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ABSTRACT: Symmetry analysis for brain images has been consid-
ered as a promising technique for automatically extracting the patho-

logical brain slices in conventional scanning. In this article, we
present a fast and robust symmetry detection method for automati-
cally extracting symmetry axis (fissure line) from a brain image. Unlike

the existing brain symmetry detection methods which mainly rely on
the intensity or edges to determine the symmetry axis, our proposed

method is based on a set of scale-invariant feature transform (SIFT)
features, where the symmetry axis is determined by parallel matching
and voting of distinctive features within the brain image. By clustering

and indexing the extracted SIFT features using a GPU KD-tree, we
can match multiple pairs of features in parallel based on a novel sym-

metric similarity metric, which combines the relative scales, orienta-
tions, and flipped descriptors to measure the magnitude of symmetry
between each pair of features. Finally, the dominant symmetry axis

presented in the brain image is determined using a parallel voting
algorithm by accumulating the pair-wise symmetry score in a Hough

space. Our method was evaluated on both synthetic and in vivo data-
sets, including both normal and pathological cases. Comparisons
with state-of-the-art methods were also conducted to validate the

proposed method. Experimental results demonstrated that our
method achieves a real-time performance and with a higher accuracy
than previous methods, yielding an average polar angle error within

0.69� and an average radius error within 0.71 mm. VC 2013 Wiley

Periodicals, Inc. Int J Imaging Syst Technol, 23, 314–326, 2013; Published

online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ima.22066
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I. INTRODUCTION

It is well-known that human brains have two apparently similar hemi-

spheres, where most tissues in left hemisphere have a mirrored coun-

terpart on the right hemisphere with similar scale and appearance,

exhibiting an approximate bilateral symmetry. Researchers also found

that such an approximately symmetric structure of human brains

would be degenerated with the presence of pathological conditions

where abnormal tissue intensity and texture alterations may happen,

such as brain tumors (Joshi et al., 2003; Yu et al., 2012), infections

(Corti et al., 2008; Hermes et al., 2008), traumatic brain injury (Gilles

et al., 2003; Kumar et al., 2005), perinatal brain lesions (Tommasi

et al., 2009; Tilman et al., 2010; Roussigne et al., 2012; Saenger

et al., 2012), and metabolic disorders (Herbert et al., 2005; Cullen

et al., 2006; Takao et al., 2010; Oertel-Kn€ochel et al., 2011).

Recently, symmetry analysis especially systematic and quantitative

correlation between asymmetry and specific brain pathologies has

been considered as a promising technique to enhance the current

computer-aided diagnostic system. Lorenzen et al. (2001) first identi-

fied tumors through quantifying structural and radiometric asymme-

try. Bergo et al. (2008a, 2008b) also successfully relied on the

symmetry location of brain to segment the focal cortical dysplasia in

epilepsy. Liu et al. (2007) and Teverovskiy et al. (2008) further dis-

covered the biomarkers in Alzheimer’s disease by measuring the

brain asymmetry. For effective pathological brain image identification

and comparison, most existing state-of-the-art techniques (Brummer,

1991; Ardekani et al., 1997; Liu et al., 2001; Hu et al., 2003; Volkau

et al., 2006; Bergo et al., 2008a, 2008b) mainly rely on the identifica-

tion of the symmetry plane or symmetry axis from the brain images

to quantitatively analyze the asymmetry patterns. Without a fast and

robust method to automatically extract the symmetry plane or sym-

metry axis from the brain images, correctly and efficiently evaluating

of asymmetry patterns is hard to achieve.

Symmetry plane detection methods (Prima et al., 2002, 2007;

Teverovskiy et al., 2006; Song et al., 2007; Zhang et al., 2008) usu-

ally assume the global geometry of brain or head to be symmetrical,

aiming to identify an optimal mid-sagittal plane (MSP) about which

the three-dimensional (3D) anatomical tissues within the given brain

image obtain a maximum bilateral symmetry. Existing methods forCorrespondence to: Huisi Wu; e-mail: hswu@szu.edu.cn
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extracting MSP can be broadly divided into two categories (Liu,

2009), namely shape-based and content-based methods. Shape-based

methods determine the symmetry plane relying on the detected geo-

metric landmarks or topological features of the head, such as interhe-

mispheric fissure and moments of inertia (Tuzikov et al., 2003; Liu

et al., 2011), while content-based methods perform the symmetry

plane extraction through registration between the two hemispheres

based on internal signal features, such as voxel intensity, local edge,

and grayscale distribution (Stegmann et al., 2005; Grigaitis and Mei-

lunas, 2007). However, due to the fact that normal or pathological

deformation is commonly seen within human head, there almost

never exist perfectly MSP lying on a flat surface, so MSP extracted

using both shape-based and content-based methods is ill-defined.

