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In this paper, we study the problem which concerns thewhat and
whereof style elements, where the elements refer to local regions of
a shape that de�ne its style. Speci�cally, we aim to translate high-
level and non-descriptive languages of object styles typically used
by humans, e.g., “Japanese” or “Ming” for furniture, intoexplicit
andlocalizedgeometric elements or regions over the models that
characterize the styles (see Figure 1). These elements would then
explicitly re�ect the “distinctive manners which permit the grouping
of shapes into style categories” from Fernie's de�nition. In addition
to enabling analysis, the spatially located concrete elements can
be manipulated directly, e.g., for style-driven modeling. In contrast,
some of the most recent works on style analysis either take a wholistic
view of shape styles, learning a style compatibility measure without
separating individual style elements [16], or require a geometric
match between portions of two shapes to yield a style similarity
measure [17]. To date, works which deal directly with style-de�ning
properties either explicitly specify the propertiesa priori [33] or rely
on hand-crafted rules to de�ne the stylistic elements [14].

We take as input a set of diverse shapes organized into different
style labels, where the grouping is provided by human experts; see
Figure 2. Since the collection of shape styles studied in our work (see
Section 6) are closely tied to domain knowledge, expert-annotated
inputs are expected to be more reliable with less data contamination
compared to crowdsourced user groupings. Using such an input to co-
locate style elements is also well-motivated since it supportsfeature
selectionfor separation of shape styles.

Our goal is to �nd a set ofde�ning elements for each style group.
To distinguish one style from the others, it is typically suf�cient
to learn a set ofdiscriminativeelements, which corresponds to a
minimal set of elements that tell one style apart from the others.
However, to fully characterize a style and enable applications that
manipulate the styles, we need a set of elements that capture amore
completecharacterization of the style. This more complete set is
precisely what we de�ne as a set ofde�ning elements. For example, to
differentiate between the Children and European furniture in Figure 2,
it is suf�cient to look at whether the shape parts are smooth or
adorned with embellishments. However, to confer a shape with the
Children style, we may need to modify the shape beyond simply
removing the decorations from the parts, e.g., we need to add round
corners to the parts.

In contrast to previous work on saliency [12, 28], we note that style-
de�ning elements are different from geometrically salient regions.
Salient regions are typically unique or distinctive when compared
to other regions of the same shape [28]. On the other hand, style-
de�ning elements should be widespread across shapes of the same
style and form a type of collective property. For example, as seen
in Figure 2, smooth and round patches appear all over the Children
furniture, but rarely appear in other styles such as Ming and Japanese.
Therefore, these elements are distinctive features for a particular
(Children) style in the context of other styles, but not necessarily for
individual shapes. In addition, in our results in Figure 21, we show
how view-point selection based on saliency highlights different shape
aspects than when using style-de�ning elements.

Thus, given the goal of extracting style-de�ning elements, we pose
our search as a feature selection problem [32], where the selected
“features” would lead us to the elements we seek. Note that we
reserve the term “element” to refer to concrete, locatable regions
over a 3D shape. “Features”, visually explicit or latent, serve to
describethe elements themselves. In our method, we �rst sample
a set of candidate elements from all the input shapes, and describe
each element with multiple features. Speci�cally, the elements are
geometric patches extracted from the surfaces of the input shapes.
Our goal is then to select the candidate elements that, when present
on a shape, are able to de�ne the style of the shape and distinguish it
from other styles. For this step, we introduce a novel iterative method
for �nding a set of style-de�ning elements based on feature selection
applied to the candidate elements. Speci�cally, the feature selection
allows to �nd sets of discriminative elements that distinguish among
different styles. The union of all the sets of discriminative elements
then provides asupersetof elements that constitute the style-de�ning
elements. Although there is redundancy in this set if our only goal
is style classi�cation, the redundancy provides a more complete
characterization of a style by capturing the possible elements that
can be present on a shape to de�ne the style, which can be of use to
certain applications beyond classi�cation.

The explicit description and location of the style-de�ning elements
can bene�t several applications for content creation, since it may be
dif�cult for an artist or automatic algorithm to create a shape in a
given style just from an abstract high-level description. The de�ning
elements are thus a concrete description of how to grant a speci�c
style to an object. Also, given the nature of the elements we select,
we do not require a correspondence between source and target shapes,
in contrast to style analysis methods that transfer styles between 3D
shapes by analogy [19], that match portions of shapes [17], or require
a consistent segmentation of shapes across the input set [16].

