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Abstract

Background: The exponential growth of next generation sequencing (NGS) data has posed big challenges to data
storage, management and archive. Data compression is one of the effective solutions, where reference-based compression
strategies can typically achieve superior compression ratios compared to the ones not relying on any reference.

Results: This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to
compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are
first parsed into three data streams in which the redundancy information are identified and eliminated independently.
Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata
and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model
to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three
processed data streams are then packed together with some general purpose compression algorithms like LZMA.
LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201.
This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms.

Conclusions: LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of
art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/
zhuzx/LWFQZip.
Background
The advance of next generation sequencing (NGS) has
greatly promoted the research on genomics analysis, her-
editary disease diagnosis, food security, etc. The exponen-
tial growth of big NGS data outpaces the increase of
storage capacity and network bandwidth, posing great
challenges to data storage and transmission [1, 2]. Efficient
compression methods of NGS data are needed to alleviate
the problems [3, 4].
General-purpose compression methods such as gzip

(http://www.gzip.org/) and bzip2 (http://www.bzip.org) do
not take into account the biological characteristics of
DNA sequencing data like small alphabet size, long repeat
fragments and palindromes. They fail to obtain satisfying
compression performance on NGS data. Accordingly,
many specific compression methods have been proposed,
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the majority of which were designed to process raw NGS
data in FASTQ format [5–9] and/or alignment data in
SAM/BAM format [10–14] . Depending on whether ex-
ternal reference sequences are used, these specifically-
designed methods are widely categorized into two groups
namely reference-free and reference-based methods [3].
Reference-free methods, more applicable to FASTQ data,

directly store the target sequencing reads with specific com-
pressive encoding scheme based on the inherent statistical
and biological nature of the data. For instance, SCALCE [8]
clusters the input reads of FASTQ data into groups sharing
common ‘core’ substrings using locally consistent parsing al-
gorithm [15], and then compresses each group with gzip or
LZ77-like methods. Fqzcomp [7] predicts the nucleotide se-
quences in FASTQ format via an order-k context model and
encodes the prediction results with arithmetic coder. DSRC
algorithm [5] divides input reads in an FASTQ file into
blocks and compresses them independently with LZ77 and
Huffman encoding schemes. DSRC 2 [16] improves DSRC
mainly in terms of processing time by introducing threaded
parallelism and more efficient encoding schemes. SeqDB [17]
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compresses FASTQ data of fixed-length reads using block
storage like DSRC/DSRC2 together with a data-parallel byte-
packing method, which interleaves sequence data and quality
scores.
Reference-based methods, by contrast, do not encode

the original read data but instead the alignment results,
e.g., aligned positions and mismatches, of the reads against
some external reference sequences. They are mainly tar-
geted at SAM/BAM data where the alignment results of
short reads are readily available. For example, CRAM [12],
taking BAM-based input, encodes the differences between
reads and a reference genome using Huffman coding.
CRAM also includes the idea of using a de Bruijn graph
[18] based assembly approach to build an additional refer-
ence for the compression of unmapped reads. NGC [10]
traverses each column of read alignment in SAM format
to exploit the common features of reads mapped to the
same genomic positions and stores the mapped reads with
per-column run-length encoding scheme. Samcomp [7]
makes full use of the SAM flag, mapping position and
CIGAR string in a SAM file to anchor each base to a ref-
erence coordinate and then uses per-coordinate model to
encode the bases. HUGO [11] introduces a specific com-
pression scheme to store the aligned reads in SAM for-
mat. The inexact mapped or unmapped reads are split
into shorter sub-sequences and realigned against different
reference genomes until they are all mapped. Quip [6]
implements a standard reference-based compression of
SAM/BAM data. It also is equipped with a de Bruijn
graph based de novo assembly component to generate ref-
erences from the target data itself instead of relying on ex-
ternal references, which enables the reference-based
compression of FASTQ data.
Reference-based methods tend to obtain superior com-

