
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021 2395

A Blockchain-Based Containerized Edge
Computing Platform for the Internet of Vehicles
Laizhong Cui , Senior Member, IEEE, Ziteng Chen , Shu Yang , Zhongxing Ming , Member, IEEE,

Qi Li , Senior Member, IEEE, Yipeng Zhou, Shiping Chen , Senior Member, IEEE,

and Qinghua Lu , Senior Member, IEEE

Abstract—Edge computing is promising to solve the latency
issue in the Internet of Vehicles (IoV). However, due to decen-
tralization, traditional edge computing suffers in management,
deployment, and security. Containerization relaxes resource
deployment and migration problems, but current container
scheduling policies are inefficient to process complicated tasks
based on directed acyclic graph or DAG structures. In this article,
we design a containerized edge computing platform CUTE, which
provides low-latency computation services for the Internet of
Vehicles. The centralized controller is empowered with resource
management and orchestration, and containers are scheduled
to appropriate edge servers to optimize the computation delay.
CUTE is also integrated with blockchain to improve network
security. We formulate the vehicle task offloading and container
scheduling problems and develop a heuristic container scheduling
algorithm for DAG-based computation tasks submitted by vehi-
cles remotely. We implement and deploy CUTE into the China
Mobile Network, and conduct comprehensive experiments and a
case study. The experiment results show that CUTE can provide
low-latency computation services for vehicular applications and
that the heuristic algorithm outperforms traditional container
scheduling policies.

Index Terms—Blockchain, container scheduling, edge comput-
ing, vehicle task offloading.

Manuscript received March 30, 2020; revised July 15, 2020 and August 20,
2020; accepted September 20, 2020. Date of publication September 29, 2020;
date of current version February 4, 2021. This work was supported in part
by the National Key Research and Development Plan of China under Grant
2018YFB1800302 and Grant 2018YFB1800805; in part by the National
Natural Science Foundation of China under Grant 61772345, Grant 61902258,
Grant 61672358, and Grant 61836005; in part by the Major Fundamental
Research Project in the Science and Technology Plan of Shenzhen under
Grant JCYJ20190808142207420 and Grant GJHZ20190822095416463; and
in part by the Pearl River Young Scholars funding of Shenzhen University.
(Corresponding author: Shu Yang.)

Laizhong Cui is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
cuilz@szu.edu.cn).

Ziteng Chen, Shu Yang, and Zhongxing Ming are with the College
of Computer Science and Software Engineering, Shenzhen University,
Shenzhen 518060, China (e-mail: 1810272054@email.szu.edu.cn;
yang.shu@szu.edu.cn; zming@szu.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100876, China (e-mail: qli01@tsinghua.edu.cn).

Yipeng Zhou is with the Department of Computing, Faculty of Science and
Engineering, Macquarie University, Sydney, NSW 2109, Australia (e-mail:
ypzhou@mq.edu.au).

Shiping Chen and Qinghua Lu are with Data61, CSIRO,
Sydney, NSW 1435, Australia (e-mail: shiping.chen@data61.csiro.au;
qinghua.lu@data61.csiro.au).

Digital Object Identifier 10.1109/JIOT.2020.3027700

I. INTRODUCTION

RECENTLY, the Internet of Things (IoT) has been
widely used in both daily consumer and industrial fields.

Massive IoT devices are allowed to access the network to share
resources, and cooperate as well as communicate with each
other. According to [1], it is estimated there will be 75.44 bil-
lion IoT devices by 2025. As an important branch of IoT, the
Internet of Vehicles (IoV) has become a growing research topic
in recent years [2]. Empowered with computation and com-
munication capabilities, smart vehicles improve driving safety
and entertainment, and many innovative vehicular applications
are developed as well [3], [4]. The massive vehicles will gen-
erate a huge amount of data and computation tasks, but IoV
faces the challenge of how to deal with vehicular big data and
tasks efficiently. Researchers proposed centralized cloud-based
computing platforms to solve the problem, but they suffer from
high network delay caused by long-distance data transmission
from local vehicles to remote cloud centers [5]. Therefore, we
should use other methods to improve the computation latency
in IoV.

Edge computing is feasible to solve the latency issue in
IoV [6], [7]. By deploying distributed servers at the edge
end, vehicles can submit their tasks to the closer edge
servers, which can process the vehicular big data and com-
putation tasks. It avoids the long-distance data transmission
to the remote computing centers such that the propagation
latency can be greatly improved [8]. Nowadays, researchers
have designed many innovative vehicular edge computing
networks [9], [10]. However, it is challenging to manage
the environments and configurations for distributed edge
servers [11]. To satisfy various demands of applications, dif-
ferent software running environments need to be frequently
migrated to edge servers, which is a time-consuming oper-
ation for network managers. Containerization provides the
solution to the resource deployment and migration problems
in edge computing [12], [13]. Source codes combined with
relevant libraries and environments are encapsulated in con-
tainers, which can be easily deployed and migrated in different
edge computing instances. Nevertheless, due to the lack of a
global view, the resource management of conventional edge
computing platforms remains difficult. For example, without
a centralized scheduler, resource orchestration is inefficient,
which will lead to network congestion, huge latency, and poor
throughput [14].

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1991-290X
https://orcid.org/0000-0002-8282-3400
https://orcid.org/0000-0003-2766-6913
https://orcid.org/0000-0001-8424-4325
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0002-4603-0024
https://orcid.org/0000-0002-9466-1672

2396 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

In this article, we propose CUTE, a containerized edge com-
puting platform for the Internet of Vehicles. It provides the
containerized edge computing service for vehicles to offload
their tasks remotely, bypassing the complicated configura-
tion, migration, and deployment. We introduce the centralized
controller to manage the distributed network and container
orchestration. The controller will analyze the edge resource
utilization and task information, then schedule the contain-
ers to appropriate edge servers. We formulate the vehicle task
offloading and the container scheduling problems for CUTE to
determine the task offloading strategy and optimize the com-
putation delay for vehicles. On the one hand, CUTE has the
advantages of edge computing, i.e., low latency, and con-
tainerization, i.e., easy deployment and migration. On the
other hand, the CUTE controller can manage and migrate
the distributed resources, as well as compute the appropriate
container orchestration schemes according to the information.

