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Abstract

Factorization- and neighborhood-based methods have
been recognized as the state-of-the-art methods for col-
laborative recommendation tasks. Those two methods are
known complementary to each other, while very few work-
s have been proposed to combine them together. SVD++
tries to combine the main idea of latent features and neigh-
borhood of those two methods, but ignores the existentcat-
egorical scoresof the rated items. In this paper, we ad-
dress this limitation and take a user’s ratings as categorical
multiclass preferences. In this regard, we propose a nov-
el method called matrix factorization with multiclass pref-
erence context (MF-MPC), which integrates an enhanced
neighborhood based on the assumption that users with sim-
ilar past multiclass preferences (instead of oneclass prefer-
ences in SVD++) will have similar taste in the future. Math-
ematically, SVD++ is a special case of our MF-MPC. The
main merit of our MF-MPC is its ability to make use of
the multiclass preference context in the factorization frame-
work in a fine-grained manner and thus inherits the advan-
tages of those two methods in a better way. Experimen-
tal results on three real-world data sets show that our so-
lution can perform significantly better than factorization-
based method, neighborhood-based method and the inte-
grated method with oneclass preference context.

Keywords: Collaborative Recommendation, Matrix Factor-
ization, Multiclass Preference Context

1 Introduction

Intelligent recommendation technology has been an ef-
fective solution to address the information overload and per-
sonalization challenges in many e-commerce and entertain-
ment systems [1, 10]. The main assumption of most rec-
ommendation algorithms is that users’ true preferences are
closely related to users’ explicit or implicit feedback such
as ratings, transactions and examinations, which providesa
way to learn and mine users’ preferences for personalized
services. There are mainly two branches of algorithms for

learning users’ preferences in a recommender system, i.e.,
model-based methods and neighborhood-based methods.

A model-based method assumes that users’ feedback to
items are governed by some latent model parameters such
as users’ latent interests and items’ latent attributes, among
which matrix factorization (MF) has been a state-of-the-art
solution in many recommendation tasks. Basically, MF as-
sumes that two latent feature matrices, one for users’ in-
terests and one for items’ attributes, can be obtained via
factorizing the original rating matrix of the observed user
feedback. Typically, some loss functions and regularization
terms are used to guide the factorization process. MF is
known to be very effective and efficient in modeling users’
feedback, which has been verified in various contests [3, 6].

An alternative solution to model-based methods is called
neighborhood-based methods, which make recommenda-
tions based on the neighbors’ aggregated preferences. A
neighborhood-based method usually contains three steps,
including similarity calculation, neighborhood construction
and preference prediction. The main assumption is that
users with similar taste in the past will be clustered into
the same neighborhood and thus will have similar taste in
the future, on which the prediction rule is based. The mer-
it of neighborhood-based methods is its locality, simplicity
and good interpretability, which is also known to be com-
plementary to the model-based methods [2, 3].

A natural question we ask in this paper is that whether
we can integrate those two complementary methods, i.e.,
the factorization-based method and the neighborhood-based
method, in a principled way. There has been very few at-
tempts in this line of research. One of the most represen-
tative work is called SVD++ [3], where the prediction rule
contains two parts, one from the factorization-based method
for a target (user, item) pair and one from the neighborhood-
based method for the other rated items of the corresponding
user. The resulted enhanced prediction rule can then inherit
the merits of both methods. Specifically, the learned laten-
t feature vectors of two users with similar rating behaviors
will also be similar in the latent space, which reflects the
effect of the neighborhood-based method.

However, there is still some information not exploited
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by SVD++. For a typical rating prediction problem in a rec-
ommender system, we usually have the categorical scores,
e.g.,{1, 2, 3, 4, 5} for {bad, fair, good, excellent, perfect},
which is neglected by the newly introduced term of the ex-
panded prediction rule in SVD++. Generally, whether an
item is rated or not is a certain oneclass preference or feed-
back, and how the item is rated is a multiclass preference.
Hence, SVD++ can be considered as a matrix factoriza-
tion method with oneclass preference context (MF-OPC).
In this paper, we propose a novel recommendation algo-
rithm that integrates the factorization-based method and the
neighborhood-based method in a fine-grained manner via
exploiting the multiclass preference context (MPC). For this
reason, we call our approach matrix factorization with mul-
ticlass preference context (MF-MPC). Empirical studies on
three public data sets show that exploiting multiclass prefer-
ence context can significantly improve the recommendation
performance of MF and MF-OPC.