To demonstrate the advantages of our method, we present several
applications that are made possible by one of the key abilities of
our approach: the spatial localization of elements. The applications
include style-revealing view selection, style-aware sampling, and
style-driven modeling. In addition, we show results on using the
style-de�ning elements to analyze and classify the styles of various
collections of man-made objects, and present comparisons of our
method to alternative approaches that could be used to address the
selection of elements, concluding that our method is more effective
than these alternatives.

2 RELATED WORK

In this section, we cover works related to the analysis and comparison
of image or shape styles, following with a discussion on feature
selection, which is the main building block in our method.

Style and content analysis on images.There have been many works
on style analysis for images, where style can be loosely seen as a set
of characteristics that allow a meaningful grouping of images. Here,
we discuss the works that are most relevant to our method.

Doersch et al. [5] �nd image patches that are characteristic of a
speci�c geospatial location. The patches are extracted from a large
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exemplar pair. In contrast to these approaches, our style extraction
does not require a correspondence between a base and exemplar
shape, nor a mapping between portions of the shapes as in the curve
analogy works. In addition, we learn style-de�ning elements from
a set of examples, in aco-analysisframework, which allows us to
obtain a more general model for a style.

Style co-analysis.Rather than working with individual shapes or a
training set, style co-analysis can work with a style-content table
of a set of shapes to extract features that characterize a style. Xu
et al. [33] pre-determine the style-de�ning features, namely, part
proportions, and perform aforward co-analysis to group the feature
variations that de�ne different styles. In comparison, we formulate
our problem as aninverseanalysis, since we select style-de�ning
elements from a large pool of candidates and are able to locate them
on speci�c regions of the shapes. Our input is a style grouping and
not a more granular style-content table. Li et al. [14] restrict their
analysis to curve styles of 2D shapes that are decorative in nature
and group stylistic curve features based on a set of hand-crafted rules.
In contrast, our style analysis is data-driven and more general, since
we de�ne a varied set of candidate elements, and then extract the
relevant style-de�ning elements from this set via feature selection.

Learning style similarities.An alternate line of works proposes to
de�ne global style similarity measures, where multiple features are
considered when quantifying the similarity between the styles of two
models, but without explicitly selecting sets of style-de�ning ele-
ments. Most notably, Lun et al. [17] de�ne a structure-transcending
similarity measure to compare the style of two shapes. The method
searches for pairs of matching salient geometric elements across
the shapes, and determines the amount of similarity based on the
number of matching elements. The measure is tuned with crowd-
sourced training data that captures examples of style similarities. Liu
et al. [16] also make use of crowdsourced relative assessments of
style compatibility, but focus on the domain of 3D furniture models.
Their metric for stylistic compatibility is based on obtaining a consis-
tent segmentation of the input shapes and quantifying the similarity
of their styles with part-aware feature vectors. The key distinction
between our method and these works is that we explicitly identify
the style-de�ning elements over the input shapes. Another technical
difference lies in the input speci�cations: our method takes style
grouping information from expert annotations while their methods
were built on large sets of data triplets with style ranking information
collected via crowdsourcing.

Furthermore, the style of other types of geometric datasets can also
be compared with similar approaches. Garces et al. [8] propose
a style similarity measure for clip art illustrations that is learned
from crowdsourced similarity estimates, while O'Donovan et al. [22]
propose a learning approach to obtain a perceptual similarity measure
of fonts. In contrast to these works, our goal is to �nd a complete set
of style-de�ning elements and locate them on the shapes, rather than
de�ning only a global similarity.

Shape comparison and retrieval.In our method, we do not require
correspondences between shapes to extract collection-wide style
elements. To achieve that, we encode shapes as bag-of-words repre-
sentations. There have been many works in shape retrieval on how

to encode shapes ef�ciently for comparison [30], and also different
bag-of-words representations have been proposed [15, 31]. In our
method, we encode shapes with a word-frequency representation. We
compare this choice to an alternative encoding in Section 6, to show
that our representation is adequate for our setting.