In actual usage, CUTE faces several challenges. The first
is network security. Distributed network entities can con-
duct misbehaviors by generating large amounts of junk data
to attack the decentralized edge network [15]. With the
development of Bitcoin [16] and Ethereum [17], blockchain
provides a remarkable approach to improve the security for
IoT networks [18], [19]. The reliable consensus mechanisms
ensure that transactions in the blockchain are immutable, trace-
able, and auditable [20]. Therefore, we utilize the blockchain
to improve the security of CUTE. Transactions generated by
distributed parties will be bundled in blocks and appended
to the blockchain. Moreover, network participants will peri-
odically verify the transactions, and reward/punish the hon-
est/dishonest parties. In this case, the security and reliability
of CUTE can be guaranteed.

The second challenge is the container orchestration, as
the container scheduling schemes directly affect the remote
offloading delay for vehicles. Some container orchestrators are
utilized in different computing platforms [21]–[23], but they
employ straightforward container scheduling policies, such as
first-in–first-out (or FIFO). For directed acyclic graph-based or
DAG-based computation tasks, these simple scheduling poli-
cies cannot optimize the computation latency [24]. Therefore,
we devise an efficient container scheduling policy for DAG-
based tasks, which considers the data dependency, data size,
computation overhead, and requirement of each module.
The CUTE controller will run the scheduling algorithms to
optimize the computation delay for vehicles.

We implement CUTE based on IBM Openwhisk and
Ethereum and deploy CUTE into the China Mobile Network.
We conduct a case study for CUTE and evaluate the container
scheduling policy by generating different network conditions.
The experiment results show that CUTE achieves the computa-
tion delay at the level of 100 ms, and the container scheduling
policy outperforms the FIFO policy and distance first policy
by 28.8% and 20.4%, respectively.

The main contributions are summarized as follows.
1) We develop a blockchain-based containerized edge

computing platform CUTE for IoV. The centralized con-
troller can manage the distributed edge servers and con-
tainer orchestration. System transactions are recorded
and verified in the blockchain to improve security.

2) We formulate the vehicle task offloading and container
scheduling problems for CUTE and develop efficient
container scheduling policy to optimize the offloading
computation delay for vehicles.

3) We implement, deploy, and evaluate the performance of
CUTE, and the experimental results show it can provide
low-latency computation services for IoV.

The remainder of this article is organized as follows.
Sections II and III will introduce the related works and
the design of CUTE. Then, the problems and algorithms
of vehicle task offloading and container scheduling will be
discussed in Sections IV and V, respectively. The implemen-
tation, case study, and experiments for CUTE will be presented
in Sections VI and VII. Finally, the conclusions will be given
in Section VIII.

II. RELATED WORK

A. Internet of Vehicles

IoV is a popular research topic in the academic and indus-
trial communities [2]. Smart vehicles are empowered with
computation, storage, and network such that they can commu-
nicate and corporate with others to improve driving safety and
experience. Many applications are developed for smart vehi-
cles, including virtual reality [3], social communication [25],
autonomous driving [4], etc.

Nevertheless, current vehicular networks suffer the com-
putation latency issue. Due to limited computing capabil-
ity, vehicles cannot achieve satisfactory computation latency,
especially when processing those complicated and latency-
sensitive vehicular tasks [10]. Traditional cloud-based vehic-
ular networks allow them to submit tasks to the high-
performance cloud servers. However, the data transmission
delay between vehicles and remote cloud servers is too high,
which cannot meet the real-time demands of latency-sensitive
applications [5]. Therefore, we will improve the vehicular
network delay by utilizing edge computing technology.

B. Edge Computing

Edge computing improves network performances in terms
of computation delay, bandwidth, etc. It has been utilized in
the IoV field, which allows the smart vehicles to submit their
tasks to the “closer” edge servers. Compared with traditional
cloud-based vehicular networks, the computation delay of edge
computing is improved, prompting the latency-sensitive vehic-
ular applications to be integrated with edge computing for
practical use [5]. Researchers also considered the vehicu-
lar task offloading problem in edge computing, in order to
decide the vehicular tasks are offloaded locally or remotely
to edge servers. For example, Du et al. [26] proposed a task
offloading model to achieve the dual-side cost optimization of
vehicles and edge servers. Qiao et al. [10] devised a collab-
orative task offloading model for multiaccess vehicular edge
networks. Zhou et al. [27] optimized the energy consumption
for vehicular edge computing systems.

Nevertheless, software compatibility remains challenging in
edge computing [11]. Various applications are running in the
edge computing platform, but corresponding software pack-
ages do not necessarily exist in the edge instances. Running

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2397

environments are frequently deployed and migrated to different
edge servers, which will lead to an inefficient and complicated
configuration. Meanwhile, due to decentralization, resource
management and scheduling in distributed edge computing
platforms are still difficult. Current edge resource scheduling
relies on self-management of users or simple caching algo-
rithms [28], but they cannot satisfy the delay requirements
of massive IoT users. Additionally, traditional edge comput-
ing networks can be easily attacked by adverse parties due
to the lack of authentication and traceability [15]. Distributed
malicious users can conduct the Sybil attack to destroy the
edge network by generating a huge amount of vehicles with
fake locations and identifications [9]. These issues motivate us
to develop an efficient and secure edge computing platform
for IoV.

C. Containerization and Orchestration

Containerization settles the deployment and management
hardships [29]. It provides multiple independent user-space
instances at the operating system level and supports encap-
sulating the necessary source codes and software libraries.
Containers can be run on top of the common operating system
kernel and be migrated in different computing instances with-
out complicated configuration and setups. In these years,
containerization has been used in edge computing [12], [13],
which is a feasible solution to resource deployment and
management problems.