2 Our Solution: Matrix Factorization with
Multiclass Preference Context

2.1 Problem Definition

In this paper, we study a typical matrix factorization
problem that exists in various learning and recommendation
applications. Specifically, we haven users (or rows) andm
items (or columns), and some observed multiclass prefer-
ences such as ratings that are recorded inR = {(u, i, rui)}
with rui ∈ M. The multiclass preference setM can be
{1, 2, 3, 4, 5}, {0.5, 1, 1.5, . . . , 5} or other ranges. Our goal
is then to build a model so that the missing entries of the
original matrix can be predicted. The studied problem is
usually called rating prediction in collaborative filtering or
matrix completion in machine learning. We put some nota-
tions in Table 1.

2.2 Multiclass Preference Contenxt (MPC)

For a traditional matrix factorization (MF) model [6], the
rating of useru on itemi, rui, is assumed to be dependent
on latent features of useru and itemi only. We can repre-
sent it in a probabilistic way as follows,

P (rui|(u, i)), (1)

which means that the probability of generating the ratingrui
is conditioned on the (user, item) pair(u, i) or their latent
features only. Empirically, it is a very effective solutionin
exploiting the collective information among users and item-
s, even when the observed ratings in the (user, item) matrix
are very few.

Table 1: Some notations.

n user number
m item number
u, u′ user ID
i, i′ item ID
M multiclass preference set
rui ∈M rating of useru on itemi

R = {(u, i, rui)} rating records of training data
yui ∈ {0, 1} indicator,yui = 1 if (u, i, rui) ∈ R
Iru, r ∈M items rated by useru with ratingr
Iu items rated by useru
µ ∈ R global average rating value
bu ∈ R user bias
bi ∈ R item bias
d ∈ R number of latent dimensions
Uu· ∈ R

1×d user-specific latent feature vector
Vi·, Oi·,M

r

i· ∈ R
1×d item-specific latent feature vector

Rte = {(u, i, rui)} rating records of test data
r̂ui predicted rating of useru on itemi

T iteration number in the algorithm

Some advanced models [3] assume that the ratingrui is
related to not only the useru and itemi but also the oth-
er rated items by useru as a certaincontext, denoted as
Iu\{i}. Similarly, the preference generalization probabili-
ty can be represented as follows,

P (rui|(u, i); (u, i′), i′ ∈ Iu\{i}), (2)

where both(u, i) and(u, i′), i′ ∈ Iu\{i} denote the factors
that govern the generalization of the ratingrui. The advan-
tage of the conditional probability in Eq.(2) is its abilityto
allow users with similar rated item sets to have similar latent
features in the learned model. However, the exact values of
the ratings assigned by the useru have not been exploit-
ed yet. Hence, we call the condition(u, i′), i′ ∈ Iu\{i} in
Eq.(2)oneclasspreference context (OPC) as inspired by the
well-known one-class feedback in collaborative filtering.

In this paper, we go one step beyond and propose a fine-
grained preference generalization probability,

P (rui|(u, i); (u, i′, rui′ ), i′ ∈ ∪r∈MIru\{i}), (3)

which includes the ratingrui′ of each rated item by user
u. This new probability is based on three parts, including
(i) the (user, item) pair(u, i) in Eq.(1), (ii) the examined
items∪r∈MIru\{i} in Eq.(2), and (iii) the categorical score
rui′ of each rated item. We can see that the new probability
is more sophisticated and captures more information when
modeling the observed rating records.
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The difference between the oneclass preference con-
text (u, i′), i′ ∈ Iu\{i} in Eq.(2) and the condition
(u, i′, rui′ ), i

′ ∈ ∪r∈MIru\{i} in Eq.(3) is the categorical
multiclass scores (or ratings),rui′ , and thus we call itmul-
ticlasspreference context (MPC). We can see that the MPC
in Eq.(3) will be reduced to the OPC in Eq.(2) when we treat
all ratings as a constant.