Since MSP only provides a coarse symmetry division, only rough

asymmetry evaluation can be performed for the global human brain

(Roy and Bandyopadhyay, 2012). Instead, symmetry axis detection

potentially enables us to perform a tailor-made asymmetry evalua-

tion for brain images by accurately extracting the regional symmetry

line and retrieving the pathological slices. On the other hand, sym-

metry plane detection is generally much more computational inten-

sive than symmetry axis detection.

Symmetry axis detection methods focus on estimating the 2D

mid-sagittal axis for each coronal or axial slice, which has also been

intensively studied (Gong et al., 2005; Costantini et al., 2007; Liu

et al., 2008). Several MSP extraction methods are based on detecting

the symmetry axes slice by slice. Junck et al. (1990) first used cross-

correlation analysis to detect the symmetry axis within a transverse

positron emission tomography (PET) or single-photon emission com-

puted tomography (SPECT) slice. Brummer (1991) used a Hough

transformation to compute the longitudinal fissure at each coronal

slice. Liu et al. (2001) presented an edge-based, cross-correlation

approach to discover symmetry axis on each coronal or axial slice.

Hu et al. (2003) relied on an exhaustive search algorithm to deter-

mine the optimal parameters of the symmetry axis. More recently,

Song et al. (2007) defined a moment of gravitational force and identi-

fied the symmetry axis based on the correlation of gray level distribu-

tion. Costantini and Casali (2007) proposed a cellular neural network

based algorithm for symmetry axis detection. Liu et al. (2008) for-

mulated the symmetry detection as an optimization problem and

used an interactive searching algorithm to solve the optimal symme-

try axis. Ruppert et al. (2011) applied a correlation of detected edges

to extract the symmetry axis. Although promising improvements

have been made in both methodology and performance, the existing

methods for symmetry axis detection from brain images are still not

reliable enough and too time consuming to be used in clinical appli-

cations. In addition, they mainly used gray level, skull shape or edges

to infer the symmetry axis, which may easily suffer from difficulties

caused by image noise, local deformation, or the deficiencies of edge

detectors. Also, the computation procedure using iterative optimiza-

tion scheme cannot achieve real-time performance.

In this study, we present a fast and robust symmetry axis detec-

tion method based on parallel SIFT matching and voting. Figure 1

overviews our framework, unlike the previous methods, we first

apply the well-known SIFT algorithm to capture a set of features,

which is implemented with graphics processing units (GPU). Since

SIFT descriptor is invariant to scaling, orientation, affine distortion,

and intensity changes, correlation on SIFT features prevents suffer-

ing from the image noise, local deformation, and the deficiencies of

edge detectors. In addition, a GPU KD-tree is also built to index the

clustered SIFT features, which allows parallel matching and voting

multiple pairs of features to determine the fissure line. For effectively

measuring the magnitude of symmetry between two SIFT features, a

novel symmetric similarity metric is defined by considering their rel-

ative scales, orientations, and flipped descriptors. Based on the paral-

lel SIFT matching and voting, the dominant symmetry axis presented

in the brain image is finally determined by accumulating the pair-

wise symmetry score in a Hough space. Our method was evaluated

Figure 1. Framework of our method. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Symmetric orientations of a pair of features. [Color figure

can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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on both synthetic mirrored images and in vivo datasets, including

both normal and pathological cases. Convincing experiment results

and comparisons demonstrated the effectiveness of our method.

II. METHODOLOGY

A. Feature Detection. To achieve efficient and robust symme-

try detection for brain images, we propose a novel framework by

matching symmetric pairs of distinctive feature points within the

brain images. Although existing feature detection and feature match-

ing methods have been widely used for generating dense correspond-

ences between images, there were rare reports of searching inner

correspondences by matching pairs of feature points within a single

image. Since the approximate symmetry structure of human brain

implies that there exist a set of mirrored features within the brain

images, we can explore this to develop a fast and robust algorithm

for symmetry detection in the brain images.

Given a brain image, we first detect a set of feature points using

SIFT algorithm (Lowe, 2004), as shown in Figure 1. By applying dif-

ference of Gaussians functions to obtain a series of smoothed and

resampled images, we can identify a set of key locations via extract-

ing maxima and minima in scale space. We also discard low contrast

candidate points and edge response points along an edge and assign

dominant orientations to localized keypoints, such that the keypoints

are more stable for matching and recognition. We denote each key-

point as a four-dimensional vector ki 5 (xi, yi, si, /i), where (xi, yi),

si, and /i describe its location, scale, and orientation, respectively.

