and the global preference of user u.

Specifically, the representation of the candidate item i ∈ I and
the interacted item at the most recent step sℓ are taken from the
primitive item embedding matrixM , i.e.,mi andmsℓ , respectively.
The global preference is represented as the aggregated represen-
tation of the historical items i ′ ∈ Su , which is exactly the learned
global representation y. The individual-level gating is then written
as an MLP as follows:

д = σ (ISG(msℓ ,y,mi )) = σ ([msℓ ,y,mi ]WG + bG ), (9)

where ISG(·, ·, ·) is the item similarity gating function, [·, ·, ·] de-
notes the ternary concatenation operation, WG ∈ R3d×1 and
bG ∈ R are the weights and bias to be learned, respectively. We use
the sigmoid function σ (ξ ) = 1/(1 + e−ξ ) as the activation function,
so that д is restricted to (0, 1).

For other options, similar to [9], we also try introducing the
two element-wise products (representing the two pairs of item
similarities) as “[msℓ ⊗mi ,y ⊗mi ]” for the input of the MLP, which
makes no difference to the prediction performance and may cause

some information loss in theory [9]. We can also design a feature-
level gating to output a vector rather than a scalar, which is included
in our empirical studies in Section 4.2.4.

The final representation of the sequence at the ℓth step is ob-
tained by the weighed sum of the corresponding local representa-
tion x (B)

ℓ
and global representation y as follows:

zℓ = x (B)
ℓ

⊗ д +y ⊗ (1 − д), (10)

where ⊗ denotes the element-wise operation with the broadcast-
ing mechanism in TensorFlow. Note that the weight of the local
representation in our FISSA can be extended from (0, 1) to [0, 1] to
include both SASRec (zL

ℓ
= x (B)

ℓ
when д = 1, i.e., our local represen-

tation learning module in Section 3.1) and the attentive version of
FISM (zG

ℓ
= y when д = 0, i.e., our global representation learning

module in Section 3.2) as special cases.
Finally, we predict the preference of item i being the (ℓ + 1)th

item in the sequence as follows:

rℓ+1,i = zℓ(mi )
T . (11)

We train our FISSA by minimizing the binary cross-entropy loss
with the Adam optimizer. The loss function is as follows:

L = −
∑
u ∈U

L−1∑
ℓ=1

δ (suℓ+1)[log(σ (r
u
ℓ+1,su

ℓ+1
)) + log(1 − σ (ruℓ+1, j ))],

(12)

where j ∈ I\Su is a negative item randomly sampled for each
prediction. The indicator function δ (su

ℓ+1) = 1 only if su
ℓ+1 is not a

padding item, otherwise 0.

4 EXPERIMENTS
In this Section, we present experimental settings and results to
answer the following research questions: RQ1) Does our FISSA
achieve the state-of-the-art performance? RQ2) What is the impact
of different components in our FISSA? RQ3) How does the key
parameters such as the dimensionality d and the number of blocks
B affect the performance of our FISSA? RQ4) What is the impact
of some options for the design of the global representation module
(e.g., the consideration of causality) and the gating module (e.g., the
input and output of the MLP layer) in our FISSA?

4.1 Settings
4.1.1 Datasets. We conduct experiments on five public datasets
from four real-world scenarios, i.e., Amazon1, Steam2, Foursquare3
and Tmall4. Amazon and Steam are review datasets collected by [16,
27] from the eponymous e-commerce and video game platform,
respectively. Note that we follow [16] and choose two catego-
rized datasets from Amazon, i.e., ‘Beauty’ and ‘Games’. Foursquare
contains check-in records collected by [18] from the eponymous
location-based social application. Tmall is another e-commerce
dataset with multiple behaviors (including clicks, purchases, etc.)
recorded and is published for the IJCAI Competition 2015. For se-
quential recommendation, we preprocess these datasets as follows:
1http://jmcauley.ucsd.edu/data/amazon/
2https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
3https://archive.org/details/201309_foursquare_dataset_umn
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
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Dataset # Users # Items # Interactions Avg. Length Density
Beauty 40,226 54,542 353,962 8.80 0.02%
Games 29,341 23,464 280,945 9.58 0.04%
Steam 281,428 13,044 3,488,899 12.40 0.10%
Foursquare 22,748 11,146 145,106 6.38 0.06%
Tmall 201,139 97,636 1,936,790 9.63 0.01%

Table 1: Statistics of the processed datasets.