To orchestrate containers efficiently, researchers proposed
several container orchestrators, such as Mesos [22], Borg [23],
Kubernetes [21], etc. They manage the container amount,
deployment, placement, scheduling policy, as well as the
life cycle and health security, according to user settings and
system conditions in terms of CPU, memory, and band-
width [30]. Additionally, researchers also proposed other
container scheduling schemes. For example, Chen et al. [31]
proposed BIG-C, a preemptive container scheduling scheme to
optimize the container computation latency. Based on Mesos,
López-Huguet et al. [32] improved the Quality of Service
(QoS) of the container orchestration given a specific deadline.
However, current container scheduling policies are not efficient
enough since they adopt straightforward but inefficient con-
tainer scheduling policies such as FIFO [24]. When handling
complicated DAG-based tasks, existing container scheduling
policies cannot process the data dependency between a pair
of modules. Meanwhile, they fail to consider the computation
overhead and data size of tasks, as well as resource utiliza-
tion of edge servers. Thus, we should improve the container
scheduling policy for DAG-based tasks.

D. Blockchain Technology

Blockchain improves network security for edge comput-
ing [7]. It is a distributed database recording the transactions
of all network participants to ensure immutability and con-
sistency. Every node is allowed to verify the validity of the
transactions. Blockchain provides secure mechanisms (e.g.,
Proof of Work and Proof of Stake) for decentralized edge
nodes to achieve consensus without centralized authorities,
which is suitable for distributed edge computing architecture.

Fig. 1. Architecture of CUTE.

Nowadays, several blockchain-based edge computing plat-
forms have been proposed. Sharma et al. [33] employed
blockchain to synchronize and incentivize the distributed man-
agers, each of which is empowered with attack detection and
decentralized edge cluster management. Lei et al. [34] uti-
lized blockchain to secure vehicle transportation in each edge
domain. These works inspire us to build a blockchain-based
edge computing platform to improve network security.

III. CUTE DESIGN

A. Overview

In this article, we propose a CUTE computation platform for
vehicles, which is depicted in Fig. 1. Vehicles in the network
can offload their computation tasks to CUTE remotely or com-
pute the tasks locally. When submitting to CUTE remotely,
the computation tasks and corresponding containers will be
scheduled to the proper edge servers to optimize the remote
offloading computation delay for vehicles. The centralized
controller will collect and analyze the task information gen-
erated by vehicles along with the resource utilization of edge
servers, and compute the task offloading strategies and con-
tainer scheduling schemes. Meanwhile, the transactions of
distributed vehicles and edge servers will be bundled into
blocks and appended to the tail of the chain structure. Network
participants will verify blockchain transactions periodically by
calling smart contracts.

CUTE adopts a five-layer hierarchical structure, which is
divided into: 1) centralized layer: that comprises the controller
for information analysis, system management, and scheduling,
as well as the code repository for container image storage and
retrieval; 2) edge server layer: that involves different edge
computing instances to provide remote computation services;
3) vehicle layer: that consists of distributed vehicles, each of
which will move at a certain speed and submit their tasks to
CUTE or compute locally; 4) contract layer: that includes four
smart contracts for the edge servers and vehicles to upload and

2398 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

audit the blockchain transactions; and 5) blockchain layer: that
records the transactions generated by distributed participants.

In CUTE, the computation processes are listed as follows.
1) Vehicles can apply for CUTE by sending requests to the

interface provided by the centralized controller, which
will determine the task offloading strategy for vehicles.

2) For the remote offloading strategy, the controller will
compute the container scheduling scheme for DAG-
based tasks according to the collected information. The
scheme will be sent to edge servers and vehicles.

3) Target edge servers will download and deploy the con-
tainer images from the code repository and bind with
the vehicles directly.

4) The edge servers will receive the raw data, then return
the computation results to the submitted vehicles.

5) The edge servers will call the upload contract to submit
transactions to the blockchain layer, including the task
information and computation results.

6) Distributed participants will periodically verify and vote
for the transactions by calling voting contract, and
reward/punish them by calling credit contract.

Assume a vehicle will move at a constant and finite speed,
thus the network communication as well as the topology
between vehicles and edge computing servers remain stable
within the small fixed period. After receiving the computa-
tion results from CUTE, the moving vehicles can adjust their
behaviors, e.g., accelerate or decelerate.

We also refer to serverless computing and the concept of
Function as a Service (FaaS) [35]. We provide the unified
interface and code repository in the centralized layer, consist-
ing of basic container images and software packages, such as
object detection, safety driving, virtual reality, etc. Vehicles
can submit the task information, basic functions, and raw data
to CUTE, bypassing the complicated environment and edge
server configuration processes.

Generally, CUTE has the following benefits.
1) Low Computation Delay: By deploying edge servers

at the edge end, vehicles can offload their computa-
tion tasks to the edge network remotely. Compared with
traditional cloud computing, CUTE improves the com-
putation latency such that vehicles can receive the results
rapidly.

2) Global Management: Due to the global view of the con-
troller, the decentralized edge network conditions and
resource deployment can be analyzed and managed by
the controller, making sure the system remains stable
and efficient.

3) Easy Deployment: By utilizing containerization tech-
nology, vehicles can execute computation tasks or
functions without configuration and resource alloca-
tion. Meanwhile, running environments can be rapidly
migrated in different edge computing instances, which
simplifies the resource migration and deployment.

4) Efficient Scheduling Policy: CUTE computes the task
offloading strategies for vehicles. For the remote offload-
ing, CUTE employs an efficient container scheduling
policy to optimize the remote computation delay. The

task offloading and container scheduling problems will
be discussed in Section IV.

5) Reliable Security: Blockchain provides the mechanisms
to improve the security of CUTE. Compared with tra-
ditional mechanisms where the centralized third parties
manage the system security, blockchain eliminates unre-
liable authorities and maintains the overall security in
a distributed manner. Decentralized participants share
the ledger such that transactions cannot be tampered by
misbehaving parties. Meanwhile, blockchain allows the
decentralized peers to verify the transactions by voting,
which improves the creditability and trustworthiness of
CUTE further.

B. Controller

The CUTE controller is the core component of the system,
which is responsible for managing the decentralized edge
servers and vehicles, along with scheduling the computation
resources and containers for vehicles. More specifically, the
controller is in charge of the following.

1) Information Collection: It collects the network
information (e.g., edge network traffic, vehicle loca-
tions, etc.), resource utilization of edge servers, and
DAG-based task information.

2) Network Management: It manages the code repository
and the distributed edge servers, including container
deployment and orchestration, health monitoring, secu-
rity and routing, etc.