Such a four-dimensional vector typically defines each feature’s loca-

tion, scale, and orientation for fast matching. To determine the sym-

metric relationship of pairs of feature points, we still have to

measure the local appearance of each feature point. Hence, a SIFT

feature descriptor pi 5 (v1, v2, . . . v128) is generated for each key-

point ki to encode the local appearance of the feature point after its

scale and orientation have been normalized. Similar with Lowe

(2004), we generate each SIFT descriptor based on a 16 3 16 gradi-

ent kernel, which is rotated with respect to the keypoint orientation

/i and divided into 4 3 4 subregions. Each subregion is character-

ized by the gradient contributions to an eight-bin orientation histo-

gram. Concatenation of the 16 orientation histograms creates SIFT’s

128-element (16 subregions 3 8 orientation bins) descriptor vector

pi 5 (v1, v2, . . . v128). The distinctiveness of ki, together with the

scale-invariant and rotation-invariant pi, provide a fast and robust

mean which is particularly well-suited to detecting pairs of symmet-

ric features.

B. Clustering and Indexing. The reflectional symmetry struc-

ture in human brain normally contains multiple pairs of symmetric

elements. Normally, the number of SIFT features is about 600–800

when the resolution of the brain magnetic resonance (MR) image is

256 3 256, and the number will exceed 1000 for a resolution of 512

3 512. Under such scenario, we cannot use a simple geometric heu-

ristics to effectively cull the potential matches. Even for using best-

bin first matching algorithm (Lowe, 2004), it still costs about 0.8 s to

pick out all potential matches, which is still too time consuming to

achieve a real-time performance, because a brain examination nor-

mally contains about 200–300 slices. As similar elements should

have similar SIFT features, this suggests that we can perform cluster-

ing on the SIFT keypoints to accelerate the feature matching. We use

adaptive mean-shift clustering (Comaniciu and Meer, 2002) to group

Figure 3. Formation of a mirrored SIFT descriptor for a flipped image patch. For a flipped image patch (b), the mirrored SIFT descriptor in (d) is

obtained by reordering the original SIFT descriptor in (c). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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the detected SIFT feature points. Similar with Zhou et al. (2010), our

mean-shift clustering algorithm is also implemented on GPU by

using compute unified device architecture (CUDA). The major

advantage of parallel mean-shift clustering is it can automatically

determine the number of clusters, which otherwise requires knowing

the number of clusters in advance by using other techniques, such as

k-means. In our implementation, the scales si of all detected key-

points are fed for adaptive mean-shift clustering to group features

with similar shapes and sizes.

To enable parallel matching and voting multiple pairs of features,

we also use a GPU KD-tree to index the clustered SIFT features.

Specifically, to facilitate the following k-nearest neighbor (KNN)

searching in symmetry matching, we further index the scales si of

keypoints in each cluster with a KD-tree (Zhou et al., 2008). For fast

retrieval, we implemented the KD-tree on GPU to support the paral-

lel KNN searching.

C. Symmetric Similarity Metric. We can then form symmetric

pairs of feature points for each cluster by matching a keypoint with

its nearest neighbors. However, the resulting pairs of features may

potentially contain different things, as the clustering is only based on

a crude measurement of shape and size without considering the

region content. Hence, we need a more sophisticated metric to vali-

date and select neighbors during making a symmetric pair of feature

points. We define a metric to quantify the symmetric similarity of

two neighboring SIFT keypoints in terms of scale, orientation, and

appearance.

C.1. Scale Similarity. Even when the symmetry structure is

slightly deformed, two symmetric elements remain close in shape

and size. Hence, the shape similarity Sij of two symmetric features ki

and kj is a function of their scale

Sij5exp
2ksi2sjk2

rs

 !
(1)

where rs controls the weighting of the scale variation, rs 5 1 was

used in our experiments.

C.2. Orientation Symmetric Similarity. For each pair of sym-

metric keypoints ki and kj, their orientations should also exhibit mir-

ror symmetry. Hence, we design a orientation symmetric similarity

Uij to measure the angular similarity in terms of their orientation. As

shown in Figure 2, suppose the line passing through ki and kj is

denoted as l. According to the phase weighting method presented in

Reisfeld et al. (1995), we denote the orientation symmetric similarity

Uij as

Figure 4. Voting the dominant symmetry axis. (a) Clustered SIFT keypoints in a brain MR image (256 3 256). (b) Dominant symmetry axis voted

and the symmetric features associated with it. (c) Symmetry axes in Hough space. (d) Extraction of the center of the convex hull in the Hough
space (applied a strand Gaussian filter). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Uij5
12cos ð/i1/j22hijÞ

2
(2)

where /i, /j, and hij are the angles counterclockwise between the

horizontal line and ki, kj, or l, respectively. We can easily observe

that Uij � [0,1], with larger value when the orientations of ki and kj

are more symmetric similar with each other.