Distinctive regions of 3D surfaces.Earlier work by Shilane et al. [26]
shares some resemblance to our method. That work also attempts
to extractdistinctiveregions over 3D shapes when given a multi-
category shape collection. The key conceptual difference between
the two works is that we seekstyle-de�ning elements while their
work seekscontent-discriminating regions. They de�ne the distinc-
tion of a surface region over a 3D object by how useful the region
is in distinguishing the object from other objects belonging to dif-
ferent categories, in the context of shape retrieval. Speci�cally, the
distinction for a region is high if, in a shape-based search of a data-
base with the region as the query, the resulting ranked retrieval list
would consist mostly of objects of the same category near the front.
Clearly, our interpretation of style-de�ning elements and the method
of element extraction are both different. We co-analyze a shape col-
lection via classi�cation tasks, while their method performs shape
retrieval based on pairwise similarities. On the technical front, their
retrieval is based on a single shape descriptor (the spherical harmonic
descriptor) while our distance metric is learned over a set of features
for each candidate element. We believe that style-discriminating and
style-de�ning shape elements tend to be more local and more subtle,
compared to content-discriminating surface regions, so that the ensu-
ing analysis calls for a feature representation and selection scheme
that is more involved.

Feature selection.In statistical pattern recognition, there is a vast
literature on feature selection. In the context of classi�cation, the
goal of these methods is to examine a large set of features to �nd a
subset that is suf�cient for discriminating a given class from others,
eliminating redundancy and irrelevant features in the process. Feature
selection methods can be grouped into three broad categories: �lter,
wrapper, and embedded methods [32]. Filter methods select features
according to their statistical properties, such as correlation. Wrapper
approaches test the performance of subsets of features by training a
classi�er with these features and evaluating their classi�cation accu-
racy. Thus, wrapper methods tend to be more demanding than �lter
approaches due to the repeated training and use of a classi�er. Em-
bedded methods perform feature selection while training a classi�er,
and thus, offer a better balance between performance and accuracy.

In our work, we use a �lter method, the minimal-redundancy-maximal-
relevance (MRMR) criterion [23], to ef�ciently select a set of candi-
date elements. MRMR incorporates several criteria that have been
shown to lead to a quality feature selection. We also re�ne the can-
didate set with a wrapper method, speci�cally, a standardforward
sequential feature selectionmethod [32]. We provide more details
on these methods in Section 5. In Section 6, we also compare to
an embedded method, L1-regularized logistic regression [25], as an
alternative to our feature selection.
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Fig. 17. Average accuracies of style classi�cation in relation to the
number of discriminative sets included in the �nal set of de�ning
elements. We show an average for all the styles in each dataset.

the construction of the initial elements, our shape representation, the
effect that the size of the training set has on the results, and analyze
the weights learned for the per-element similarity measures. For these
components, we only provide a short summary here, and give more
details and evaluation plots in the supplementary material.

Candidate selection.We evaluate the �rst step of our method based
on peak analysis by comparing it to two alternative approaches that
could be used for candidate selection.Paris denotes a method where
we select candidate elements with a sampling and �ltering approach
inspired by the work of Doersch et al. [5]. In short, we select an
element if its k-nearest neighbors comprise only a few style labels
and cover as many shapes as possible from the dominating styles.
This implies that the element is weakly discriminative of a style.
We provide more details on this method in Appendix A.K-means
denotes a baseline method where we cluster the initial elements
with k-means into 100 clusters. We then take the cluster centers as
candidate elements. We also explore three different settings of our
method. InOurs Auto, we select the candidate elements automatically,
according to the density peak clustering [24]; in Ours Paris, we apply
the �ltering of theParis method to the density peaks detected by our
method; �nally, in Ours K-means, we run our method requesting the
same number of candidates as chosen forK-means(100 elements).

Figure 18 presents the result of this comparison. We observe that our
method with automatic selection of peaks provides the best classi-
�cation accuracy. We also see that our method with other settings
is comparable for most sets. However, the �ltering and k-means
approaches lead to inferior results in some of the sets.

Feature selection.We evaluate the second step of our method by com-
paring it to two alternative approaches.MultiSVMdenotes a method
that uses a multi-label SVM classi�er. Note that this method allows
us to classify shapes into different styles, and thus we can compare
its classi�cation accuracy to our method. However, the multi-label
classi�er does not perform feature selection for each label, and thus
is not able to extract corresponding de�ning elements.L1-reg de-
notes an approach based on L1-regularized logistic regression [25].
We perform the L1 minimization on each style. This method can
be used for feature selection by retrieving the elements whose op-
timized weights are non-zero. We also evaluate the second step of

Fig. 18. Evaluation of different methods for selecting candidate ele-
ments. We observe that our method, denoted Ours Auto, leads to the
best classi�cation results. Please refer to the text for further details on
the other methods.

