SUPPLEMENT MATERIALS

This document provides the implementation details of CompMap, the experimental results on test data sets, the guidelines for parameter setting, and the effect of BWA read mapping report.

1. Implementation Details of CompMap

The implementation details of CompMap are provided as follows using pseudo codes. The main procedure of the program is outlined in Algorithm 1. The corresponding sub procedures of *k*mer indexing, reference-based sequence compression, and recovery of short read mapped positions in the original database are provided in Algorithms 2-5.

Algorithm 1: The main procedure of CompMap

Input: a NGS short read file *F*, a sequence database *D*, a set of *k*mer prefixes *P*, the length of *k*mers *k*, the mismatch tolerance rate *e*, and the valid repeat length *L*.

Output: the mapping results of *F* on *D* in SAM format.

BEGIN

- 1 Select one or multiple sequences from **D** based on heuristics, e.g., length or similarity, to form a reference **R**;
- 2 Build an index table **INDEX** of the *k* mers in \mathbf{R} with predefined prefixes given in \mathbf{P} (see Algorithm 2);
- 3 Concatenate the non-reference sequences *D*-*R* to form *M*;
- 4 Locally align *M* to *R* around the *k*mers present in **INDEX**, and then remove the repeats from *M* (see Algorithm 3);
- 5 Concatenate **R** and the remaining segments in **M** to form a representation sequence **R**' of **D**;
- 6 Map F to R' using some standard read mapping tool, e.g., BWA, Bowtie 2, or Novoalign, and then recover the mapped positions of the short reads in D (see Algorithm 5).

END

Algorithm 2: The procedure of indexing the *k*mers in the reference

Input: the reference *R*, the set of *k*mer prefixes *P*, and the length of *k*mers *k*;

Output: an index table **INDEX** storing the positions of *k*mers in **R** with predefined prefixes.

BEGIN

1 For i=1 to $|\mathbf{R}|$ do 2 If $R_i R_{i+1} \in \mathbf{P}$ then 3 key= Hashfunc $(R_i R_{i+1}, ..., R_{i+k})$; 4 INDEX<key> = INDEX<key> $\bigcup i$; 5 End If 6 End For END

Here, the prefix set *P* could contain any dimers. **INDEX** is a hash table of numeric keys calculated by a hash function. The value associated with each key, i.e., **INDEX**<key>, is a set of occurrence positions of a *k*mer in *R*. The hash function $Hashfunc(R_iR_{i+1}, ..., R_{i+k})$ converts a *k*mer ' R_iR_{i+1} ,..., R_{i+k} ' to a binary number with 'A'=00, 'C'=01, 'G'=10, and 'T'=11 (The other rare symbols in DNA sequence like 'W', 'M', 'N', etc. could be converted randomly with little effect). For example, *Hashfunc*('CGATTTAA') = 0110001111110000 or 25,584 in decimal.

Algorithm 3: Reference-based sequence compression

Input: the reference R, the concatenation of non-reference sequences M, the set of *k* mer prefixes P, the length of *k* mers k, the index table **INDEX**, and the valid repeat length L.

Output: a non-redundant representation sequence *R*' of *D* and a log file *S*.

BEGIN

1	For $i-1$ to $ M $ do
1 2	$\mathbf{F}_{MM} \subset \mathbf{P}_{m} + \mathcal{M}_{M} \qquad M \mathcal{F}_{m} = \mathbf{F}_{m} + \mathbf{F}$
Ζ	If $M_{i}M_{i+1} \subset P$ and $M_{i}M_{i+1} \ldots M_{i+k}$ is not located in a junction of M then
3	$key = Hashfunc \ (M_i M_{i+1} \dots M_{i+k});$
4	For each t in INDEX <key> do</key>
5	Locally align M to R at positions i and t , respectively (see Algorithm 4);
6	If the aligned length $l >= L$ then
7	Write a three-tuple $\{i,t,l\}$ to a log file S ;
8	i=i+l;
9	Else
10	i=i+L;
11	End If
12	End For
13	End If
14	End For
15	Remove all aligned repeats recorded in S from M;
16	Sequentially concatenate R and all remaining segments in M to form R ';
17	Record the positions of all remaining segments in M to S using three-tuples like that of
	aligned repeats;
EN	D