pression ratios compared to the reference-free ones [3].
Nevertheless, reference-based compression relies on read
mapping tools like Bowtie [19, 20], BWA [21] and SOAP
[22] to obtain the alignment results against the reference
sequence(s). It is noted that these mapping tools are ori-
ginally designed for other downstream analyses but not
for data compression. They tend to involve unnecessary
processes and generate undesirable information for the
storage of the data. To solve this problem, we propose a
novel light-weight mapping model based on k-mer index-
ing strategy to allow a fast alignment of short reads against
reference genome(s) and efficiently produce the very es-
sential alignment results for storage.
Based on the light-weight mapping model, a new loss-

less reference-based compression method namely LW-
FQZip is put forward for FASTQ data. Unlike most of
the existing reference-based methods that aim at SAM/
BAM format, LW-FQZip processes raw NGS data in
FASTQ format, as such no extra information brought
by SAM/BAM generators is involved in the archive and
the maximal compatibility is ensured to the downstream
applications. Particularly, LW-FQZip first splits the in-
put FASTQ data into three streams of metadata, short
reads and quality scores, and then eliminates their
redundancy independently according to their own char-
acteristics. The metadata and quality scores are
compacted with incremental and run-length-limited en-
coding schemes, respectively. The short reads are stored
using a reference-based compression scheme based on
the light-weight mapping model. Afterward, the three
processed data streams are packed together with general
purpose compression algorithms like LZMA (http://
www.7-zip.org/sdk.html). LW-FQZip was evaluated
using eight real-world NGS data sets and the experi-
mental results show that LW-FQZip obtains compar-
able or superior compression ratios to other state-of-
the-art lossless FASTQ data compression algorithms.
The remainder of this paper is organized as follows:

Section II describes the framework and implementation
details of LW-FQZip. Section III presents the experi-
mental results of LW-FQZip on eight raw NGS data
sets. Finally, Section IV concludes this study.
Methods
The general framework of LW-FQZip
FASTQ is the most widely used text-based format for
storing raw NGS data. An FASTQ file normally contains
millions of NGS records each of which consists of four
lines. The first line is the metadata containing a se-
quence identifier and other optional descriptions. The
second line is the raw nucleotide sequence, i.e., short
read. The third line is typically unused in the down-
stream analysis and hence can be omitted for compres-
sion. The fourth line, of equal length to the second line,
is the quality score string with each score reflecting the
probability of the corresponding base been correctly de-
termined during sequencing.
LW-FQZip follows the framework shown in Fig. 1 to

compress an input FASTQ data. It first splits the data
into metadata, short reads and quality scores, respect-
ively and then processes them independently with differ-
ent schemes: the metadata goes through incremental
encoding to identify and eliminate repeat segments
across different records; the short reads are fed to a
light-weight mapping model where they are aligned
against an external reference genome and the alignment
results are then recorded using a specific encoding
scheme; and the quality scores undergo a run-length-
limited encoding scheme [23, 24] to abridge consecutive
repeats. Finally, a general purpose compression algo-
rithm LZMA is utilized to pack the outputs of the three
streams. The details of the compression of the three
streams are provided as follows.

http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html
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Incremental encoding of metadata
The metadata in each NGS record begins with a symbol
‘@’ followed by a sequence identifier and other optional
information like instrument name, flow cell identifier,
tile coordinates, and read length. The major part of the
metadata is identical for each record, so only one plain
copy is needed if the variances in each record can be re-
served. In LW-FQZip, the metadata is parsed into differ-
ent fields and an incremental encoding scheme is used
to record the data.
For example, the first four metadata lines of a FASTQ

data SRR001471, a NGS data of Homo sapiens generated
by Roche/454 GS FLX platform, are shown in Table 1.
The first field of a metadata line, i.e., ‘@SRR001471.x’,
represents the sequence identifier that is common for all
records, so only one copy is needed in storage. The third
field, i.e., ‘length = xxx’ indicates the read length and can
be omitted in the compression, as the length can be eas-
ily acquired from the corresponding short read. The
most informative part lies in the second field, e.g.,
‘E96DJWM01D47CS’ in the first line, where an
Table 1 Examples of metadata encoding