3) Strategy Decision: It determines the offloading strat-
egy and computes the container scheduling schemes to
improve the computation delay for vehicles.

Meanwhile, the controller provides the unified interface for
vehicles to access the edge computing resources, and also to
calculate the payment a vehicle needs to pay for the task
computation in CUTE.

C. Edge Servers

Edge servers are computing instances of CUTE, each of
which is responsible for providing remote edge computing
service and processing DAG-based tasks for vehicles. More
specifically, after receiving the container scheduling schemes
from the controller, corresponding edge servers will down-
load and deploy container images from the code repository,
then execute the tasks, and finally return the results to vehi-
cles. The edge servers will bind with the vehicles and build
a channel for direct communication to reduce the propagation
latency. Besides, CUTE is scalable and flexible, as the edge
servers can be dynamically added or removed by the controller
according to demands or health conditions.

D. Decentralized Participants

Blockchain is adopted as the distributed database to record
and verify the transactions of CUTE. The data structure of a
transaction in CUTE is shown in Table I. A transaction consists
of the task hash and relevant data hash, along with the identifi-
cations and signatures of submitted vehicles and edge servers,

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2399

TABLE I
DATA STRUCTURE OF A TRANSACTION

respectively. Meanwhile, the finish time of the task is included
as well. In this article, we develop four smart contracts for the
distributed participants to submit and audit transactions in the
blockchain, including the following.

1) Identity Contract: It provides the basic CRUD functions
to maintain the identifications of distributed edge servers
and vehicles.

2) Upload Contract: It submits the transactions to
the blockchain layer. Before uploading data to the
blockchain, it will verify the identifications of edge
servers and vehicles by calling the identity contract.

3) Voting Contract: It elects the consortium members and
launches audits to vote for transactions. After voting,
it will call the credit contract to reward/punish the
honest/dishonest entities with blockchain tokens.

4) Credit Contract: It maintains the reputation for each
decentralized participant.

We point out that the voting contract is the key blockchain
design in CUTE. More specifically, the processes of voting
contract are as follows. 1) in each round, a random number
will be generated in a distributed manner, which will be used
as the seed for member election. We refer to [36] and adopt the
random number generation algorithm to guarantee randomness
and security; 2) according to the random seed and reputation,
every participant will generate a random number by running
the verifiable random functions; and 3) the backbone proto-
col will sort the random numbers in a nonincreasing order
and select r consortium members to vote for the validity of
transactions.

After completing the computation tasks, the edge servers
will collect necessary information and submit the transactions
to the blockchain by calling the upload contract, which will
verify the identifications by calling the identity contract, then
upload corresponding data to the blockchain. In this case, the
transactions with necessary information can be recorded in the
distributed ledger and be verified by decentralized vehicles and
edge servers.

The decentralized network entities will periodically and ran-
domly verify the transactions. The backbone protocol will
randomly elect the consortium members as we mentioned
above. Within a consortium, the members will vote for trans-
actions by calling the voting contract. If a transaction receives
most votes (e.g., 2/3 majority votes), it will be considered
valid. If the misbehavior of a dishonest entity is detected and
considered invalid, it will be punished with blockchain tokens
by calling the credit contract, and its reputation will decrease
as well.

We note in traditional blockchain platforms, e.g., Bitcoin,
the throughput is quite low, which is only seven transactions
per second [20]. To improve the throughput of CUTE, we

refer to [7] and adopt the Proof-of-Stake (or PoS) consensus
mechanism based on reputation. The high-reputation dis-
tributed nodes are more likely to win the block mining
opportunities and to append the blocks to the blockchain
layer. In each round, CUTE will update the reputation of each
node by calling the credit contract as well. In this case, we
remove the time-consuming mining process of Bitcoin such
that transactions can be appended to the blockchain layer
rapidly, thus improving the throughput of CUTE. Meanwhile,
the reputation-based PoS consensus mechanism can incen-
tivize nodes to behave honestly and contribute their computing
power to the transaction verification. Therefore, the mech-
anism is beneficial to the throughput and security of the
blockchain.

At the same time, Cui et al. [7] proved that our scheme is
resistant to the misbehaviors of distributed attackers. Hence,
with the adoption of the blockchain, the security and trust-
worthiness of CUTE are guaranteed, and network participants
will behave honestly and contribute to the system.

IV. PROBLEM STATEMENT FOR VEHICLE TASK

OFFLOADING AND CONTAINER SCHEDULING

In this section, we will discuss the vehicle task offloading
and container scheduling problems for CUTE. In this arti-
cle, we will consider binary offloading, where vehicles are
allowed to either compute the task locally or submit the task
remotely to CUTE. If remotely, the corresponding contain-
ers will be scheduled to appropriate edge servers, and the
latency performance of CUTE represents the remote offload-
ing computation delay for vehicles. We will formulate the task
offloading and container scheduling problems and optimize the
vehicular offloading delay.

A. Notations

Suppose an edge server list S = {s1, s2, . . . , sm}, where
s ∈ S denotes a single edge server in CUTE. We assume there
are vehicles H = {h1, h2, . . . , hn}, each of which is allowed to
compute the task locally or submit the task to CUTE remotely.
We denote P(s) and P(h) as the computing capability (i.e.,
CPU-cycle frequency) of edge server s and vehicle h, respec-
tively. We also define I(s) and I(h) as the idle capacity of edge
server s and vehicle h in terms of available memory for task
computation. We assume a vehicle will move at a constant
and limited speed, thus the network communication and data
transmission between vehicles and CUTE are stable.

Given a specified duration, we assume there are computa-
tion tasks T = {t1, t2, . . . , tl}, each of which is generated by
a certain vehicle. For a DAG-based task t ∈ T , it is described
as a tuple t = 〈G(t), ϕ(t), σ (t), μ(t)〉, where ϕ(t) denotes

2400 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

the required CPU cycles to finish the task, σ(t) denotes the
data size, and μ(t) denotes the computation requirement, i.e.,
required running memory. G(t) = (V(t), E(t)) represents the
DAG structure of task t, where V(t) = {v1, v2, . . . , vp} rep-
resents the modules of t, and E(t) = {e1, e2, . . . , eq} denotes
the data dependency of a pair of modules. For example, if
modules vi and vj have data dependency, there exists an edge
ei,j ∈ E(t) pointing from module vi to vj, and vi must be fin-
ished before vj. For a module v ∈ V(t), we define prev(v) as
the set of parent nodes, and succ(v) as the set of child nodes.
prev(v) must be executed before module v, and succ(v) must
be executed after module v.