Algorithm 4: Local alignment between <i>M</i> and <i>R</i>
Input: the reference R , the concatenation of non-reference sequences M , the starting position t
at \boldsymbol{R} , the starting position i at \boldsymbol{M} , the size of prospecting window N , and the mismatch
tolerance rate e;
Output: the aligned length <i>l</i> .
BEGIN
$1 \qquad l=0;$
2 $E=0$; //total number of mismatches
3 While $i+l \le M $ do //match forward within the length of M
4 If $R_{t+l} == M_{i+l}$ then
5 $l=l+1;$
6 Else
7 Count the number of mismatches N_e in the following N bases of R_{t+l} and M_{i+l} .
8 If $N_e \ge N/2$ or $E + N_e \ge l^* e$ then
9 Break;
10 End If
$E=E+N_e;$
11 $l=l+N$;
12 End If
13 End While
14 l=0;
15 <i>E</i> =0;
16 While <i>i</i> - <i>l</i> >0 do //match backward
17 If $R_{t-1} == M_{i-1}$ then
18 $l=l+1;$
19 Else
20 Count the number of mismatches N_e in the previous N bases of R_{t-l} and M_{i-l} .
21 If $N_e \ge N/2$ or $E + N_e \ge l^* e$ then
22 Break;
23 End If
$24 \qquad E=E+N_e;$
25 $l=l+N$;
26 End If
27 End While
END

The mismatches include 1-bp substitutions, insertions and deletions.

Trans	we the NCC short modefile E the new redundant representation converse. \mathbf{P}_{i}^{i} and the last
Inp	but: the NGS short read file F , the non-redundant representation sequence R' , and the log
_	file S;
Ou	tput: the mapped positions of the short reads in D .
BE	GIN
1	Map F to R' using some standard read mapping tool like BWA, Bowtie 2, or Novoalign;
2	For each mapped read in F do
3	Obtain the mapped positions $A = \{a_1, a_2,\}$ of the short read in R ';
4	$A_D = \{\}; //$ the set of mapped positions in D
5	For $i=1$ to $ A $ do
6	$A_D = A_D \bigcup a_i;$
7	For $j=1$ to $ S $ do $// S $ denotes the number of three-tuple recorded in S;
8	Retrieve the <i>j</i> -th three-tuple $\{p_1, p_2, l\}$ recorded in <i>S</i> ;
9	If $p_2 \le a_i \le p_2 + l$ then
10	$A_D = A_D \bigcup (p_1 + a_i - p_2)$
11	End If
12	End For
13	End For
14	Output A_D to the target file in SAM format.
15	End For
EN	D

2. Experimental Results on Heterologous Data

We conducted two experiments using different data sets on a cluster running 64-bit Red Hat 4.4.4-13 with 32-core 3.1GHz Intel(R) Xeon(R) CPU E31220. CompMap was run using parameter setting of k=10, kmers prefixes={'CG','AT'}, e=0.05, N=10 and L=1000. BWA was used as the read mapping tool with commands: 'bwa index ref.fa' and 'bwa mem –a ref.fa reads.fq > aln-se.sam', where the option '-a' enables BWA to generate multi-mapped results. We also run BWA on the raw input as a comparison.

Three heterologous NGS data sets namely SRR031601, SRR032505, and SRR032501 derived from three bacteria agents namely *Y. kristensenii*, *Y. ruckeri*, and *Y. rohdei*, respectively, were mapped to a database (589 MB) containing 170 complete chromosomes of eight bacterial agents of bioterrorism identified by the CDC, i.e., *B. anthracis, B. mallei, B. pseudomallei, Brucella sp., C. botulinum, E. coli O157:H7, F. tularensis,* and *Y. pestis.* The data sets and database were collected from (Francis et al. 2013). The mapping results of BWA and CompMap are shown in Table S1. The database was compressed to 304 MB by CompMap in 86 seconds using 620 MB memory. Seventeen sequences selected to form the reference are listed in Table S2.