C.3. Appearance Symmetric Similarity. Since scale similarity

and orientation symmetric similarity between keypoints ki and kj do not

consider the image appearance, we further measure their appearance

symmetric similarity by comparing their descriptors pi and pj, which

encode the local image patches associated with ki and kj, as shown in

Figure 3c. The detailed mathematical definition of SIFT descriptor and

its implementation can be found in Lowe (2004). Although SIFT

descriptor is scale-independent and orientation-independent after scale

and orientation normalization, we still cannot define the appearance

symmetric similarity by directly calculating the distance between pi

and pj. That is because SIFT descriptor is not flipping-invariant. Similar

with Zhao and Ngo (2013), we first form a mirrored SIFT descriptor qi

by recording the 128 elements within pi, as shown in Figure 3. Then,

we denote the appearance symmetric similarity Xij as

Xij5exp
2kqi2pjk2

ra

 !
(3)

where ra controls the weighting of the appearance variation, ra 5

0.5 was used in our experiments.

All the above-defined scale, orientation, and appearance weight-

ings are combined to form an overall symmetric similarity metric Mij

for each pair of keypoints ki and kj

Mij5Sij3Uij3Xij (4)

So far, we can use Mij � [0,1] to quantify the symmetry magni-

tude for an individual pair of keypoint vectors. Since the symmetry

structure in a brain MR image usually contains a set of symmetric

Figure 5. Symmetry axes extracted from synthetic images with known ground truth (first row). Local distortion, bias inhomogeneity, and artifi-
cial tumor are added to the original image (shown in second, third, and fourth rows, respectively). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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keypoints, we need to accumulate the symmetry magnitudes exhib-

ited by all individual pairs in a voting space to determine the domi-

nant symmetry present in the brain MR image.

D. Dominant Symmetric Axis Voting. To determine the dom-

inant symmetry axis within a brain MR image, we use the standard

polar coordinate (r, h) to represent the potential symmetry axis line c
passing perpendicularly through the mid-point of the line joining ki

and kj, as shown in Figure 2. Under the standard polar coordinate, we

denote the potential symmetry axis line c as

rij5xccos hij1ycsin hij (5)

where (xc, yc) is the centred coordinates of the mid-point of line join-

ing ki and kj, and hij is the angle counterclockwise between the hori-

zontal line and l.

We then use the linear Hough transform to vote the dominant

symmetry axis within the brain MR image. Recall that we have built

GPU KD-trees for all detected SIFT keypoints in Section II.B.

Hence, we can form a number of pairs of feature points by matching

each keypoint with its k-nearest neighbors. Each pair of feature

points cast a vote (rij, hij) in Hough space weighted by their symme-

try magnitude Mij. Since the voting processes for all pairs of key-

points are independent with each other, we implement the above

voting process in a multithreaded GPU using CUDA. So the above

voting is done simultaneously in parallel for all selected pairs.

Finally, the dominant symmetry axis within the brain MR image

is obtained by extracting the maxima of the final voted Hough space.

To avoid the noise in extracting the maxima, we also apply a strand

Gaussian filter to blur the final voting result. The maxima is then

extracted by identifying the center of the convex hull in the Hough

Figure 6. Visual comparison of different methods in detecting symmetry axes from synthetic datasets. (a) Synthetic images. Symmetry axes
extracted from (a) using Hu et al. (2003), Song et al. (2007), Ruppert et al. (2011), and our method are shown in (b), (c), (d), and (e), respectively.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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space. All neighboring points of the maxima in Hough space are

associated with the same dominant symmetry axis within the brain

MR image. Figure 4 shows the detailed steps involved in voting the

dominant symmetry axis.

III. RESULTS

We implemented our method in C language on a PC with 4 Intel(R)

Xeon(TM) CPUs 3.20 GHz, 16 GB RAM, and nVidia GeForce GTX

690 GPU with 4 GB video memory. To evaluate the effectiveness of

our proposed method, we test it on both synthetic and in vivo MRI

datasets.