Fig. 19. Evaluation of different feature selection algorithms for the
second step of our method. Note the better accuracy of our method
when combined with a KNN classi�er.

our method with different settings, where we substitute the classi�er
in our feature selection wrapper with three options: we consider a
k-nearest neighbor classi�er (denotedOurs KNN), a classi�er based
on discriminant linear analysis (Ours LDA), and an SVM classi�er
(Ours SVM).

Figure 19 shows the result of this comparison. We observe that our
method leads to the best classi�cation accuracies, especially when
combined with a KNN classi�er, although other classi�ers and the
L1-reg approach are comparable on several of the sets. This is rea-
sonable since all of the methods start from the same set of initial
elements, and any effective feature selection method should lead to
satisfactory results in this setting. However, it is worth mentioning
that the comparison is in terms of shape style classi�cation. When
localized features are required, the L1-reg approach provides discrim-
inative elements, but does not necessarily build a more complete set
of de�ning elements. For all the other experiments in the paper, our
method is used with the KNN classi�er.

For the following evaluations, we only provide a summary in the
paper. More details are provided in the supplementary material.

Geodesic radius of elements.We evaluate the effect of different
values of the main parameter used in the element construction, the
geodesic radius� of the patches, on the accuracy of classi�cation. We
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and of a local nature, based mainly on the geometry of shapes. We
focus on local elements, since several authors characterize the style
of works of art based on local patterns, such as the categorization
of furniture based mainly on the type of feet and �nials that appear
on the shapes [21]. Thus, our analysis does not consider stylistic
features that are anisotropic, structural, and more global, which could
complement the description of certain shape styles.

Moreover, one criterion that we use for the selection of de�ning
elements is that they should appear frequently across the shapes
of a style. Thus, our method may miss known de�ning elements,
if they only appear seldom in every shape, such as the spires of
Gothic cathedrals. In addition, a limitation of our evaluation is that
we compared our results to a relatively small ground-truth created by
humans, which is composed of 150 shapes. To assess our method in
large-scale scenarios, we may need considerably more user input to
assemble a large collection of ground-truth dataset.

Future work.We would like to extend our method to analyze and
localize shape categorizations beyond style. One such possibility is
to extract elements that de�ne both style and content. In the sup-
plementary material, we show a few preliminary results towards
this direction, by taking style-content tables as input. Applying our
method to other settings may also require extending the types of
elements that we use, in order to capture additional geometric and
structural properties of the shapes that could be relevant to the spe-
ci�c categorization studied.

Moreover, the geometric patches that we currently use can be ex-
tended in various manners. Some of the de�ning elements that our
method selects look visually similar to each other, although their
corresponding weight vectorswi are different; we present such an
example in the supplementary material. This implies that when their
similarity to other elements is being computed, the measure gives
relevance to different types of features. Thus, we could explore these
low-level feature differences to infer what kinds of geometric charac-
teristics are being emphasized in each element. We could also learn
a more advanced model for the detection of elements. For example,
by learning the valid degrees of variation of each de�ning element,
we could de�ne a general model of elements that captures how they
vary across diverse shapes. We would also like to consider develop-
ing anisotropic patch elements, and elements that capture structural
properties of the shapes, such as part composition and symmetry.

Due to the need for domain knowledge in identifying many of the
studied shape styles, e.g., Japanese furniture, cabriole table legs,
or Baroque architecture, we relied on expert annotations to form
a ground-truth style grouping for our analysis task. Some recent
works on style analysis, e.g., [16, 17], utilized crowdsourcing instead,
where non-experts were asked to rank style similarities or compati-
bilities over triplets of shapes. Crowdsourced data should generally
be expected to be noise-prone, and even more so when collected
from a large crowd of non-experts on style grouping over moderately
large shape collections. On the other hand, crowdsourcing can easily
provide a large number of annotations, which can then be �ltered for

consistency. Thus, it would be interesting, although not straightfor-
ward, to explore how to turn a set of style-ranked triplets into a style
grouping which would serve as input to our style analysis.

One �nal observation is that the de�ning elements of a style that we
select with our method are not intrinsic to the style, but are de�ned
relative to other styles (the positive and negative elements). Thus,
it may be interesting to explore the question of whether de�ning
elements can be de�ned in an intrinsic manner, and extracted from a
set of example shapes with a single style.