For task t ∈ T , if it is offloaded remotely to CUTE,
modules will be encapsulated into containers and then sched-
uled to the appropriate edge servers. We assume C(t) =
{c1, c2, . . . , ck} as the containers encapsulating the modules
V(t) = {v1, v2, . . . , vp}. A container can encapsulate single
or multiple modules simultaneously, and containers are also
organized in DAG. For simplicity, we assume there is no data
dependency between modules encapsulated in the same con-
tainer. The values of required CPU cycles ϕ(c), data size σ(c),
and requirement μ(c) of container c are the sum of encapsu-
lated modules, and intercontainer data dependency also relies
on the encapsulated modules [37].

Meanwhile, for each edge server si ∈ S, there is a container
queue Qi storing the containers queuing to be executed in si.
We assume each edge server can handle only one container
simultaneously. On the one hand, containers queuing in an
edge server must be executed in a FIFO order. On the other
hand, the head containers in different queues are required to be
executed by the data dependency. If there is a data dependency
between head containers in different queues, they cannot be
executed in parallel.

B. Problem Definition

For the binary offloading model, vehicles can compute the
tasks locally or submit them to CUTE remotely. We denote
the local offloading delay of task t ∈ T as L(t), and the remote
offloading delay as R(t). We will discuss these two kinds of
offloading delays as follows.

1) Local Offloading Delay: For the local offloading strat-
egy, tasks generated by vehicles are executed locally without
containerized computation. Generally, the local offloading
delay L(t) relies on the required CPU-cycles of task t and the
computing capability of vehicle h. Note that vehicles will com-
pute the DAG-based tasks in a specific topological-sort order,
and there is no data transmission overhead in local offloading.
Therefore, for t ∈ T , if the idle capacity of vehicle h is no
less than the memory requirement, i.e., μ(t) ≤ I(h), the local
offloading delay of task t generated by vehicle h is:

L(t) = ϕ(t)

P(h)
. (1)

2) Remote Offloading Delay: When tasks are submitted to
CUTE remotely, the modules will be encapsulated in con-
tainers. Generally, the remote offloading delay consists of:
1) computation overhead: the container execution period in
edge servers, which is denoted as dcomp and 2) transmission

overhead: raw data transmission period from vehicles to edge
servers via the Internet, which is denoted as dcomm. We will
discuss these two kinds of overheads, respectively.

Basically, for a DAG-based task, the computation overhead
of remote offloading mainly relies on the container execution
and queuing duration, as well as intermediate data communica-
tion overhead caused by data dependency. First, let us consider
the intercontainer communication overhead of intermediate
data. Suppose two containers, say ca and cb, are allocated
to edge servers, say si and sj, and there exists communication
overhead ω(ca, cb) between ca and cb. According to [38], on
the one hand, if they are scheduled to the same edge servers,
i.e., si = sj, the communication overhead ω(ca, cb) = 0. On
the other hand, if they are allocated to different edge servers,
i.e., si �= sj, the communication overhead ω(ca, cb) relies on
the data transfer size between the corresponding containers.

We define ρ(c, s) as the estimated start time of container
c being executed in edge server s, and define FT(c) as the
actual finish time of container c. ρ(c, s) can be computed by

ρ(c, s) = max

(
A(s), max

cm∈prev(c)
(FT(cm) + ω(cm, c))

)
(2)

where A(s) is the available time of edge server s to execute the
container c, i.e., the container queue of s is empty. Intuitively,
the start time of c should satisfy two conditions: 1) edge server
s that executes c is available and 2) intermediate data from
parent containers have been transferred.

We define f (c, s) as the container allocating state function

f (c, s) =
{

1, c is allocated to s
0, otherwise.

(3)

We call M(si) as the finish time of edge server si finishing
executing the containers in queue Qi. It equals the finish time
of the last container queuing in si

M(si) = max
c∈C(t)

{(
ρ(c, si) + ϕ(c)

P(si)

)
f (c, si)

}
. (4)

Therefore, the overall computation overhead dcomp of task
t is the maximum finish time of all edge servers, which can
be computed by

dcomp = max
si∈S

M(si). (5)

When offloading tasks to CUTE remotely, raw data must be
transferred from vehicles to edge servers via the Internet. In
this article, we only consider the communication delay of raw
data transferred from the vehicle to the entry edge server that
starts the computation process. We ignore the communication
delay of results from the exit edge server to the vehicle, as
the output data size is significantly smaller than the input raw
data [39].

According to the Shannon–Hartley formula, the transmis-
sion rate r(h, s) from vehicle h to edge server s is

r(h, s) = B log2

(
1 + θ · δ(h)

ξ

)
(6)

where B and ξ mean the system bandwidth and noise power
at the edge server, θ means the power gain, and δ(h) means

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2401

TABLE II
NOTATION LIST 1

TABLE III
NOTATION LIST 2

the transmission power of vehicle h. Thus, the raw data
transmission overhead dcomm of task t can be computed by

dcomm = σ(t)

r(h, s)
. (7)

Consequently, the overall remote offloading delay R(t) of
task t is

R(t) = dcomp + dcomm. (8)

C. Problem Formulation

We denote αt and βt as the offloading strategy state of t

αt =
{

1, task t is computed locally
0, otherwise

(9)

βt =
{

1, task t is computed remotely
0, otherwise

(10)

where αt + βt = 1.
In this article, our objective is to minimize the maximum

task computation delay, along with satisfying the capacity

demand of edge servers and vehicles. Formally

min max
t∈T

(αt × L(t) + βt × R(t)) (11)

s.t.

⎧⎨
⎩

I(h) ≤ μ(t), αt = 1∑
c∈C(t),s∈S μ(c)f (c, s) ≤ I(s), βt = 1

αt + βt = 1, αt, βt ∈ {0, 1}.
(12)

The notations are listed in Tables II and III.