A. Evaluation on Synthetic Datasets. Since no human brain

exhibits perfect reflectional symmetry, it is difficult to manually

identify a symmetry axis to be the ground truth that can be directly

used for evaluation. To avoid the subjective factors in visual inspec-

tion, we chose to synthesize artificially symmetric images with

known ground truth for quantitative testing. Each synthetic image is

constructed as following two steps. First, we manually extract a sym-

metry axis by identifying the fissure line. Then, we reflect one half of

the brain image about its symmetry axis to form the other mirrored

half. So we can synthesize a perfectly symmetrical image where the

ground truth is known.

Given the synthetic datasets, we applied our method to detect the

symmetry axis from each brain image. Figure 5 shows the represen-

tative resulting slices (with a resolution of 256 3 256). From the

upper row, we can see that our method can accurately identify the

symmetry axes presented in the brain images. To evaluate the ability

of preventing the interference from local distortion, MRI bias

Figure 7. Comparison of different methods in tolerance to rotation. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8. Comparison of different methods in tolerance to noise. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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inhomogeneity or asymmetry structures, we also manually added

locally distorted regions, bias inhomogeneities and artificial tumors

to the synthetic images, and applied our method to detect the symme-

try axes. As shown in the bottom three rows of Figure 5, the impacts

of both local distortion and MRI bias inhomogeneities are minimal.

Also, we can see that our method can successfully identify the fissure

lines, even when the artificial tumors covers about one third of the

human brain. But our method can no longer preserve the accuracy of

the symmetry axis extraction if the distorted, MRI bias or tumor area

is larger than 40% of the human brain. In our experiments, we pro-

duced an artificial tumor by drawing a circle in the lower left quarter

with a uniform gray level. We also added a local and known nonrigid

deformation to the brain near the simulated tumors, as shown in Fig-

ures 5 and 6.

To compare our method with state-of-the-art methods, we also

implemented three representative methods, including Hu et al.

(2003), Song et al. (2007), and Ruppert et al. (2011). For quantitative

validation of our method in tolerance to rotation, noise, and asymme-

try, we applied our method and the other three competitors to three

synthetic datasets with different rotation angles, different noise lev-

els, and different asymmetry ratio, respectively. Symmetry axes

detected using Hu et al. (2003), Song et al. (2007), Ruppert et al.

(2011), and our method are shown in Figures 6b, 6c, 6d, and 6e,

respectively. Since Hu et al. (2003) relied on the pixel by pixel (or

line by line) gray level similarity and used an exhaustive search algo-

rithm to detect the symmetry axis, it cannot achieve a high accuracy,

especially when suffered from rotation or there have deformation,

noise, or asymmetry contents (Fig. 6b). Song’s method used the skull

contour to determine the symmetry axis and obtained a result better

than Hu’s method as shown in Figure 6c. On the other hand, by

detecting the principle edges using a Sobel operator and fitting the

symmetry axis based on edge matching, Ruppert et al. (2011)

obtained comparable results versus Song’s method, as shown in Fig-

ure 6d. But without using a high distinctive image feature to identify

the symmetry axis, all of above methods are sensitive to image rota-

tion, noise, and asymmetry. Instead, by using the well-validated

SIFT feature to detect symmetry axis, our method outperforms the

three competitors in terms of accuracy of symmetry detection. Since

SIFT has been proved to be invariant to scaling, orientation, affine

distortion, and intensity changes, our method is more stable in pre-

venting the interference from noise, blur, or asymmetry and obtains

better results than the other three state-of-the-art methods, as shown

in Figure 6e. The bottom row of Figure 6 shows a worst case of our

method in symmetry detection, where the simulated tumor area is

about 40% of the human brain and the noise level SNR is 225 dB.

Besides visual comparison, we also calculated the polar angle

error (in degrees) and radius error (in mm) between detected symme-

try axis (rd, hd) and the ground truth symmetry axis (rg, hg) to quanti-

tatively compare our method with the other methods. Figures 7, 8,

and 9 plot the mean squared error and standard deviation between

(rd, hd) and (rg, hg) for our method and the other three competitors

over the synthetic datasets with rotation, noise, and asymmetry,

respectively. In Figure 9, we used artificial tumor lower left quarter.

From the comparison, we can see that our method generally outper-

forms the other three methods in term of both polar angle accuracy

and radius accuracy, with more significant improvement when there

is larger rotation angle (Fig. 7), heavier noise (Fig. 8), or larger

asymmetry ratio (Fig. 9). This points out the important of using a

more distinctive image feature to detect symmetry axis.