	SRR031601	SRR032505	SRR032501	
Num of reads	1,374,452	299,889	199,435	
Read length	65~310 bp	50~195 bp	53~198 bp	
File size	404 MB	88 MB	58.3 MB	
Platform	Roche 454 GS 20	Roche 454 GS 20	Roche 454 GS 20	
Source genome	Y. kristensenii	Y. ruckeri ATCC	Y. rohdei ATCC	
	ATCC 33638	29473	43380	
	BWA			
Num of un-mapped reads	642,474	235,921	117,887	
Mapped percentage	53.26 %	21.33%	40.89%	
Mapped positions (A)	4,392,698	1,043,447	701,707	
Running time	1763s	1278s	1217s	
Max memory used	1,326 MB	1,326 MB	1,326 MB	
	CompMap			
Num of un-mapped reads	643,412	237,014	118,137	
Mapped percentage	53.19%	20.97%	40.76%	
Num of reads mapped on junctions	5,210	681	372	
Mapped positions (B)	4,681,827	1,129,698	735,579	
A∩B*	4,190,167	986,332	663,982	
(A∩B)/A	95.39%	94.53%	94.62%	
Running time	1,084s	698s	656s	
Max memory used	673 MB	673 MB	673 MB	

Table S1. The n	napping results o	f BWA and Co	mpMap on the l	heterologous sequences
-----------------	-------------------	--------------	----------------	------------------------

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

All data used in this experiment are available at http://csse.szu.edu.cn/staff/zhuzx/CompMap/

	A			
	Sequence Information			
1	gi 209395693 ref NC_011353.1 Escherichia coli O157:H7 str. EC4115, complete genome			
2	gi 218901206 ref NC_011773.1 Bacillus cereus AH820, complete genome			
3	gi 51594359 ref NC_006155.1 Yersinia pseudotuberculosis IP 32953, complete genome			
4	gi 226947222 ref NC_012563.1 Clostridium botulinum A2 str. Kyoto, complete genome			
5	gi 76808520 ref NC_007434.1 Burkholderia pseudomallei 1710b chromosome I, complete			
	sequence			
6	gi 225851546 ref NC_012441.1 Brucella melitensis ATCC 23457 chromosome I, complete			
	genome			
7	gi 163844199 ref NC_010167.1 Brucella suis ATCC 23445 chromosome II, complete genome			
8	gi 76817237 ref NC_007435.1 Burkholderia pseudomallei 1710b chromosome II, complete			
	sequence			
9	gi 17988344 ref NC_003318.1 Brucella melitensis 16M chromosome II, complete sequence			
10	gi 153946813 ref NC_009708.1 Yersinia pseudotuberculosis IP 31758 chromosome, complete			
	genome			
11	gi 22123922 ref NC_004088.1 Yersinia pestis KIM10+ chromosome, complete genome			
12	$gi 170731356 ref NC_010508.1 Burkholderia cenocepacia MC0-3 chromosome 1, complete la seconda de la seco$			
	sequence			
13	gi 110798562 ref NC_008261.1 Clostridium perfringens ATCC 13124 chromosome, complete			
	genome			
14	gi 126445587 ref NC_009079.1 Burkholderia mallei NCTC 10247 chromosome II, complete			
	sequence			
15	gi 77358719 ref NC_006349.2 Burkholderia mallei ATCC 23344 chromosome 2, complete			
	sequence			
16	gi 25010075 ref NC_004368.1 Streptococcus agalactiae NEM316, complete genome			
17	$gi 89255449 ref NC_007880.1 Francisella\ tularensis\ subsp.\ holarctica\ LVS\ chromosome,\ complete$			
	genome			

Table S2. The 17 selected sequences to form the reference

The top nine sequences represent the majority of the database for each of them shares 50%+ similarity with 8~20 non-reference sequences, while the last eight reference sequences represent the minority of the database for each of them shares 50%+ similarity with only two non-reference sequences.