ACKNOWLEDGMENTS

We thank the reviewers for their comments and suggestions. This
work was supported in part by NSFC (61602311, 61522213, 61528208),
973 Program (2015CB352501), Guangdong Science and Technology
Program (2014TX01X033, 2015A030312015, 2016A050503036),
Shenzhen Innovation Program (JCYJ20151015151249564), Natu-
ral Science Foundation of SZU (827-000196) and NSERC (611370,
2015-05407).

REFERENCES

[1] Sean Arietta, Alexei A. Efros, Ravi Ramamoorthi, and Maneesh Agrawala. 2014.
City Forensics: Using Visual Elements to Predict Non-Visual City Attributes.IEEE
TVCG20, 12 (2014), 2624–2633.

[2] Shai Avidan and Ariel Shamir. 2007. Seam carving for content-aware image
resizing.ACM Trans. on Graphics (Proc. of SIGGRAPH)26, 3 (2007), 10:1–9.

[3] Itamar Berger, Ariel Shamir, Moshe Mahler, Elizabeth Carter, and Jessica Hodgins.
2013. Style and Abstraction in Portrait Sketching.ACM Trans. on Graphics (Proc.
of SIGGRAPH)32, 4 (2013), 55:1–12.

[4] M. Corsini, P. Cignoni, and R. Scopigno. 2012. Ef�cient and Flexible Sampling
with Blue Noise Properties of Triangular Meshes.IEEE TVCG18, 6 (2012),
914–924.

[5] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A. Efros.
2012. What Makes Paris Look Like Paris?ACM Trans. on Graphics (Proc. of
SIGGRAPH)31, 4 (2012), 101:1–9.

[6] Eric Fernie. 1995.Art History and its Methods: A critical anthology. Phaidon,
London, 361.

[7] William T. Freeman, Joshua B. Tenenbaum, and Egon C. Pasztor. 2003. Learning
Style Translation for the Lines of a Drawing.ACM Trans. on Graphics22, 1
(2003), 33–46.

[8] Elena Garces, Aseem Agarwala, Diego Gutierrez, and Aaron Hertzmann. 2014.
A Similarity Measure for Illustration Style.ACM Trans. on Graphics (Proc. of
SIGGRAPH)33, 4 (2014), 93:1–9.

[9] Ernst H. Gombrich. 1968. “Style”. InInternational Encyclopedia of the Social
Sciences, D. L. Sills (Ed.). Vol. 15. Macmillan, New York, 352.

[10] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz. 2002. Curve
Analogies. InProc. of EG Workshop on Rendering. 233–246.

[11] Katrin Lang and Marc Alexa. 2015. The Markov Pen: Online Synthesis of Free-
hand Drawing Styles. InProc. NPAR. 203–215.

[12] Chang Ha Lee, Amitabh Varshney, and David W. Jacobs. 2005. Mesh Saliency.
ACM Trans. on Graphics (Proc. of SIGGRAPH)24, 3 (2005), 659–666.

[13] Y. J. Lee, A. A. Efros, and M. Hebert. 2013. Style-aware Mid-level Representation
for Discovering Visual Connections in Space and Time. InProc. ICCV. 1857–
1864.

[14] H. Li, H. Zhang, Y. Wang, J. Cao, A. Shamir, and D. Cohen-Or. 2013. Curve Style
Analysis in a Set of Shapes.Computer Graphics Forum32, 6 (2013), 77–88.

[15] Roee Litman, Alex Bronstein, Michael Bronstein, and Umberto Castellani. 2014.
Supervised learning of bag-of-features shape descriptors using sparse coding.
Computer Graphics Forum33, 5 (2014), 127–136.

[16] Tianqiang Liu, Aaron Hertzmann, Wilmot Li, and Thomas Funkhouser. 2015.
Style Compatibility for 3D Furniture Models.ACM Trans. on Graphics (Proc. of
SIGGRAPH)34, 4 (2015), 85:1–9.

[17] Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. 2015. Elements of Style:
Learning Perceptual Shape Style Similarity.ACM Trans. on Graphics (Proc. of
SIGGRAPH)34, 4 (2015), 84:1–14.

ACM Transactions on Graphics, Vol. XX, No. XX, Article XX. Publication date: March 2017.