Table I shows the statistics of polar angle error and radius over

all three synthetic datasets. From the statistics results, we can clearly

observe that our method can not only improve the accuracy of polar

angle fitting but also the radius of the detected symmetry axis. To

Table I. Accuracy statistics of different methods over all simulated

datasets. 44314mm (300 3 300 DPI)

Method

Polar Angle Error (�) Radius Error (mm)

Mean SD P-value Mean SD P-value

Hu et al. 2003 1.253 0.424 0.0052 1.305 0.392 0.0041

Song et al. 2007 1.176 0.389 0.0087 1.206 0.364 0.0096

Ruppert

et al. 2011

0.912 0.297 0.0130 1.031 0.317 0.0128

Our method 0.610 0.257 0.709 0.283

Each P-value is obtained using mixed model analysis to compare our method with the
indicated state-of-the-art method.

Figure 9. Comparison of different methods in tolerance to asymmetry. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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evaluate if our improvement is statistically significant, we also calcu-

lated a P-value using mixed model analysis to compare our method

with each state-of-the-art method. As shown in Table I, compared

with other methods, our method has significant improvement in

terms of accuracy of both polar angle and radius at the 5% level (P-

value is less than 0.05). To compare the speed of our method with

other three state-of-the-art methods, we further collected the time sta-

tistics of different methods over the simulated datasets. To evaluate

the impact of the image resolution, we resized each synthesized

image from 256 3 256 to 128 3 128/512 3 512 by downsampling/

upsampling. For a fair comparison, we implemented our method

with and without GPU and compared our method with all competi-

tors on the same PC with 4 Intel(R) Xeon(TM) CPUs 3.20 GHz, 16

GB RAM. As shown in Table II, we collected the breakdown time

statistics for each method to perform a clear comparison. Note that,

the breakdown time statistics tables are conducted via calculating the

average running time on each step for a single MRI image. For all

four competitors, the total computation time of each method on the

indicated resolution is shown in column “Total,” and the “Others”

refers to the time for memory adjustment as well as data transfer.

Specifically, Hu et al. (2003) relied on the intensity similarity to cull

symmetric pixels and used an exhaustive search algorithm to detect

the symmetry axis. The “Initialization” refers to coarse determination

of the searching region, while “Coarse searching” and “Refine” refer

to locating the fissure line using coarse and fine searching, respec-

tively. Song’s method employed the skull contour to determine the

symmetry axis. The “Contour” in Table II refers to the contour

detection for skull, while “resultant moment gravitational force

(RMGF)” and “Iteration” indicate the estimation of initial moment

gravitational force and the optimization time respectively. Ruppert

et al. (2011) fits the symmetry axis based on matching principle

edges. The “Edge” and “Correlation” in Table II refer to edge detec-

tion using an optimized Sobel operator and the symmetric principle

edges’ correlation. From the results shown in Table II, we can

observe that our method outperforms the other three methods by

detecting the symmetry axes with much less running time. Without

GPU implementation, our method is about two times faster than the

competitors. While relying on the GPU implementation from SIFT

detection to parallel matching and voting, our method turns out to be

two orders of magnitude faster than the previous methods. Note that,

the time of “Clustering” and “Indexing” in our methods are very tiny

because the number of SIFT feature points is small (e.g., only about

1300 SIFT features for 512 3 512 images), which is still indicating

that the steps of clustering and indexing are important and helpful in

exchanging efficiency in turn only with tiny time cost. As shown in

Table II, even when the image resolution is 512 3 512, our method

still achieves a real time performance.

B. Evaluation on In Vivo Datasets. On the other hand, we

also evaluated our proposed method on the in vivo datasets. We col-

lected brain MR images on both normal human and patients, includ-

ing FLAIR, T1-weighted and T2-weighted MRI. As shown in Table

III, a total of 646 clinical images were collected, including 136 slices

from normal subjects and 510 slices from patients with stroke,

infarct, Alzheimer, or tumor. Given the in vivo datasets, we applied

our method and the other three state-of-the-art methods to detect the

symmetry axes. Selected representative slices detected using Hu

et al. (2003), Song et al. (2007), Ruppert et al. (2011) and our method

are shown in Figures 10c, 10d, 10e, and 10f, respectively. Since there

has no ground truths for the in vivo datasets, we invited a human

expert to manually mark the symmetry axes to compare all methods

with the human performance. Figure 10b show the slices marked by

the expert. From the visual comparison on the Figure 10, we can see

that none of Hu et al. (2003), Song et al. (2007), and Ruppert et al.