1) we treat the presence of review, check-in and purchase behav-
iors as positive feedback and order them by the timestamps; 2) we
discard later duplicated user-item pairs in order to predict new
items; 3) we successively discard items and users with fewer than 5
records to maintain sequentiality; and 4) we adopt the leave-one-
out evaluation by splitting each dataset into three parts, i.e., the last
interaction of each user for test, the penultimate one for validation
and the rest for training. Note that cold-start items in the test and
validation data are also removed. The statistics of the processed
datasets are shown in Table 1. The source codes for preprocessing
the datasets are released together with the implementation code of
our FISSA (see Section 4.1.4).

4.1.2 Evaluation Metrics. We evaluate the recommendation perfor-
mance via two common metrics, i.e., recall (Rec@10, equivalent to
hit ratio because there is exactly one preferred item by each user in
our case) and normalized discounted cumulative gain (NDCG@10).
Rec@10 refers to the ratio of the real next items presenting in the
top-10 recommendation lists, while NDCG@10 cares more about
the exact ranking positions of the target items in these lists. To
reduce computation, we follow [10, 16] to prearrange a candidate
list with 100 randomly sampled un-interacted items for each user.

4.1.3 Baselines. We adopt eight competitive baselines, including
four MF-based methods and four DL-based methods as follows:

• BPRMF [31]. A general recommendation model that simply
factorizes the user-item interaction matrix via a pairwise
loss.

• FISM [15]. Another general model that indirectly obtains the
users’ representation by factorizing an item-to-item similar-
ity matrix.

• FPMC [32]. A pioneer method for sequential recommen-
dation that models first-order Markov chains (MCs) in a
factorization way and combines it with BPRMF [31].

• Fossil [8]. An improved model of FPMC by utilizing FISM
for global preference learning, extending factored MCs to
higher orders, and introducing some personalized weighting
factors to balance these two components.

• GRU4Rec+ [12]. An updated version of the session-based
RNN model GRU4Rec [13] by adopting a listwise loss func-
tion (e.g., BPR-max) and an additional sampling strategy.
Note that GRU4Rec is known as one of the earliest works
to introduce DL-based methods (i.e., RNN) for sequential
recommendation.

• Caser [38]. A CNN-basedmodel which applies horizontal and
vertical convolutional filters to capture the point-level, union-
level and skipping patterns of the short-term preferences in
sequences.

• SASRec [16]. A hierarchical self-attention network for se-
quential recommendation, which also works as the local
representation learning module in our FISSA.

• CAR [11]. A similar model to ours, which also improves
SASRec by introducing the global preferences of users and a
consistency-aware gating. Note that unlike the others, this
model aims at addressing the user-generated item list con-
tinuation problem defined in [11].

4.1.4 Implementation Details. We implement the MF-based mod-
els with the codes provided by [8] for the research of Fossil5, and
run the DL-based methods GRU4Rec+6 and Caser7 with the codes
released by the authors of the original papers. Our code of FISSA8

is an adaption from the published code of SASRec9, in which the at-
tention module is modified and a newMLP for our gating module is
added. We also adapt our code for CAR. So we run the experiments
of SASRec and CAR via our adapted codes rather than the original
ones. For fair comparison, we select the item embedding dimension-
ality d in all models as 50 from a common range {10, 20, 30, 40, 50}
because we observe that the referenced baselines generally perform
better with a larger value ofd on such sparse datasets [16, 38]. Other
key parameters such as the MC orders (∈ {1, 2, . . . , 9} for Fossil
and Caser), negative sampling numbers (2048 for GRU4Rec+), filter
sizes (4 and 16 for the vertical and horizontal filters, respectively
in Caser) and so on are all tuned on the validation data accord-
ing to the suggestions in the corresponding papers. For our FISSA,
following [16], we set the sequence length L to 50, the batch size
to 128, the learning rate to 0.001 and the dropout rate to 0.5, and
use single-head self-attention layers. The number of blocks B is
important for the performance of SASRec, CAR and our FISSA,
which is searched from {1, 2, 3}.