We illustrate those three types of preference generaliza-
tion probability in Figure 1. In Figure 1, we can see that the
probability of generating the ratingr23 = 3 is dependen-
t on different conditions in different models, i.e., (i) (user,
item) pair(2, 3) in MF, (ii) (user, item) pairs(2, 3), (2, 4)
and(2, 5) in MF-OPC, and (iii) (user, item) pair(2, 3), and
(user, item, rating) triples(2, 4, 1) and(2, 5, 4) in MF-MPC.

Figure 1: Illustration of preference generalization probabil-
ities in different models, including matrix factorization(M-
F), MF with oneclass preference context (MF-OPC) and M-
F with multiclass preference context (MF-MPC). Note that
MF-OPC is equivalent to SVD++ [3].

2.3 Matrix Factorization with MPC

For a basic matrix factorization model, the prediction
rule of the rating assigned by useru to item i is defined
as follows [6],

r̂ui = Uu·V
T

i· + bu + bi + µ, (4)

whereUu· ∈ R
1×d andVi· ∈ R

1×d are the user-specific and
item-specific latent feature vectors, respectively, andbu, bi
andµ are the user bias, the item bias and the global average,
respectively.

For matrix factorization with oneclass preference con-
text, we can define the prediction rule of a rating as fol-
lows [3],

r̂ui = Uu·V
T

i· + ŪOPC
u· V

T

i· + bu + bi + µ, (5)

whereŪOPC
u· is based on the corresponding oneclass prefer-

ence contextIu\{i} [3],

ŪOPC
u· =

1
√

|Iu\{i}|
∑

i′∈Iu\{i}

Oi′·. (6)

From the definition ofŪOPC
u· in Eq.(6), we can see that two

users,u andu′, with similar examined item sets,Iu and
Iu′ , will have similar latent representations̄UOPC

u· andŪOPC
u′· .

Hence, the prediction rule in Eq.(5) can be used to integrate
certain neighborhood information.

In our matrix factorization with multiclass preference
context, we propose a novel and generic prediction rule for
the rating of useru to itemi,

r̂ui = Uu·V
T

i· + ŪMPC
u· V T

i· + bu + bi + µ, (7)

whereŪMPC
u· is from the multiclass preference context,,

ŪMPC
u· =

∑

r∈M

1
√

|Iru\{i}|
∑

i′∈Ir

u
\{i}

M r

i′·. (8)

Notice that 1√
|Ir

u
\{i}|

plays as a normalization term for the

preference of classr. We can see that̄UMPC
u· in Eq.(8) is d-

ifferent from ŪOPC
u· in Eq.(6), because it contains more in-

formation, i.e., the fine-grained categorical preference of
each rated item. And the virtual user profileŪMPC

u· in Eq.(8)
is more closely related to the similarity measurement in
neighborhood-based methods such as PCC (Pearson corre-
lation coefficient) [7], because both of them are defined on
the fine-grained categorical scores. The neighborhood in-
formation in Eq.(8) is thus more accurate than that of Eq.(6),
which is expected to generate better recommendation per-
formance.

With the prediction rule in Eq.(7), we can learn the mod-
el parameters in the following minimization problem,

min
Θ

n
∑

u=1

m
∑

i=1

yui[
1

2
(rui − r̂ui)

2 + reg(u, i)] (9)

where yui ∈ {0, 1} is an indicator variable denoting
whether (u, i, rui) is in the set of rating recordsR,
reg(u, i) = λ

2
‖Uu·‖2 + λ

2
‖Vi·‖2 + λ

2
‖bu‖2 + λ

2
‖bi‖2 +

λ

2

∑

r∈M

∑

i′∈Ir

u
\{i} ||M r

i′·||2F is the regularization term
used to avoid overfitting, andΘ = {Uu·, Vi·, bu, bi, µ,M

r
i·},

u = 1, 2 . . . , n, i = 1, 2, . . . ,m, r ∈ M are model parame-
ters to be learned. Note that the form of the objective func-
tion in Eq.(9) is exactly the same with that of the basic ma-
trix factorization [6], because our improvement is reflected
in the prediction rule for̂rui.
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1: Initialize model parametersΘ
2: for t = 1, . . . , T do
3: for t2 = 1, . . . , |R| do
4: Randomly pick up a rating fromR
5: Calculate the gradients via Eq.(10-15)
6: Update the parameters via Eq.(16)
7: end for
8: Decrease the learning rateγ ← γ × 0.9
9: end for

Figure 2: The algorithm of MF-MPC.