(2011) can achieve a stable symmetry detection because they rely on

the gray level, skull shape, or internal edges to determine the symme-

try axes, which is sensitive to local image deformation, noise, or

asymmetry. Instead, by using a more stable and distinctive SIFT

Table II. Breakdown time statistics for Hu et al. 2003, Song et al. 2007,

Ruppert et al. 2011, and our method with and without GPU implementation

(in seconds). 2193274mm (300 3 300 DPI)

Method
Hu et al. 2003

Image size Initialization Searching Refine Others Total

1283128 0.821 2.383 2.216 0.001 5.421

2563256 1.023 3.822 3.698 0.001 8.544

5123512 1.313 6.995 5.323 0.001 13.632

Method
Song et al. 2007

Image size Contour RMGF Iteration Others Total

1283128 0.748 0.836 0.965 0.001 6.962

2563256 1.072 1.235 1.833 0.001 4.141

5123512 1.381 2.353 3.227 0.001 6.962

Method
Ruppert et al. 2011

Image size Edge Correlation Iteration Others Total

1283128 0.688 1.493 1.252 0.001 3.434

2563256 0.796 2.632 2.517 0.001 5.946

5123512 0.931 3.752 3.193 0.001 7.877

Our method(without GPU)

Method

Image size SIFT Clustering Indexing

Matching &

Voting Others Total

1283128 0.586 0.324 0.251 0.367 0.001 1.529

2563256 0.793 0.622 0.423 0.556 0.001 2.395

5123512 0.975 0.936 0.628 0.749 0.001 3.289

Our method(with GPU)

Method

Image size SIFT Clustering Indexing

Matching &

Voting Others Total

1283128 0.014 3.7531026 2.8131028 1.8731023 1.1731026 0.016

2563256 0022 3.7531026 2.8131028 2.0331023 1.1731026 0.024

5123512 0.036 3.7531026 2.8231028 2.1831023 1.1831026 0.038

Table III. In-vivo datasets collected for evaluation. 53329mm (300 3 300

DPI)

Dataset Pathology # of Slices

1 Stroke 129

2 Infarct 127

3 Alzheimer 123

4 Tumor 131

5 Normal 136

322 Vol. 23, 314–326 (2013)



feature to determine the symmetry axes, our method generally out-

performs the other methods, especially on the pathological slices that

usually present accentuated asymmetry due to the presence of tumors

or variation of the brain tissues. In the experiments for real cases, we

applied our method to different types of MR images without any

parameter adaption, including FLAIR, T1-weighted and T2-weighted,

as shown in Figure 10f. Our results are more close to the human

expert’s results in Figure 10b, when compared to other three methods

in Figure 10c, 10d, and 10e, respectively.

Besides visual comparison, we further calculated the polar angle

error (in degrees) and radius error (in mm) between detected the

symmetry axis (rd, hd) and the human expert’s result (rh, hh) to quan-

titatively compare our method with the other methods. Table IV

shows the statistics of accuracy for different methods over each data-

set in Table III. From the statistics comparison in Table IV, we can

see that our method generally outperforms the other three competi-

tors in term of both polar angle accuracy and radius accuracy, indi-

cating that using a more distinctive SIFT feature to perform

symmetry detection is effective. To evaluate if our improvement is

statistically significant, we also calculated a P-value using mixed

model analysis to compare our method with each state-of-the-art

method. As shown in Table IV, compared with other methods, our

method has significant improvement in terms of accuracy of both

polar angle and radius at the 5% level (P-value is less than 0.05).

We further compared the running time of our method with the

other three methods. The statistics of running time for different

Figure 10. Comparison of different methods in detecting symmetry axes from in vivo datasets. The top three cases are FLAIR MRI. The fourth
and the bottom cases are T2-weighted and T1-weighted MRI, respectively. (a) Original images. (b) Symmetry axes drawn manually by a human

expert. Symmetry axes detected using Hu et al. (2003), Song et al. (2007), Ruppert et al. (2011), and our method are shown in (c), (d), (e), and (f),
respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Vol. 23, 314–326 (2013) 323



methods on each in vivo dataset is shown in Table V. From the sta-

tistics results, we can observe that our method also outperforms the

other three methods with over two orders of magnitude acceleration.

Due to the GPU implementation of parallel SIFT matching and voting,

our method achieves a real time performance on the in vivo brain

datasets.

IV. DISCUSSION AND CONCLUSION

In this article, we present a novel symmetry axis extraction method

from brain images based on parallel SIFT matching and voting. To

the best of our knowledge, although SIFT features have been well-

validated and heavily used in computer vision, our method is the first

attempt to use this well-known feature to detect symmetry axis from

the brain image. The stable and real-time performance has been dem-

onstrated by the experiments on both synthetic and real datasets.