Original metadata Incremental coding

SRR001471.1 E96DJWM01D47CS
length = 110

SRR001471.1 E96DJWM01D47CS

SRR001471.2 E96DJWM01CO1KR
length = 297

9 CO1KR

SRR001471.3 E96DJWM01AL88Q
length = 270

9 AL88Q

SRR001471.4 E96DJWM01ALL6A
length = 274

11 L6A
incremental encoding scheme is used to record the
variances of one metadata to its previous neighbour.
Particularly, the first metadata is plainly encoded as
‘SRR001471.1 E96DJWM01D47CS’. The second one is
then compared to the first one in the second field to find
out nine consistent characters ‘E96DJWM01’ followed
by five variances, i.e., ‘CO1KR’, so the second metadata
can be encoded with ‘9 CO1KR’, where the length of
consistency and the content of variances are delimited
with a white space. Similarly, the third and fourth meta-
data lines are incrementally encoded with respect to the
second and third ones respectively.
Reference-based compression of short reads based on a
light-weight mapping model
It is well known that homogenous genomic sequences
share high similarity. When a large portion of the target
genomic sequence has been captured by an existing
homogenous sequence, i.e., the reference, it is of great
benefit to store the target one by recording the differ-
ences of it to the given reference [25]. Motivated by this,
LW-FQZip aligns the short reads in FASTQ data against
an external reference sequence, normally a genomic
sequence from homologous species, with an efficient
light-weight mapping model and then the alignment re-
sults are recorded instead of the original reads.
As shown in Fig. 2, the light-weight mapping model

implements fast alignment by indexing the kmers within
the reference sequence. Firstly, given a reference se-
quence denoted as R, an index table IR is established to
store the positions of the kmers prefixed by ‘CG’ in R. IR



Fig. 2 Flowchart of the light-weight mapping model
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is a hash table of numeric keys, which are calculated
with a hash function Hashfunc(•) taking input kmers.
Particularly, Hashfunc(•) converts a kmer say ‘RiRi+1,…,
Ri+k’ to a binary number with ‘A’ = 00, ‘C’ = 01, ‘G’ = 10,
and ‘T’ = 11. For example, Hashfunc(‘CGATT’) =
0110001111. The value associated with each key, de-
noted as IR < key>, is a set of occurrence positions of the
corresponding kmer in R. To construct IR, the program
sequentially scans R and at each time a kmer Ki = ‘RiRi

+1,…,Ri+k’(RiRi+1 = ‘CG’) is detected, a key Ki
♯ is obtained

with Ki
♯ =Hashfunc(Ki) and IR < Ki

♯ > is updated with IR
< Ki

♯ > =IR < Ki
♯> ∪i. The kmers serve as seeds for map-

ping short reads to R. Note that only the most com-
monly occurring dimer ‘CG’ is considered as the prefix
for the sake of speed and memory consumption.
Secondly, the mapping of a short read X proceeds by

identifying in X any kmer Ki that is present in IR. If there
is no kmer found in X, the original X is output as mis-
match values with mapped position POS = 0. Otherwise,
the set of occurring positions of a kmer Ki in R, i.e., IR <
Ki
♯>, can be retrieved from IR. The assumed mapped po-

sitions of X on R using Ki as seed are then represented
as Ui = IR < Ki

♯ > −i, where i is the position of Ki in X.
The most frequently occurring position in Ui is the most
likely mapped position of X on R (denoted as POS) and
a local alignment is thereby performed base by base to
find out the exact mapping results. In case there are
multiple positions of the same maximal occurrences,
local alignments are performed at all positions and POS
is set to the one with best matching. Once a valid align-
ment is found, i.e., the match length is larger than a pre-
defined threshold L and the mismatch rate is below e,
the model outputs the mapping results of X. If the
match length is shorter than L, the model outputs the
mapping results of the aligned part and let the palin-
drome of the remaining unaligned part go through the
mapping model again.
The output mapping results of a read include the mapped

position, palindrome flag, match length, match type and mis-
match values. We format the results as ‘[POS] < PAL>
[MLength] <MType > <MisValues>’. The mapped position
POS and match length MLength are mandatory whereas the
other fields are optional. Flag PAL is set to 0 if palindrome is
used otherwise it is omitted. MLength denotes the number
of bases matched/mismatched in the alignment. Whether or
not it is a match is indicated in the following field MType
that takes one value of M (Match), I (Insertion), D (Dele-
tion), and S (Substitution). If mismatches are identified, the
mismatch values, i.e., one or multiple bases in {‘A’,‘C’,‘G’,‘T’},
should be recorded in the last field MisValues. To boost the
matching rate, the mapping model allows a small of number
of approximate matches in each alignment. Hence, the read



Table 2 The descriptions of the output mapping result fields

Field Description

POS The position on reference where
the read is optimally aligned.