3. Experimental Results on Homogeneous Data

In this experiment, CompMap and BWA use the same parameter setting as the previous experiment on heterologous data sets. Three homogeneous *E. coli* NGS files namely SRR1063349, ERR385912, and ERR231645 in different size scales were mapped to a sequence database (437 MB) consisting of up to 5,338 genomes or plasmids of different E.coli strains. One randomly selected sequence ('gi|110640213|ref|NC_008253.1| Escherichia coli 536, complete genome') was used as the reference to compress the database. The database was compressed to 152 MB by CompMap in 40 seconds using 720 MB memory. The mapping results of BWA and CompMap on these homogeneous data sets are shown in Table S3.

	SRR1063349	ERR385912	ERR231645
Num of reads	66,629	2,728,935	6,344,039
Read length	202 bp	51 bp	51 bp
File size	30.2 MB	640.7 MB	1,447.3 MB
Platform	Illumina HiSeq	Illumina HiSeq	Illumina HiSeq
	2000	2000	2000
Source genome	E. coli K02	E. coli K-12 MG1655	E. coli BW2952
	BWA		
Num of un-mapped reads	23,147	17,077	65,793
Mapped percentage	65.26 %	99.37 %	98.96%
Mapped positions (A)	3,424,991	170,399,130	331,042,307
Running time	1,210s	5,438s	12,185s
Max memory used	1,393 MB	2,816 MB	2,432 MB
	CompMap		
Num of un-mapped reads	23,148	18,791	76,467
Mapped percentage	65.25%	99.31%	98.79%
Num of reads mapped on junctions	9,282	121,875	207,878
Mapped positions (B)	6,034,470	186,318,744	378,342,097
A∩B*	3,152,773	154,102,317	287,903,520
(A∩B)/A	92.05%	90.44%	86.97%
Running time	354s	1,845s	3,603s
Max memory used	720 MB	858 MB	858 MB

Table S3. The mapping results of BWA and CompMap on the homogeneous sequences

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

All data used in this experiment are available at http://csse.szu.edu.cn/staff/zhuzx/CompMap/

4. The Effects and Setting of the Parameters

In this part, we discuss the effects of the following parameters and try to provide guidelines for setting these parameters.

- the mismatch tolerance rate: *e*
- the size of prospecting window in local alignment: N
- the minimum length of a valid repeat: L
- the *k*mer prefixes
- the *k*mer length: *k*

4.1 The effects and setting of *e*

The mismatch tolerance rate e used in local alignment controls the balance between the compression rate and mapping accuracy. Larger e leads to higher compression rate and more time and space saving in short read mapping, yet the mapping accuracy is lower. We conducted experiments with e=0.01, 0.03, and 0.05 on two representative data sets, i.e., SRR032501 from heterologous data and SRR1063349 from homogeneous data. The other parameters were set consistently with the previous experiments in Sections 2 and 3. The results are reported in Tables S4 and S5. It is shown that as e increases from 0.01 to 0.05, the compression rate of the sequences increases from 21.3% to 65.2%. CompMap attains less time and/or space saving if the compression rate is lower. It is unsurprising that the mapping consistency between BWA and CompMap reduces as e increases, because more lossy compression is performed. Setting e in 0.03~0.05 would be a safe choice to obtain compromise of mapping accuracy and time/space saving. If lower mapping accuracy is tolerable, more time and space saving is achievable by increasing e.