V. VEHICLE TASK OFFLOADING AND CONTAINER

SCHEDULING ALGORITHMS

In this section, we will study the container scheduling algo-
rithm to optimize the remote offloading delay of CUTE and
devise the task offloading strategy to minimize the overall
computation delay for vehicles.

A. Optimal Container Scheduling

For the remote offloading strategy, we have the optimal con-
tainer scheduling scheme, where containers are scheduled to
the most appropriate edge servers, and the remote offloading
delay is minimized. The optimal algorithm needs to consider
all possible container scheduling schemes and selects the one
with the lowest computation delay. We prove that the optimal
container scheduling problem is NP-Hard.

Theorem 1: The optimal container scheduling problem is
NP-hard.

Proof: It is easy to verify a given container schedul-
ing scheme in polynomial time, thus the optimal container
scheduling problem is in NP class. We prove the theorem
by reduction from the maximum subset sum problem, which
is NP-complete [40]. The maximum subset sum problem is,
given a finite set U, for each u ∈ U, a value z(u) ∈ Z+,
a positive integer F ∈ Z+, find a subset U′ ⊆ U such that∑

u∈U′ z(u) ≤ F and
∑

u∈U′ z(u) is maximized.
Suppose two edge servers si and sj, and the computing capa-

bility P(si) is very large while P(sj) is very small. Therefore,
to achieve a lower computation delay and reduce the com-
munication overhead, the more containers scheduled to si, the
better the latency performance will be.

Let U represent the containers to be scheduled, and
{μ(c)|c ∈ C} is equal with {z(u)|u ∈ U}. Due to the
huge computation deviation, si is the only edge server whose
idle resource capacity I(si) = F, and the optimal schedul-
ing scheme is to choose a set of task C′ ⊆ C such that∑

c∈C′ μ(c) ≤ I(si) and
∑

c∈C′ μ(c) is maximized. Thus, the
optimal container scheduling problem is equivalent to finding
the maximum subset sum.

The optimal container scheduling scheme will be finished in
nonpolynomial time, which cannot be used practically. When
the numbers of containers and edge servers are large, the
computation time for the optimal scheduling algorithm will
explode exponentially. Therefore, to schedule the containers in
polynomial time as well as achieve good latency performance
at the same time, we refer to [41] and develop a heuristic
container scheduling algorithm for DAG-based tasks.

2402 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

B. Task Offloading Strategy With Heuristic Container
Scheduling Algorithm

To reduce the time complexity of container scheduling in
CUTE, for the remote offloading strategy, we develop a heuris-
tic container scheduling algorithm for DAG-based computation
tasks. We design a task offloading strategy based on a heuristic
container scheduling algorithm, which will compare the local
and remote offloading computation delays, and competitively
select the offloading strategy for better latency performance.

1) Overview: The philosophies of task offloading strategy
are: 1) computing the remote offloading delay and scheduling
the containers to appropriate edge servers by the heuristic con-
tainer scheduling algorithm and 2) selecting the task offloading
strategy competitively to minimize the computation delay for
each vehicle.

Generally, the task offloading strategy consists of two
processes.

1) Offloading Strategy Selection: For each task generated
by a specific vehicle, CUTE will evaluate the local
offloading delay versus the remote offloading delay,
respectively. Then, CUTE will competitively select the
offloading strategy with lower latency.

2) Container Scheduling Computation: For the remote
offloading strategy, the algorithm will compute the
heuristic container scheduling scheme and remote
offloading delay. Finally, it will send the remote compu-
tation latency to the offloading strategy selection process
for decision.

In the container scheduling computation process, two steps
are involved. 1) module prioritization: modules are prioritized
according to data dependency of DAG structure and their
computation information. Then, they are listed by their pri-
orities and encapsulated in a container list in nonincreasing
order; 2) container list scheduling: Containers in the list will
be greedily scheduled to minimize the maximum finish time,
according to the task and edge server information.

Before encapsulating in containers, we need to prioritize the
modules of a task. We compute the priority pri(v) of module
v ∈ V(t) by

pri(v) = MET(v) + max
vm∈succ(v)

pri(vm) (13)

where MET(v) is the minimal execution time of module
v and MET(v) = mins∈S([ϕ(v)]/[P(s)]). Intuitively, mod-
ules that are closer to the entry and with lower required
CPU-cycles will be ranked higher. Note that the entry and
exit modules have the highest and lowest priorities, respec-
tively. Consequently, modules can be ranked iteratively and
encapsulated in nonincreasing order.

2) Details: We develop Algorithms 1 and 2, where
Algorithm 1 represents the main function of the offloading
strategy selection and Algorithm 2, also named as HCS, repre-
sents the subfunction for remote offloading delay computation
for CUTE. From lines 3 to 6, Algorithm 1 will compute
the local offloading delay. It will check whether the require-
ment of t is no more than the idle capacity of h. If satisfied,
Algorithm 1 will compute the local delay L(t) by (1).

Algorithm 1: Offloading (T, S, H)

1 begin
2 for ∀t ∈ T do
3 if μ(t) ≤ I(h) then
4 Compute the local offloading delay L(t);

5 else
6 Let L(t) = ∞;

7 R(t) = HCS(t, S, h);
8 if L(t) ≤ R(t) then
9 Let t compute locally.

10 else
11 Let t compute remotely.

12 Update corresponding information for the next
iteration.

In line 7, Algorithm 2 will be called for remote offload-
ing computation. First, it will prioritize the modules of t
by (13) and encapsulate modules in container list C(t) =
{c1, c2, . . . , ck}. From lines 5 to 11, for each container c,
it will consider each edge server. In line 4, we initialize an
array TFA, where TFA[i] implies the finish time when assign-
ing c to si, and TFA[i] = ρ(c, si) + ([ϕ(c)]/[P(si)]). Then, in
line 9, if the requirement is satisfied, HCS will compute the
finish time TFA[j]. In line 11, HCS will evaluate the commu-
nication delay dcomm from vehicle h to the entry edge server
by (7), and let TFA[j] = TFA[j] + dcomm. In line 12, HCS
will allocate ci to the edge server with the lowest delay, and
let FT(ci) = min TFA. After considering the container list,
HCS will return the maximum finish time meaning the remote
offloading delay. Finally, Algorithm 1 will compare L(t) and
R(t), then select the offloading strategy with lower delay, and
finally update the corresponding information.