2.4 Learning MF-MPC

For a tentative objective function1
2
(rui − r̂ui)

2 +
reg(u, i), we have the gradients of the model parameters,

∇Uu·=−euiVi·+λUu· (10)

∇Vi·=−eui(Uu·+ŪMPC
u· )+λVi· (11)

∇bu=−eui+λbu (12)

∇bi=−eui+λbi (13)

∇µ=−eui (14)

∇M r

i′·=
−euiVi·

√

|Iru\{i}|
+λM r

i′·, i
′ ∈ Ir

u
\{i}, r ∈ M (15)

whereeui = (rui − r̂ui) is the difference between the true
rating and the predicted rating.

Finally, we have the update rules,

θ = θ − γ∇θ, (16)

whereγ is the learning rate, andθ ∈ Θ is a model parameter
to be learned.

We describe the algorithm in Figure 2. The algorithm
basically consists of the following steps. Firstly, it randomly
samples a rating record from the training data. Secondly, it
calculates the gradients via Eq.(10-15). Thirdly, it updates
each model parameter via Eq.(16). The stochastic gradient
descent algorithm framework is similar to that of traditional
matrix factorization, while the major difference is from the
prediction rule as shown in Eq.(7) and the corresponding
gradients.

3 Experiments

In this section, we conduct empirical studies in order to
verify whether the multiclass preference context is helpful
in modeling user feedback.

3.1 Data Sets and Evaluation Metrics

We use three commonly used public data sets from the
grouplens research lab1, including MovieLens100K (i.e.,
ML100K), MovieLens1M (i.e., ML1M) and MovieLen-
s10M (i.e., ML10M), which contain 100000 ratings by
943 users and 1682 items, 1000209 ratings by 6040 users
and 3952 items, and 10000054 ratings by 71567 users and
10681 items, respectively. Note that the multiclass prefer-
ence sets areM = {1, 2, 3, 4, 5} for ML100K and ML1M,
andM = {0.5, 1, 1.5, . . . , 5} for ML10M. In the experi-
ments, we use five-fold cross validation. Specifically, for
each data set, we first divide it into five parts with equal
size. Then, we take one part as test data and the remaining
four parts as training data, which is repeated for five times
so that we have five copies of training data and test data for
each of the three data sets. The averaged rating prediction
performance on those five copies of test data will be report-
ed.

We adopt two commonly used evaluation metrics for col-
laborative recommendation tasks, including mean absolute
error (MAE) and root mean square error (RMSE).

3.2 Baselines and Parameter Settings

For empirical studies, we compare our MF-MPC with
the baselines from neighborhood-basedapproaches to latent
factor methods,

• AF (average filling): we use the average rating of each
user as calculated from the training dataR to predict
each rating in the test data;

• CF (collaborative filtering): we implement a user-
oriented neighborhood-based collaborative filtering
method using PCC (Pearson correlation coefficien-
t) [7] as the similarity measurement;

• MF (matrix factorization): we use the basic latent fac-
tor model, i.e., matrix factorization without preference
context [6] as shown in Eq.(4), as a major baseline; and

• MF-OPC (matrix factorization with oneclass pref-
erence context): for direct comparative studies be-
tween MPC and OPC, we also use MF-OPC as shown
in Eq.(5). Note that MF-OPC is the same with
SVD++ [3].