	No compression	<i>e</i> =0.01	<i>e</i> =0.03	e=0.05
	(BWA)	(CompMap)	(CompMap)	(CompMap)
Reference size	589 MB	420 MB	329 MB	304 MB
Compression rate	0%	28.7%	44.1%	48.4%
Num of un-mapped reads	117,887	117,937	118,055	118,137
Mapped percentage	40.89%	40.86%	40.81%	40.76%
Num of reads mapped on junctions	0	402	399	372
Mapped positions	701,704 (A)	714,959 (B)	726,947 (B)	735,579 (B)
A∩B*	-	680,157	665,967	663,982
(A∩B)/A	-	96.93%	94.91%	94.62%
Running time	1217s	840s	682s	656s
Max memory used	1326 MB	673 MB	673 MB	673 MB

Table S4. The mapping results of BWA and CompMap with different *e* on the heterologous data SRR032501 (Y. rohdei ATCC 43380, 58.3 MB, read length=53~198 bp)

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

SKR1005547 (E. con K02, 50.2 MB, reau rength=202 bp)					
	No compression	e=0.01	<i>e</i> =0.03	<i>e</i> =0.05	
	(BWA)	(CompMap)	(CompMap)	(CompMap)	
Reference size	437 MB	344 MB	190 MB	152 MB	
Compression rate	0%	21.3%	56.5%	65.2%	
Num of un-mapped reads	23,116	23,149	23,154	23,154	
Mapped percentage	65.31%	65.26%	65.25%	65.25%	
Num of reads mapped on junctions	0	9,131	9,773	9,282	
Mapped positions	3,424,965(A)	4,276,653(B)	5,599,187(B)	6,034,470(B)	
A∩B*	-	3,246,643	3,142,155	3,152,773	
$(A \cap B)/A$	-	94.79%	91.74%	92.05%	
Running time	1,210s	759s	425s	354s	
Max memory used	1,393 MB	720 MB	720 MB	720 MB	

Table S5. The mapping results of BWA and CompMap with different *e* on the homogeneous data SBR1063349 (F. coli K02, 30.2 MB, read length=202 hp)

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

4.2 The effects and setting of N

The size of prospecting window *N* used in local alignment decides how many bases the alignment should search ahead to estimate the number of mismatches. Experiments were conducted on two representative data sets, i.e., SRR032501 and SRR1063349, with N=5, 10, and 20 to show the effects of *N*. The other parameters were set consistently with the previous experiments in Sections 2 and 3. The results reported in Tables S6 and S7 show that the magnitude of *N* has little influence on the alignment accuracy. CompMap obtains similar results with N=5, 10, and 20. According to our empirical studies, setting *N* in10~20 should be a good choice for most of the data.

	No compression	N=5	N=10	N=20
	(BWA)	(CompMap)	(CompMap)	(CompMap)
Reference size	589 MB	320 MB	304 MB	299 MB
Compression rate	0%	45.7%	48.4%	49.2%
Num of un-mapped reads	117,887	118,082	118,137	118,166
Mapped percentage	40.89%	40.79%	40.76%	40.75%
Num of reads mapped on junctions	0	496	372	355
Mapped positions	701,704 (A)	732,494(B)	735,579 (B)	744,406(B)
A∩B*	-	665,438	663,982	664,648
(A∩B)/A	-	94.83%	94.62%	94.72%
Running time	1217s	684s	656s	633s
Max memory used	1326 MB	673 MB	673 MB	673 MB

Table S6. The mapping results of BWA and CompMap with different N on the heterologous data SRR032501 (Y. rohdei ATCC 43380, 58.3 MB, read length=53~198 bp)

* $A \cap B$ indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

SKR1003349 (E. Con K02, 30.2 MD, Teau length=202 bp)				
	No compression	<i>N</i> =5	N=10	N=20
	(BWA)	(CompMap)	(CompMap)	(CompMap)
Reference size	437 MB	174 MB	152 MB	142 MB
Compression rate	0%	60.2%	65.2%	67.5%
Num of un-mapped reads	23,116	23,153	23,154	23,151
Mapped percentage	65.31%	65.25%	65.25%	65.25%
Num of reads mapped on junctions	0	12,918	9,282	8,724
Mapped positions	3,424,965(A)	5,710,986 (B)	6,034,470(B)	6,132,821(B)
A∩B*	-	3,135,913	3,152,773	3,159,955
$(A \cap B)/A$	-	91.56%	92.05%	92.26%
Running time	1,210s	382s	354s	362s
Max memory used	1,393 MB	720 MB	720 MB	720 MB