Theorem 2: The heuristic container scheduling algorithm
has a competitive ratio of (2 − [1/m]).

Proof: We call HCS and OPT as the latency performance
of heuristic and optimal container scheduling schemes, respec-
tively. First, the optimal latency performance must be no less
than the maximum finish time of containers and the average
finish time of edge servers

OPT ≥ max
c∈C(t)

FT(c) (14)

OPT ≥ 1

m

∑
c∈C(t)

FT(c). (15)

Second, we suppose ci(ci ∈ C(t)) as the final container
allocated to server sj. Before allocating ci to sj, the finish time
of sj is not larger than the average finish time of other edge
servers

M
(
sj
) − FT(ci) ≤ 1

m

⎛
⎝ ∑

c∈C(t)

FT(c) − FT(ci)

⎞
⎠. (16)

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2403

Algorithm 2: HCS (t, S, h)

1 begin
2 Prioritize the modules in nonincreasing order, and

encapsulate modules to container list
C(t) = {c1, c2, · · · ck};

3 for i = 1 to k do
4 Initialize TFA;
5 for j = 1 to m do
6 if I(sj) ≤ μ(ci) then
7 Let TFA[j] = ∞.

8 else
9 Compute the finish time TFA[j] when

assigning ci to sj.
10 if i = 1 then
11 Compute the communication overhead

dcomm from h to sj, and let
TFA[j] = TFA[j] + dcomm.

12 Allocate ci to the edge server with lowest finish
time, and let FT(ci) = min TFA.

13 Update the idle resource of edge servers and
vehicles.

14 return max
c∈C(t)

FT(c)

Hence, by rearranging (14)–(16), the latency performance
of heuristic can be

HCS = M
(
sj
)

≤ 1

m

⎛
⎝ ∑

c∈C(t)

FT(c) − FT(ci)

⎞
⎠ + FT(ci)

≤ 1

m

∑
c∈C(t)

FT(c) +
(

1 − 1

m
FT(ci)

)

≤
(

2 − 1

m

)
OPT. (17)

The CUTE controller will run Algorithms 1 and 2 to provide
the task offloading strategy for vehicles. If offloading remotely
to CUTE, vehicles can enjoy the containerized edge computing
services with low computation latency.

VI. IMPLEMENTATION AND CASE STUDY FOR CUTE

In this section, we present the implementation of CUTE and
conduct a case study based on object detection.

A. Implementation

We refer to [7] and implement the prototype of CUTE, which
is shown in Fig. 2. CUTE is organized in a master-slave structure,
where the centralized controller is allowed to collect and manage
the distributed edge servers and vehicles. CUTE uses and
improves IBM Openwhisk as the serverless computing platform,
and Kubernetes as the container orchestration and management
tool. We utilize Prometheus for container monitoring and log

Fig. 2. CUTE implementation.

collection, and Grafana for data visualization. We also adopt
RabbitMQ as the message broker to transfer messages, and
Nginx as the Web server software to manage the load balancing,
security, and traffic monitoring of CUTE. We employ Ethereum
to record and verify the blockchain transactions. We develop
the smart contracts in Solidity language and deploy them on
Ethereum. We adopt and modify the PoS consensus mechanism
to strengthen the throughput and security.

By sending URL requests to the interface provided by
the controller, vehicles can access the edge resources rapidly
and enjoy the high-performance containerized edge comput-
ing service without complicated deployment and management.
Moreover, by utilizing Ethereum for the blockchain layer,
transactions in CUTE are consistent, immutable, and verifiable
such that the system security can be guaranteed.

B. Case Study

1) System Setup: We conduct a case study based on object
detection, which is an important and widely used application
in the IoV world. More specifically, distributed clients will
submit videos or images consisting of various vehicle objects
by sending URL requests to the interface. The controller will
analyze the location and task information of clients and com-
pute the container orchestration scheme. Target edge servers
will download relevant Docker images from the code reposi-
tory, then deploy the containers, and finally return the results
to clients.

We deploy CUTE in the China Mobile Network, where the
controller is placed in Hangzhou, China, along with two edge
computing clusters in Hangzhou, China, and Shenzhen, China,
respectively (as shown in Fig. 3). The clients are distributed in
different locations and will submit a total of 60 object detec-
tion tasks. We will evaluate the latency performance of object
detection, which is the remote offloading computation delay
for vehicles. The configurations of the CUTE controller are
listed in Table IV.

2) Results: The computation latency performance of dif-
ferent edge computing clusters is presented in Fig. 4, where
the x-axis represents the index of tasks and the y-axis repre-
sents the latency performance. We observe that the Shenzhen
edge cluster achieves 108.47 ms averagely, outperforming the
Hangzhou edge cluster by 61.9%. This is because the dis-
tance from clients to the Shenzhen edge cluster is smaller

2404 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

TABLE IV
CUTE CONTROLLER CONFIGURATION

Fig. 3. Network topology.

Fig. 4. Computation delay of tasks.

than the Hangzhou edge cluster, thus the data transmission
latency dominates the latency performance. In this case, clients
will offload their object detection tasks to the Shenzhen edge
cluster remotely. The results show that clients can enjoy the
containerized edge computing service at the level of 100 ms
without complicated configuration and deployment.

Moreover, CPU utilization of the controller is shown in
Fig. 5, where the x-axis and y-axis represent the index of
tasks and utilization value, respectively. We see that the aver-
age controller’s CPU utilization is 8.42%, and stays stable at a
relatively low level. This means the CUTE controller can han-
dle and schedule a large number of tasks, which is scalable
and flexible.

VII. PERFORMANCE EVALUATION

A. Experimental Setups

We will evaluate the computation latency of local offloading
and remote offloading strategies for vehicles. For comparison,

Fig. 5. CPU utilization of the controller.

we use the maximum delay ratio to measure the delay
performance of different offloading strategies

ratio = max
t∈T

R(t)

L(t)
(18)

where ratio < 1 means the remote offloading strategy is better
than the local offloading strategy in this situation, and vice
versa.