PAL PAL=’0’ indicates the alignment
of palindrome structure.

MLength The number of matched or mismatched
characters in the alignment.

MType M (Match), I (Insertion), D (Deletion),
or S (Substitution)

MisValues One or multiple bases in {‘A’, ‘C’, ‘G’, ‘T’, ‘N’}
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must be reconstructed from the mapping results and com-
pared with the original input to identify the variations. In this
way, a lossless compression is guaranteed. If a variation is de-
tected, the position ‘[MisPOS]’ and mismatch values ‘[MisVa-
lues]’ are recorded with delta encoding scheme. The
descriptions of the output fields are summarized in Table 2.
Examples of short read encoding based on mapping re-

sults are shown in Fig. 3. The first short read Read1 is
exactly mapped to the reference at the first base, so POS is
set to 1 with 10 matches ‘10M’. Read2 is mapped to pos-
ition 6 with four matches ‘4M’, followed by two insertions
‘2I’ of ‘AA’, four matches ‘4M’, one deletion ‘1D’, and the
other two matches ‘2M’. Read3 is mapped to position 8 of
reference for 7 bases but the remainders are unmatched. In
this case, the aligned segment is first output as ‘8 7M’, and
the palindrome of the unaligned part is realigned against
the reference to find out 8 matches from position 15, so ‘15
08M’ with a palindrome flag inserted before ‘8M’ is re-
corded. Read4 is encoded as’12 7M2D5M’ where two ap-
proximate matches in positions 16 and 23 are detected, so
an additional delta code ‘16A7C’ is appended at the end.
Fig. 3 Examples of short read encoding
Compression of quality scores based on run-length-limited
encoding
A quality score Q is defined as a property logarithmically
related to the base-calling error probabilities P, e.g.,
Q = −10log10

P . Normally, Q is quantized and represented
with an 8-bit ASCII printable code in FASTQ format. The
much larger alphabet size and pseudorandom distribution
of quality scores make them harder to compress than short
reads [13, 26]. Both lossless [26, 27] and lossy [10, 28, 29]
strategies have been explored in the compression of quality
scores. In LW-FQZip, only lossless compression is consid-
ered to guarantee the fidelity of the data.
The quality scores in FASTQ data usually contain a large

number of consecutive occurrences (or called runs) of the
same character making them suit for run-length encoding.
Particularly, a run-length-limited (RLL) encoding scheme [23,
24] is used in LW-FQZip to record any run of length n > 2.
For example, a quality score string like ‘CCCGFFFFFFFHH’
can be encoded as ‘C3αGF7αHH’, where the runs of ‘C’ and
‘F’ are represented with ‘C3α’ and ‘F7α’, respectively, and ‘G’
and ‘HH’ are plainly recorded. The symbol ‘C’ (‘F’) denotes
the repeated character, i.e., ‘C’ (‘F’), by flipping the 8-th bit
from the original 0 to 1 so that it is distinguishable from the
plainly encoded characters. The length of a run, e.g., ‘3α’ and
‘7α’, is also represented in an 8-bit ASCII code (unnecessarily
printable) to avoid confusion in decoding. As a result, the
maximum length of a run is limited to 28 = 256 and any run
of length n > 256 must be treated as multiple runs.
If consecutive runs appear to be alternate repeats of two

characters like ‘DDDDCCCDDDDDCCCC’, the corre-
sponding RLL code ‘D4αC3αD5αC4α’ can be further sim-
plified to ‘D4α3α5αC4α’, where the solitary ‘3α’ indicates the
insertion length of the second character