4.2 Results
4.2.1 Performance Comparison (RQ1). The recommendation per-
formance of our FISSA and eight baselines on five datasets is shown
in Table 2. The best result in each row is marked in bold, and the
second best one is marked with an underline.

We can see that our FISSA achieves the best performance on all
of the five datasets compared with all the baselines, which clearly
demonstrates the superiority of our proposed model. On average of
the five datasets, our FISSA improves SASRec by 10.11% in terms of
Rec@10 and 10.05% in terms of NDCG@10. The second best perfor-
mance is obtained by SASRec or CAR, which is consistent with the
observations in previous studies [11, 16]. These results also show
the advantage of the self-attention network for dynamic preference
modeling. Moreover, we find that CAR does not improve much over
SASRec (≤ 1.89%) and is even defeated on Games and Tmall. Some
possible reasons are as follows: 1) the global preference representa-
tion learned in CAR still maintains the causality constraint, which
makes it redundant to the local one; and 2) the consistency-aware
gating is designed for the user-generated item lists rather than for

5https://cseweb.ucsd.edu/~jmcauley/
6https://github.com/hidasib/GRU4Rec
7https://github.com/graytowne/caser_pytorch
8http://csse.szu.edu.cn/staff/panwk/publications/FISSA/
9https://github.com/kang205/SASRec
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Dataset Metric MF-based DL-based FISSA vs.
BPRMF FISM FPMC Fossil GRU4Rec+ Caser SASRec CAR FISSA SASRec

Beauty Rec@10 0.2498 0.3533 0.2397 0.3570 0.2729 0.2809 0.3609 0.3660 0.4164 15.38%
NDCG@10 0.1148 0.1942 0.1093 0.2108 0.1683 0.1610 0.2173 0.2214 0.2484 14.35%

Games Rec@10 0.3454 0.4791 0.3665 0.4800 0.4825 0.4810 0.6009 0.5947 0.6743 12.22%
NDCG@10 0.1981 0.2631 0.2115 0.2708 0.2906 0.2857 0.3685 0.3644 0.4134 12.19%

Steam Rec@10 0.1023 0.3183 0.1735 0.2926 0.3177 0.2686 0.3886 0.3927 0.4294 11.79%
NDCG@10 0.0468 0.1703 0.0849 0.1546 0.1707 0.1342 0.2144 0.2164 0.2420 13.91%

Foursquare Rec@10 0.2659 0.3977 0.3641 0.4223 0.4324 0.4043 0.4808 0.4868 0.5106 6.20%
NDCG@10 0.1287 0.2025 0.1873 0.2303 0.2375 0.2108 0.2611 0.2629 0.2794 7.04%

Tmall Rec@10 0.1744 0.2149 0.1739 0.2303 0.3526 0.2813 0.4204 0.4184 0.4412 4.94%
NDCG@10 0.0825 0.1043 0.0821 0.1142 0.2072 0.1531 0.2385 0.2380 0.2451 2.78%

Table 2: Recommendation performance of our FISSA and eight baselines on five datasets.

Architecture
Dataset Beauty Games Steam Foursquare Tmall

L_1 0.3268 0.5646 0.3699 0.4650 0.3874
L_3 0.3609 0.6009 0.3886 0.4808 0.4204
G 0.3407 0.5447 0.2981 0.4830 0.3423
L + G 0.3851 0.6301 0.4010 0.5267 0.4197
L + G + C 0.3727 0.6152 0.3973 0.5199 0.4198
L + G + I 0.4046 0.6712 0.4305 0.4972 0.4237

Table 3: Recommendation performance (Rec@10) in abla-
tion studies with different architectures on five datasets.

the interaction sequences, which means that it is more suitable for
the prediction of longer sequences with different consistencies.