Compared with the existing methods for symmetry axis detection

from brain images, our method has following advantages: (1) relying

on the distinctive SIFT features to extract symmetry axis improves

its ability in tolerance to image rotation, noise, and asymmetry, while

previous methods mainly used gray level, skull shape, or internal

edges to detect symmetry axis, which may easily suffer from inter-

ference due to intensity variation, noise or asymmetry; (2) integrating

the scale, orientation, and flipped descriptor into a novel metric pro-

vides an intuitive and effective way to measure the symmetric simi-

larity for each pair of SIFT features, especially where SIFT

descriptor is proved to be invariant to scaling, orientation, affine dis-

tortion and intensity changes; (3) clustering and indexing all detected

SIFT features using mean-shift and GPU KD-tree enable us to solve

the dominant symmetry axis via parallel matching and voting; (4)

implementing our method in GPU from SIFT detection to the final

parallel matching and voting provides a fully parallel solution for

symmetry axis detection from brain images that achieves real-time

performance. Experiments on both synthetic and in vivo datasets

have demonstrated the above advantages of our method in term of

both accuracy and running time comparisons.

On the other hand, our method has the following limitations. Sim-

ilar to the previous methods in detecting symmetry axis from a brain

image, our method is also under the assumption that ideal symmetry

axis in the brain image is a straight line. Such an assumption may

violate with the true anatomical structure of human brain, where the

fissure line may sometimes be a curved line even for a normal per-

son. Since there are several situations that only require finding the

reference symmetry axis in the brain image, so our method still pro-

vides an excellent tool for clinical applications.

In conclusion, we present a fast and robust symmetry axis detec-

tion method for brain images. We demonstrated that symmetry axis

extraction from brain images can be more accurate and more effi-

cient by parallel matching and voting the distinctive SIFT features,

which are detected, clustered, and indexed under a novel parallel

framework. Our proposed method is validated on both synthetic and

in vivo datasets, including both normal and pathological cases. Con-

vincing experiment results and comparisons have demonstrated the

effectiveness of the proposed method. Our future work includes

extending our method to extract 3D symmetry plane or perform

curve symmetry axis/surface detection for brain images.
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Table IV. Accuracy statistics of different methods for each in-vivo dataset. 106354mm (300 3 300 DPI)

Dataset

Polar Angle Error (�)

Hu et al. 2003 Song et al. 2007 Ruppert et al. 2011 Our method

Mean SD P-value Mean SD P-value Mean SD P-value Mean SD

1 1.512 0.431 0.0056 1.354 0.338 0.0087 1.192 0.293 0.0126 0.725 0.263

2 1.483 0.425 0.0049 1.338 0.341 0.0084 1.186 0.287 0.0122 0.702 0.258

3 1.505 0.430 0.0048 1.365 0.353 0.0079 1.203 0.299 0.0128 0.731 0.270

4 1.496 0.428 0.0053 1.351 0.330 0.0083 1.175 0.283 0.0125 0.698 0.256

5 1.488 0.423 0.0055 1.329 0.322 0.0086 1.141 0.275 0.0131 0.686 0.251

Dataset

Radius Error (mm)

Hu et al. 2003 Song et al. 2007 Ruppert et al. 2011 Our method

Mean SD P-value Mean SD P-value Mean SD P-value Mean SD

1 1.480 0.398 0.0046 1.346 0.312 0.0093 1.089 0.281 0.0115 0.703 0.259

2 1.477 0.387 0.0042 1.329 0.310 0.0092 1.096 0.279 0.0117 0.692 0.252

3 1.502 0.401 0.0039 1.358 0.319 0.0095 1.103 0.287 0.0113 0.715 0.264
5 1.469 0.391 0.0040 1.320 0.299 0.0096 1.078 0.268 0.0121 0.679 0.245

Each P-value is obtained using mixed model analysis to compare our method with the indicated state-of-the-art method.

Table V. Average running time of different methods for each slice in the

vivo in dataset. 55315mm (300 3 300 DPI)

Average Running Time (s)

Dataset

Hu

et al. 2003

Song

et al. 2007

Rupper

et al. 2011

Our Method

(without GPU)

Our Method

(with GPU)

1 8.484 4.389 5.935 2.186 0.025

2 8.521 4.327 5.876 2.198 0.026

3 8.466 4.635 5.893 2.203 0.025

4 8.513 4.422 5.964 2.219 0.024

5 8.492 4.296 5.765 2.216 0.025
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