Table 3 Real-world FASTQ data sets used for performance evaluation

Data Species Read Length Number of Reads Size (GB) Reference

ERR231645 E. coli 51 6,344,039 1.41 NC_000913

ERR005143 P.syringae 2*72 3,551,133 0.89 NC_007005

SRR352384 S. cerevisiae 2*76 26,030,832 9.88 NC_001136.10

SRR801793 L. pneumophila 2*100 5,406,461 2.75 NC_018140

SRR554369 Pseudomonas 2*200 1,657,871 0.82 KI517354

ERR654984 E. coli 64-502 1,167,295 1.21 NC_000913

ERR233152 P. aeruginosa 77 2,745,192 0.72 AP014622

SRR327342 S. cerevisiae 138 15,036,699 5.74 ACFL01000033
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recorded in the end of the code. In this way, the coding is
shortened from 8*8 bits to 6*8 bits.
As shown in Fig. 1, the separately encoded metadata,

short read alignment results, and quality scores are fi-
nally packed together and compressed with LZMA.

Results and discussion
Eight real-world FASTQ data sets ranging from 0.72 GB
to 9.88 GB are used to test the performance of LW-
FQZip. The data sets were all downloaded from the Se-
quence Read Archive of the National Centre for Biotech-
nology Information (NCBI) [30]. The descriptions of the
data sets are summarized in Table 3.
The other four state-of-the-art lossless FASTQ data com-

pression algorithms namely Quip [6], DSRC [13], DSRC2
[16] and Fqzcomp [7] are selected for comparison study.
Quip [6] is run in two different modes, i.e., the pure statis-
tical compression (‘Quip’) and the assembly-based com-
pression (‘Quip -a’). The general purpose compression
algorithm bzip2 is also involved in the comparison as the
baseline. All compared methods are tested on a cluster run-
ning 64-bit Red Hat Linux operating system with 32-core
3.1GHz Intel(R) Xeon(R) CPU. The parameters of LW-
FQZip are empirically set to k = 10, e = 0.05, and L = 12
(The effects of these parameters on the performance of
Table 4 Compression ratios of the compared methods on the
eight FASTQ data sets

quip quip
-a

DSRC DSRC2 Fqzcomp LW-
FQZip

bzip2

ERR231645 0.139 0.123 0.164 0.160 0.136 0.127 0.208

ERR005143 0.154 0.154 0.179 0.176 0.156 0.151 0.211

SRR352384 0.115 0.115 0.145 0.144 0.126 0.111 0.183

SRR801793 0.184 0.184 0.235 0.234 0.202 0.176 0.268

SRR554369 0.194 0.194 0.243 0.232 0.201 0.182 0.262

ERR654984 0.188 0.188 0.235 0.236 0.204 0.140 0.262

ERR233152 0.129 0.128 0.153 0.147 0.128 0.126 0.177

SRR327342 0.189 0.189 0.242 0.241 0.202 0.201 0.271

Average 0.151 0.150 0.190 0.189 0.162 0.148 0.223
LW-FQZip are investigated and reported in the supplement
materials at http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/
#Experiment).
The compression ratios of all compared methods on the

eight data sets are summarized in Table 4. A compression
ratio is obtained by dividing the compressed file size by
the original file size. It is observed that all specially-
designed FASTQ data compression methods outperform
the general purpose method bzip2. LW-FQZip manages
to obtain the smallest compression ratios on six out of the
eight data sets. Especially, on data ERR654984 of variable-
length short reads, the superiority of LW-FQZip is much
more obvious. ‘Quip –a’ wins on two data sets namely
SRR327342 and ERR231645. It is found that these two
data sets contain fewer consecutive quality score repeats
than other data sets, so LW-FQZip with run-length en-
coding fails to obtain comparable compression ratios of
quality scores to ‘Quip –a’ that uses a more efficient arith-
metic encoding scheme. On average, LW-FQZip obtains
the best compression ratio of 0.148 over all datasets,
resulting in 85.2 % reduction of the storage space.
The compression ratios of LW-FQZip on the three

components of FASTQ data are reported in Table 5. The
metadata is best compressed with the smallest average
compression ratio 0.021. The compression ratios of qual-
ity scores are greater than the other two components due
Table 5 The compression ratios of LW-FQZip on the three
components of FASTQ files