Table S7. The mapping results of BWA and CompMap with different *N* on the homogeneous data SBR1063349 (F. coli K02, 30.2 MB, read length=202 hp)

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

4.3 The effects and setting of L

The minimum length of a valid repeat L affects the number of repeats identified in local alignment. Theoretically, the smaller L is, the more repeats could be identified and eliminated from the sequences, resulting in more compression rate. We conducted experiments with L=200, 600, and 1000 on two representative data sets, i.e., SRR032501 and SRR1063349. The other parameters were set consistently with the previous experiments conducted in Sections 2 and 3. The results are reported in Tables S8 and S9. It is observed that the setting of L does affect the compression rate to some extent but it imposes limited effects on the mapping precision of CompMap. The mapping consistencies between BWA and CompMap are not significantly different with L=200, 600, and 1000. The reason for this observation could be the greedy local alignment applied in CompMap, which aims to find the longest alignment despite L. Hence, most identified alignments are much longer than L and the effect of L to the mapping results is weakened. Nevertheless, it is better to set L larger than the short read length, such that a short read can be mapped within one valid repeat and the number of mappings on junctions could be reduced. We suggest setting L to at least three times of the short read length.

4.4 The effects and setting of *k*mer prefixes and *k*

The kmer prefixes determinate how many kmers are used in the local alignment. Since 'CG' and 'AT' are the most frequently identified dimers in DNA sequences and each valid repeat normally contains hundreds of bases, it is almost sure that each valid repeat contains a kmer prefixed with 'CG' or 'AT'. We conducted experiments on homogeneous sequences with only one kmer prefix 'CG' and a shorter L say 200 to test the effect of kmer prefixes. According to the experimental results shown in Table S10, CompMap using only one kmer prefix 'CG' still obtains satisfactory performance. Yet, we suggest using both 'CG' and 'AT' for the sake of stability.

The parameter k decides the length of kmers. Longer kmers lead to more precisely local alignment, but less mismatches tolerance. The user can assign more prefixes and larger k to allow higher alignment sensitivity at the cost of more memory consumption. Following the setting of

*k*mer in many short reads assembling applications, *k* is set to ~ 10 by default in CompMap.

		<i>,</i> 0	1	
	No compression	L=200	L=600	L=1,000
	(BWA)	(CompMap)	(CompMap)	(CompMap)
Reference size	589 MB	282 MB	295 MB	304 MB
Compression rate	0%	52.1%	49.9%	48.4%
Num of un-mapped reads	117,887	118,297	118,197	118,137
Mapped percentage	40.89%	40.68%	40.73%	40.76%
Num of reads mapped on junctions	0	446	462	372
Mapped positions	701,704 (A)	771,842(B)	753,059(B)	735,579 (B)
A∩B*	-	661,076	662,059	663,982
(A∩B)/A	-	94.21%	94.35%	94.62%
Running time	1217s	632s	645s	656s
Max memory used	1326 MB	673 MB	673 MB	673 MB

Table S8. The mapping results of BWA and CompMap with different *L* on the heterologous data SRR032501 (Y. rohdei ATCC 43380, 58.3 MB, read length=53~198 bp)

* $A \cap B$ indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

 Table S9. The mapping results of BWA and CompMap with different L on the homogeneous data

 SRR1063349 (E. coli K02, 30.2 MB, read length=202 bp)