For the four MF-based methods, we observe that: 1) FISM beats
BPRMF on all the five sparse datasets, which indicates the effec-
tiveness of the item similarity model for generating users’ global
representations on these sparse datasets; and 2) FPMC surpasses
BPRMF on three of the five datasets and Fossil performs the best
among these four MF-based methods except on Steam, which shows
the rationality to consider the high-order sequential information,
as well as the importance to balance the dynamic short-term pref-
erences with the static long-term preferences.

Moreover, we notice that though having achieved very promising
performance, GRU4Rec+ and Caser are still challenged by Fossil and
FISM in some cases, i.e., GRU4Rec+ and Caser on Beauty, and Caser
on Steam and Foursquare. This actually justifies our motivation
to generate better global representation for DL-based sequential
recommendation models.

4.2.2 Ablation Study (RQ2) . In order to figure out the contribu-
tion of different components to the performance of our FISSA, we
conduct an ablation study as shown in Table 3. Note that we only
present the results on Rec@10 because the variation tendency of
the NDCG@10 is similar to that of Rec@10. We compare the sepa-
rate effect of the local representation learning module (i.e., SASRec,
zL
ℓ
= x (B)

ℓ
, denoted as ‘L_1’ for B = 1 and ‘L_3’ for B = 3) and the

global representation learning module (i.e., zG
ℓ
= y, denoted as ‘G’).

We also examine the joint effect (B = 1) with different approaches
of combination, i.e., normal summation (‘L+G’, zL+G

ℓ
= x (B)

ℓ
+y),

weighted summation with consistency-aware gating as in CAR [11]
(‘L+G+C’) and weighted summation with our proposed item simi-
larity gating (‘L+G+I’, i.e., our FISSA).

We have the following observations.

• G vs. L. SASRec with three blocks (i.e., ‘L_3’) wins on most
of these datasets except on Foursquare, while SASRec with
only one block (i.e., ‘L_1’) performs worse on two datasets
(i.e., Beauty and Foursquare), which demonstrates the im-
portance of the hierarchical structure and the competitive
effectiveness of our global representation learning module.

• ‘L + G’ vs. L or G. The straightforward hybrid model al-
ways significantly outperforms the separate ones (except on
Tmall), which shows the complementary effect between the
local and global representations in our FISSA and inspires
us to look for more suitable approaches of combination.

• ‘L + G + I’ or ‘L + G + C’ vs. ‘L + G’. The consistency-aware
gating ‘C’ does not work well in our cases, e.g., it pulls down
the results from normal summation ‘L + G’ on almost all
the datasets. In contrast, adopting our item similarity gating
‘I’ improves the recommendation accuracy on four of the
five datasets (the exception on Foursquare may probably be
due to overfitting, as latter discussed in Section 4.2.3). These
results show that our gating network that concerns about
the candidate item is more effective in balancing the local
and global representations for sequential recommendation.

Note that some researchers successfully introduce the global
preference into their local preference learning models by concate-
nating (e.g., [38]) or summation (e.g., [25, 26]) the learnable users’
latent representations. However, as mentioned in both [16] and [11],
adopting these approaches are not beneficial to the self-attention
models, so we do not include them in our experiments.

4.2.3 Quantitative Study (RQ3) . We study the effect of two hyper-
parameters, i.e., the dimensionality d that affects the representa-
tional capacity of the model and the number of block B for the
hierarchical local representation learning module. We report the
results in Figure 2 and Figure 3.

From Figure 2, we can see that our FISSA achieves better results
as the dimensionality d gets bigger on Games and Steam, but is
more easier to become overfitting on Beauty, Foursquare and Tmall,
for which d = 40, d = 30 and d = 40 perform the best, respectively.

From Figure 3, we can see that unlike SASRec, setting the number
of blocks B = 2 is enough for our FISSA to achieve the best results
in most cases (except on Tmall), and adopting more blocks may
backfire. This is because that though the hierarchical structure
is still useful, the global representation learned in our FISSA is
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Figure 2: Recommendation performance of SASRec and our FISSA with different dimensionalities d on five datasets (B = 1).
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Figure 3: Recommendation performance (Rec@10) of SASRec and our FISSAwith different numbers of blocksB onfive datasets
(d = 50).
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Figure 4: Recommendation performance of having and not
having the causality constraint for the global representa-
tion leaning (B = 1, d = 50). Note that ‘G’ and ‘L+G’ denote
the global representation learning module (zG

ℓ
= y) and the

combination of the local and global representationmodules
(zL+G
ℓ

= x (B)
ℓ
+ y), respectively, and the other two architec-

tures are achieved by replacing the proposed global repre-
sentation module ‘G’ with its causality-constrained version
as ‘G w/ causality’.

actually a novel substitute for the long-term transitions learned in
the bottom block of SASRec.