Data Metadata Nucleotide sequence Quality scores

ERR231645 0.027 0.091 0.421

ERR005143 0.021 0.159 0.364

SRR352384 0.024 0.151 0.130

SRR801793 0.025 0.089 0.371

SRR554369 0.029 0.117 0.346

ERR654984 0.024 0.032 0.285

ERR233152 0.015 0.190 0.238

SRR327342 0.014 0.155 0.426

Average 0.021 0.134 0.268

http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/#Experiment
http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/#Experiment


Table 6 The mapping result of the proposed light-weight mapping model against that of BWA

Data BWA Light-weight mapping model

#Unmapped
reads

#Mapped reads #Unmapped
reads

#Mapped reads Na

Exact Inexact Exact Inexact

ERR231645 133,518 6,047,074 163,447 606,902 5,460,749 276,388 17,866

ERR005143 248,883 2 3,302,248 188,801 2 3,362,330 1,417,824

SRR352384 22,182,981 2 3,847,849 22,437,492 1 3,593,339 960,640

SRR801793 424,130 0 4,982,331 1,345,629 0 4,060,832 1,220,888

SRR554369 1,114,495 0 543,376 319,275 0 1,338,596 596,529

ERR654984 3596 0 1,163,699 4403 0 1,162,892 1,107,540

ERR233152 1,005,747 6603 1,732,842 524,812 7375 2,213,005 69,929

SRR327342 14,769,970 0 266,729 14,776,503 0 260,196 64,765

Average 64.39 % 9.77 % 25.84 % 64.91 % 8.83 % 26.26 % 33.54 %

N*: the number of unmapped segments that can be realigned to the same reference genome
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to the inherent larger alphabet size and quasi-random dis-
tribution. The compression of quality scores remains the
major challenge and opportunity to achieve substantial re-
duction on storage space of NGS data. Lossy compression
could be considered if the loss of accuracy in downstream
analyses is controllable.
LW-FQZip is characterized with the light-weight map-

ping model. The framework can also work with other short
read mapping tools like BWA as has been experimented in
our previous work [31]. To evaluate the efficiency of the
proposed light-weight mapping model, the mapping results,
mapping time, and compression ratios using BWA and the
light-weight mapping model are tabulated and compared in
Tables 6 and 7. With comparable compression ratios, the
proposed light-weight mapping model significantly outper-
forms BWA in terms of mapping time. The light-weight
mapping model is much more efficient to obtain the essen-
tial alignment results for the purpose of storage. More
complete running-time results of LW-FQZip on the test
data sets are reported at http://csse.szu.edu.cn/staff/zhuzx/
LWFQZip/#Experiment.
Table 7 Mapping time and compression ratios using BWA and the

Data BWA

Mapping time (s) Compression ra

ERR231645 130.30 0.124

ERR005143 533.72 0.150

SRR352384 4036.98 0.111

SRR801793 1907.43 0.174

SRR554369 449.68 0.179

ERR654984 282.84 0.146

ERR233152 209.38 0.120

SRR327342 2458.69 0.201

Average 1251.13 0.147
Conclusions
The advance of NGS technologies produces unprece-
dented data volume and poses big challenges for data stor-
age and transmission. To mitigate the problems, we
develop LW-FQZip as a strictly lossless reference-based
compression algorithm for raw NGS data in FASTQ
format. LW-FQZip compresses the metadata, sequence
short reads, and quality scores in FASTQ files based on
incremental encoding, reference-based compression,
and run-length-limited encoding schemes, respectively.
It is characterized with an efficient light-weight map-
ping model to enable fast and accurate alignment of
short reads to a given reference sequence. The experi-
mental results on real-world NGS data sets demonstrate
the superiority of LW-FQZip in terms of compression
ratio to the other state-of-the-art FASTQ data compres-
sion methods including Quip, DSRC, DSRC2 and
Fqzcomp. LW-FQZip is mainly designed to optimize
the compression ratio, yet parallelism and more efficient
coding schemes can be further introduced to improve
its time and space efficiency.
light-weight mapping model

Light-weight mapping model

tios Mapping time (s) Compression ratios

46.60 0.127

56.21 0.151

289.02 0.111

79.19 0.176

105.33 0.182

69.37 0.140

82.43 0.126

148.38 0.201

109.57 0.148

http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/#Experiment
http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/#Experiment
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