For the parameter settings of factorization-based meth-
ods, we follow [5]. Specifically, (i) we fix the learning rate
γ = 0.01, the number of latent dimensionsd = 20, and the
iteration numberT = 50; (ii) we search the best value of the
tradeoff parameterλ from {0.001, 0.01, 0.1} using the first

1http://grouplens.org/datasets/movielens/

4



Table 2: Recommendation performance of AF, CF, MF, MF-OPC and MF-MPC on MovieLens100K, MovieLens1M and
MovieLens10M. Note that MF-OPC is equivalent to SVD++ [3]. The significantly best results are marked in bold (p < 0.01).
We also include the searched best value of the tradeoff parameterλ for each method and data set for easy reproducibility of
the experimental results.

Data Metric AF CF MF MF-OPC/SVD++ MF-MPC

ML100K
MAE 0.8348±0.0025 0.7576±0.0028 0.7478±0.0032 0.7266±0.0032 0.7092±0.0032

RMSE 1.0417±0.0019 0.9637±0.0039 0.9448±0.0030 0.9253±0.0032 0.9091±0.0026

(λ = 0.1) (λ = 0.001) (λ = 0.001)

ML1M
MAE 0.8289±0.0020 0.7560±0.0020 0.6956±0.0021 0.6655±0.0014 0.6596±0.0017

RMSE 1.0355±0.0024 0.9531±0.0024 0.8832±0.0023 0.8511±0.0017 0.8439±0.0018

(λ = 0.001) (λ = 0.001) (λ = 0.01)

ML10M
MAE 0.7688±0.0007 0.7138±0.0003 0.6068±0.0006 0.6028±0.0003 0.5947±0.0003

RMSE 0.9784±0.0008 0.9148±0.0005 0.7911±0.0008 0.7870±0.0006 0.7783±0.0005

(λ = 0.01) (λ = 0.01) (λ = 0.01)
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Figure 3: Recommendation performance of MF, MF-OPC (i.e., SVD++ [3]) and MF-MPC on the first copy of MovieLen-
s100K, MovieLens1M and MovieLens10M with different iteration numbers.

copy of each data and the RMSE metric; (iii) we initialize
the user biasbu, the item biasbi and the global averageµ
using the statistics of the training dataR; (iv) we initialize
the value of each latent featureUuk, Vik andM r

i′k
with a

small random value. For the number of neighbors in CF, we
set it to be the same with the value ofd, i.e.,20. We also use
different dimensions for MF and MF-OPC in order to study
the effectiveness of our MF-MPC from the perspective of
the number of model parameters.

3.3 Results

We report the rating prediction performance of our MF-
MPC and the compared baselines on those three data sets in
Table 2. We can have the following observations:

• MF-MPC performs significantly better than all base-
lines on all three data sets, which clearly shows the ef-
fectiveness of our proposed multiclass preference con-
text and the way we integrate it into the factorization
framework;

• MF-OPC or SVD++ is much better than MF, which

shows the usefulness of the exploited preference con-
text, and the complementarity of factorization-based
methods and neighborhood-based methods; and

• factorization-based methods are better than the
neighborhood-based method and the basic average fill-
ing method, which is consistent with previous reported
results that latent factor models are usually very com-
petitive.

We also study the convergence property of each
factorization-based method, which is shown in Figure 3.
Note that the results on MAE is very similar and is not in-
cluded due to length limitation. From Figure 3, we can see:

• all three factorization-based methods converge s-
moothly before or around50 iterations, which shows
that they can converge within in a reasonable number
of iterations; and

• the overall performance ordering, i.e., MF<MF-
OPC<MF-MPC, is the same with that of Table 2,
which again shows the helpfulness of exploiting the
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Table 3: Recommendation performance on RMSE of M-
F, MF-OPC (i.e., SVD++) and MF-MPC using comparable
model size.

Data MF MF-OPC MF-MPC

ML100K
0.9439±0.0036 0.9209±0.0034 0.9091±0.0026

(λ = 0.001) (λ = 0.001) (λ = 0.001)

ML1M
0.8719±0.0023 0.8477±0.0017 0.8439±0.0018

(λ = 0.001) (λ = 0.001) (λ = 0.01)

ML10M
0.7821±0.0005 0.7810±0.0005 0.7783±0.0005

(λ = 0.01) (λ = 0.01) (λ = 0.01)

oneclass preference context and multiclass preference
context in MF-OPC and MF-MPC, respectively, and
multiclass preference context indeed contain more
fine-grained information.