4.2.4 Exploratory Study (RQ4). In the following, we present some
results of different designs for the global representation module
and the gating module.

The non-causality of global representation. As stated in Section 3.2,
the global representation is learned with and shared by all steps in

a sequence, which makes future information available during train-
ing. We replace it by masking the future steps and learn a relatively
global (to the known history) representation y′

ℓ = LBA(E1:ℓ) for
each step ℓ (denoted as ‘G w/ causality’). As shown in Figure 4,
though a relatively global representation that only considers the his-
torical interactions may be more suitable than a time unaware one
(i.e., ‘G w/ causality’ is better than ‘G’ on Beauty, Games, Steam and
Tmall), when joined with a well-established local representation
learning model (also with causality), the causality consideration
for global representation learning becomes redundant, i.e., ‘L+G’ is
better than ‘L + (G w/ causality)’ on all the five datasets. This also
demonstrates the advantage of introducing the future information
for global representation learning in our FISSA.

The input and output of gating . In Figure 5, we make some
changes to the MLP layer for the item similarity gating (see Eq.(9))
by 1) removing the global preference (i.e., y) or the recently in-
teracted item (i.e.,msℓ ) from the inputs of the MLP layer; and 2)
switching the aforementioned individual-level gating to a feature-
level one by settingWG ∈ R3d×d and bG ∈ R1×d to obtain an
output vector д ∈ R1×d , which provides different weights for dif-
ferent dimensions. From Figure 5, we can see that introducing a
single type of historical representation (i.e., the global preference y
or the recent interactionmsℓ ) into the gating function is usually
enough to achieve the excellent results. Specifically, on Beauty and
Steam, introducing y only is more effective, while on the other
three datasets, introducingmsℓ only is helpful. Considering that
sometimes (e.g., on Games) introducing both y and msℓ still in-
creases the performance, we keep both y andmsℓ in the standard
item similarity gating function for universality. From Figure 5, we
can also see that a feature-level gating brings worse results on four
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Figure 5: Recommendation performance (Rec@10) of some
changes to the gatingMLP (see Eq.(9),B = 1,d = 50). Note that
y andmsℓ denote the representation of the user’s global pref-
erence and the recently interacted item, respectively, which
are two parts of the inputs of Eq.(9), andд is an output in the
form of a 1-D vector.

datasets (except on Foursqaure), though it is expected to refine the
weights for different dimensions. Actually, in our experiments we
find that a feature-level gating makes the model more unstable,
which tends to be trapped into local optimal.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel solution named fusing item simi-
larity models with self-attention networks (FISSA) for sequential
recommendation. Specifically, our model contains three main com-
ponents, i.e., a local representation learning module, a global repre-
sentation learning module and a gating module to balance these two
kinds of representations. We base the local representation learning
module on the SASRec [16] model, and design an attentive version
of FISM [15] for global representation learning to fill the gap of
the deficient consideration on global preference learning in most
DL-based sequential recommendation methods (e.g., using simple
and crude users’ latent representations). We also design a gating
network, which takes the relationship among the candidate item,
the recent interaction and the global preference of each user into
consideration, to deal with the possible uncertainty of users’ inten-
tion. Extensive empirical studies on five public datasets show that
our FISSA achieves the state-of-the-art performance compared with
several very competitive baselines. Some ablation and quantitative
studies showcase the rationality of our design of the global and
gating modules.

In the future, we plan to explore the application of federated ma-
chine learning [45] on sequential recommendation and generalize
our FISSA to a privacy-aware version. Additionally, more contex-
tual information such as knowledge graph of the items [40, 44] is
also worth being incorporated into our FISSA.
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