	No compression	L=200	L=600	L=1.000
	(BWA)	(CompMap)	(CompMap)	(CompMap)
Reference size	437 MB	128 MB	140 MB	152 MB
Compression rate	0%	70.7%	68.0%	65.2%
Num of un-mapped reads	23,116	23,152	23,122	23,154
Mapped percentage	65.31%	65.25%	65.30%	65.25%
Num of reads mapped on junctions	0	10,362	10,074	9,282
Mapped positions	3,424,965(A)	6,246,030(B)	6,129,952(B)	6,034,470(B)
A∩B*	-	3,164,716	3,156,169	3,152,773
(A∩B)/A	-	92.40%	92.15%	92.05%
Running time	1,210s	335s	330s	354s
Max memory used	1,393 MB	720 MB	720 MB	720 MB

* A \cap B indicates the number of consistent mapping positions found by BWA and CompMap. Two mapping positions of a read are considered consistent if their distance < 8bp.

prefix={'CG' }, <i>k</i> =10, <i>e</i> =0.05, <i>N</i> =10 and <i>L</i> =200						
	SRR1063349	ERR385912	ERR231645			
Num of reads	66,629	2,728,935	6,344,039			
Read length	202 bp	51 bp	51 bp			
File size	30.2 MB	640.7 MB	1,447.3 MB			
Platform	Illumina HiSeq	Illumina HiSeq	Illumina HiSeq			
	2000	2000	2000			
Source genome	E. coli K02	E. coli K-12 MG1655	E. coli BW2952			
BWA						
Num of un-mapped reads	23,147	17,077	65,793			
Mapped percentage	65.26 %	99.37 %	98.96%			
Mapped positions (A)	3,424,991	170,399,130	331,042,307			
Running time	1,210s	5,438s	12,185s			
Max memory used	1,393 MB	2,816 MB	2,432 MB			
	CompMap					
Num of un-mapped reads	23,117	20,922	83,019			
Mapped percentage	65.30%	99.23%	98.69%			
Num of reads mapped on junctions	10,843	193,463	327,976			
Mapped positions (B)	6,155,141	198,064,331	399,777,896			
A∩B	3,143,134	156,091,007	290,760,501			
(A∩B)/A	91.77%	91.60%	87.83%			
Running time	358s	1,852s	3,633s			
Max memory used	720 MB	858 MB	858 MB			

5. The Effect of BWA Read Mapping Report

It has been observed that CompMap has 5-10% inconsistent mapped positions when compared to BWA, partially because of lossy compression (see section 4.1). In addition, the inconstancy is also partially attribute to that BWA may not exhaustively identify read mapping locations. We demonstrate this effect by comparing BWA applied to an input reference database to when it is applied separately to the partitions of the same database. For example, for the heterologous data, we split the reference database of 170 genomes into two parts, consisting of 93 and 77 genomes, respectively. Then, SRR032501 was mapped to the original database and the two separate parts. The mapping results are summarized in Table S11, where BWA identified 11.4% more mapped positions on the two separate parts than on the original database. Similar results in Table S12 are obtained on homogenous data where BWA identifies 14.0% more mapped positions on the partition reference genomes than that on the original database.

 Table S11. The mapping results of BWA on the heterologous data SRR032501 using all 170 genomes as whole and the partition i.e., 93+77 genomes.

	170 Genomes	93 Genomes	77 Genomes
Reference size	589 MB	305 MB	284 MB
NGS file	SRR032501	SRR032501	SRR032501
Num of reads	199,435	199,435	199,435
Mapped positions	701,707 (A)	482,235	299,214
		781,4	49 (B)
(B-A)/A	11.4%		

 Table S12. The mapping results of BWA on the homogeneous data SRR1063349 using all 5338 genomes as whole and the partition i.e., 1000+4338 genomes.

	5338 Genomes	1000 Genomes	4338 Genomes		
Reference size	437 MB	148 MB	289 MB		
NGS file	SRR1063349	SRR1063349	SRR1063349		
Num of reads	66,629	66,629	66,629		
Mapped positions	3,424,991 (A)	1,506,418	2,397,599		
		3,904,	017 (B)		
(B-A)/A		14.0%			