We further study whether the improvement of our MF-
MPC is from more model parameters. Specifically, we fix
d = 20 for MF-MPC, and setd = 120 for MF andd = 80
for MF-OPC (i.e., SVD++), where MF-MPC does not have
any advantage of using more model parameters for all three
data sets. We report the performance on RMSE in Table 3
(the results on MAE is similar), and find that MF-MPC is
again significantly better (p < 0.01) than MF and MF-OPC,
which clearly shows the advantage of the proposed factor-
ization model.

4 Related Work

Matrix factorization has been well recognized as an ef-
fective and efficient solution to various recommendation
problems. However, most factorization-based methods fo-
cus on each observed explicit or implicit feedback and do
not exploit the available preference context such as other
examined or rated items of a target user. In this section,
we discuss some closely related works that combine matrix
factorization and preference context. Specifically, we cat-
egorize the related works into two branches from the per-
spective of preference context, including oneclass prefer-
ence context and multiclass preference context.

4.1 Oneclass Preference Context

There are different types of oneclass preferences such
as transactions and examinations, which are usually called
explicit oneclass feedback and implicit oneclass feedback,
respectively. Hence, for oneclass preference context, we
have two subtypes of preference context, including explic-
it oneclass preference context and implicit oneclass prefer-
ence context.

Table 4: Summary of some related works. Note that
SVD++ [3] is equivalent to MF-OPC (matrix factorization
with oneclass preference context).

Recommendation task
Preference context

Oneclass Multiclass
Item recommendation FISM [2], etc.
Rating prediction SVD++ [3], etc. MF-MPC (proposed)

For explicit oneclass preference context, the most repre-
sentative work is probably FISM (factored item similarity
model) [2]. The prediction rule of FISM is as follows,

r̂ui = ŪOPC
u· V

T

i· + bu + bi, (17)

which is very similar to the prediction rule of MP-OPC
as shown in Eq.(5), except the termsUu·V

T
i· andµ. With

the prediction rule in Eq.(17), the model parameters can
then be learned in a pointwise or pairwise way. For im-
plicit oneclass preference context, the most famous work is
SVD++ [3], where the main idea is to constrain two users
with similar examination behaviors (e.g., similar rated item
sets) to have similar latent features. From the perspective
of recommendation tasks, FISM [2] is for item recommen-
dation while SVD++ [3] is for rating prediction. Hence,
SVD++ (i.e., MF-OPC) is more close to our MF-MPC.

4.2 Multiclass Preference Context

As far as we know, there are no previous works that
exploit the multiclass preference context in a factorization
framework as ours. Our MF-MPC is the first work that
generalizes the oneclass preference context by digesting the
rating behaviors or categorical feedback in a fine-grained
manner. For a recommendation scenario with categorical
preferences such as graded ratings or signed links [8], we
can always make use of the proposed multiclass preference
context via revising the prediction rule in a similar way to
that of Eq.(7). From the perspective of recommendation
task, our MF-MPC is for rating prediction. Note that our
multiclass preference context is not limited to missing val-
ue prediction, because the enhanced prediction rule can al-
so be embedded in a ranking-oriented loss function for item
recommendation.

We put our MF-MPC and the above discussed represen-
tative works in Table 4, from which we can see that our MF-
MPC is a novel solution for rating prediction via exploiting
multiclass preference context.

6



5 Conclusions and Future Work

In this paper, we propose a novel factorization-based
method for rating prediction and matrix completion. Specif-
ically, we integrate multiclass preference context (MPC) in-
to the matrix factorization framework and achieve signifi-
cantly better recommendation performance than the state-
of-the-art methods.

For future works, we are interested in generalizing the
idea of multiclass preference context to recommendation
with categorical preference information in cross-domain s-
cenarios [4, 9]. We are also interested in designing some
advanced sampling strategy instead of the random sampling
approach in the learning algorithm.
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