XX:16 • Hu, R. et al

[18] Zhaoliang Lun, Evangelos Kalogerakis, Rui Wang, and Alla Sheffer. 2016. Func-
tionality Preserving Shape Style Transfer.ACM Trans. on Graphics35, 6 (2016),
209:1–14.

[19] Chongyang Ma, Haibin Huang, Alla Sheffer, Evangelos Kalogerakis, and Rui
Wang. 2014. Analogy-driven 3D style transfer.Computer Graphics Forum (Proc.
of Eurographics)33, 2 (2014), 175–184.

[20] L. Majerowicz, A. Shamir, A. Sheffer, and H.H. Hoos. 2014. Filling Your Shelves:
Synthesizing Diverse Style-Preserving Artifact Arrangements.IEEE TVCG20, 11
(2014), 1507–1518.

[21] Wallace Nutting. 1968.Furniture treasury. Vol. 3. Macmillan Publishing.
[22] Peter O'Donovan, J̄anis L̄�beks, Aseem Agarwala, and Aaron Hertzmann. 2014.

Exploratory Font Selection Using Crowdsourced Attributes.ACM Trans. on
Graphics (Proc. of SIGGRAPH)33, 4 (2014), 92:1–9.

[23] Hanchuan Peng, Fuhui Long, , and Chris Ding. 2005. Feature selection based
on mutual information: criteria of max-dependency, max-relevance, and min-
redundancy.IEEE PAMI27, 8 (2005), 1226–1238.

[24] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and �nd of
density peaks.Science344, 6191 (2014), 1492–1496.

[25] Mark Schmidt, Glenn Fung, and Romer Rosales. 2007. Fast Optimization Methods
for L1 Regularization: A Comparative Study and Two New Approaches. InProc.
European Conf. on Machine Learning. 286–297.

[26] Philip Shilane and Thomas Funkhouser. 2007. Distinctive Regions of 3D Surfaces.
ACM Trans. on Graphics26, 2 (2007), 7:1–15.

[27] Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros.
2011. Data-driven visual similarity for cross-domain image matching.ACM Trans.
on Graphics (Proc. of SIGGRAPH Asia)30, 6 (2011), 154:1–10.

[28] E. Shtrom, G. Leifman, and A. Tal. 2013. Saliency Detection in Large Point Sets.
In Proc. ICCV. 3591–3598.

[29] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing
Visual Data Using Bidirectional Similarity. InProc. CVPR. 1–8.

[30] J. W. H. Tangelder and R. C. Veltkamp. 2008. A survey of content based 3D shape
retrieval methods.Multimedia Tools and Applications39, 3 (2008), 441–471.

[31] R. Toldo, U. Castellani, and A. Fusiello. 2010. The bag of words approach for
retrieval and categorization of 3D objects.The Visual Computer26, 10 (2010),
1257–1268.

[32] Andrew R. Webb and Keith D. Copsey. 2011.Statistical Pattern Recognition(3rd
ed.). Wiley.

[33] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and Zhi-Quan
Cheng. 2010. Style-content Separation by Anisotropic Part Scales.ACM Trans.
on Graphics (Proc. of SIGGRAPH Asia)29, 6 (2010), 184:1–10.

A SAMPLING AND FILTERING OF ELEMENTS

In this section, we describe the �ltering approach inspired by the work
of Doersch et al. [5] that can be used as an alternative for the selection
of candidate elements. The goal of this approach is to select elements
that weakly discriminate the styles. Thus, we seek elements whose
neighborhoods are dominated by only a few style labels and at the
same time cover as many shapes as possible. Towards this goal, we
randomly sample 1,000 elementsI 0from the set of initial elementsI .
Given a sampled element, we select itsk-nearest neighbors from the
full set of elementsI , according to the normalized correlation. We
then analyze this neighborhood to compute a histogramHN of style
labels of the neighbors, and another histogramHS of shape coverage
by the neighbors. Speci�cally,HS records the percentage of shapes
from each style that is covered by the elements of the neighborhood.
We then rank the elements based onE(HN ) � E(HS), whereE is the
entropy of the histogram. The lower this product is, the higher the
element is ranked. Finally, we pick the top ranked100elements to
form C, avoiding the duplication of any choice. Two elements are
considered to be duplicated if their neighborhoods overlap in more
than30%, where the overlap of two neighborhoods is de�ned as the
percentage of elements that appear in both neighborhoods. Note that,
when we combine our method with this �ltering, we replaceI 0with
the density peaks, while the rest of the method remains the same.
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