For remote offloading strategy, put simply, we let each mod-
ule be encapsulated in a single container. We will evaluate
the container scheduling algorithm HCS, and compare it with
traditional scheduling schemes. We develop the FIFO algo-
rithm used in current container orchestrators, where containers
are scheduled to edge servers in FIFO order. Additionally, we
develop the distance first algorithm (or DF), a popular resource
scheduling policy in edge computing, where resources are
scheduled to the “closest” edge servers to minimize the data
transmission distance [42]. If the “closest” edge server is over-
loaded and unable to satisfy the requirement demand, DF will
proceed to search the second “closest” edge server, and so
on. For remote offloading, we will evaluate and compare the
performances of these three container scheduling policies.

We will generate different network configurations by chang-
ing the values of parameters, including the numbers of edge
servers, vehicles, and containers per task, respectively. We will
also adjust the overall data sizes of a task, as well as the com-
puting capability of edge servers and vehicles. For simplicity,
the required CPU-cycles of a task will grow linearly with
the overall data size. Meanwhile, we will generate different
vehicle distributions and traffic situations. More specifically,
suppose the arrival rate of vehicles follows the Poisson pro-
cess with parameter λ [43]. We will generate normal and heavy
traffics by adjusting the value of λ, where the value of λ of
heavy traffic is three times as the normal traffic. The default
parameters are listed in Table V.

B. Experiment Results

1) Data Size: Figs. 6 and 7 show the relationship between
the maximum delay ratio and data size. Generally, we can
observe that as the data size grows, the maximum delay ratios
of three algorithms will increase first, then decrease or sta-
bilize. For example, in Fig. 6, when the data size grows
from 8 to 128 MB, the ratio of HCS rises by 5.03%, and

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2405

TABLE V
DEFAULT VALUE OF PARAMETERS

Fig. 6. Maximum delay ratio with different data sizes when λ = 500.

Fig. 7. Maximum delay ratio with different data sizes when λ = 1500.

Fig. 8. Maximum delay ratio with different module numbers when λ = 500.

when the data size increases from 256 MB to 2 GB, the ratio
grows by 11.4%. This is because, when the data size is rel-
atively small, vehicles can still handle the simple tasks, and
the communication delay dominates the latency performance
of the remote offloading strategy. However, when the data size
becomes large, the vehicles with limited capacity fail to han-
dle the tasks efficiently, and the computation delay dominates
the local offloading strategy. Similar trends can be observed in
the heavy traffic situation in Fig. 7 as well. Moreover, when
traffic flow becomes heavy, the performance of FIFO becomes
unstable with larger fluctuations, and DF performs much worse
with larger data size. For example, when the data size reaches
2 GB, the HCS outperforms DF by 43.3%. This is because
the “closest” edge servers will be easily overloaded when data

Fig. 9. Maximum delay ratio with different module numbers when λ = 1500.

Fig. 10. Maximum delay ratio with different server numbers when λ = 500.

Fig. 11. Maximum delay ratio with different server numbers when λ = 1500.

size is large in heavy distribution. FIFO is unaware of network
traffic and resource utilization, which will lead to inefficient
container scheduling performance. The results also show that
HCS works well in big data scenarios with different vehicle
distributions.

2) Number of Containers: Figs. 8 and 9 present the rela-
tionship between the maximum delay ratio and the number
of containers. As the number of containers rises, the remote
offloading strategy is better than the local strategy since the
computing capability of edge servers is much better than vehi-
cles, and HCS always shows better performance than FIFO and
DF. For example, in Fig. 8, when the number of containers
increases from 10 to 20, HCS outperforms FIFO from 35.1%
to 38.1%, and outperforms DF from 28.4% to 37.6%, prov-
ing that HCS works better with more containers. Meanwhile,
when the traffic flow increases (Fig. 9), the performance gap
between HCS and DF gets larger, where HCS performs 49.3%
better than DF when the number of containers reaches 20. The
reason is that the capacitated and “closer” edge servers are
easily overloaded with more containers, meaning that DF can-
not process complicated tasks with heavy traffics efficiently.
Conversely, HCS can collect and analyze the resource utiliza-
tion of edge servers, and compute the appropriate container
scheduling scheme, which works well in different network
situations.

3) Number of Edge Servers: We investigate the relationship
between the maximum delay ratio and the number of edge
servers, as depicted in Figs. 10 and 11. As the number of
edge servers rises, the maximum ratios of the three algorithms

2406 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

Fig. 12. Maximum delay ratio with different vehicle numbers when λ = 500.

Fig. 13. Maximum delay ratio with different vehicle numbers
when λ = 1500.

decrease first, then stabilize, especially for HCS. For example,
in Fig. 10, when edge servers rise from 2 to 4, the delay
performance of HCS improves by 30.2%, and remains at a
low ratio as edge servers grow to 9. It means when the edge
servers are insufficient, the delay performance of HCS deeply
relies on the finite edge servers and becomes stable when edge
servers are enough. Moreover, in heavy distribution (Fig. 11),
the decreasing trends of FIFO and HCS are similar in general,
while DF shows a stepped decline. For example, the delay
performance of DF improves by 6.68% when edge servers
grow from 4 to 5, and improves by 7.92% as they grow from
7 to 8, and remains stable at other times. The reason is that
in heavy distribution, if the “latest” edge server is deployed
closely, vehicles can submit their tasks with lower distance
and the delay will decrease dramatically. But if it is deployed
far away, vehicles will not submit tasks to the “far-away” edge
server, which fails to contribute to the remote offloading delay.

4) Number of Vehicles: Figs. 12 and 13 present the rela-
tionship between the maximum delay ratio and the number of
vehicles. In Fig. 12, as the vehicle number grows, the maxi-
mum delay ratios of FIFO and DF show the increasing trends
while the ratio of HCS remains stable. For example, when
the number of vehicles is only 10, HCS outperforms DF by
17.9% and FIFO by 24.7%, respectively. When the number
of vehicles reaches 90, HCS outperforms DF and FIFO by
33.1% and 29.8%, respectively, proving that HCS works well
with more vehicles. In Fig. 13, when the traffic is heavy, the
delay of FIFO and HCS is similar to the normal traffic, while
DF decreases a lot with vehicles growing. For example, when
vehicles are only 10, HCS performs worse than DF, but when
vehicles reach 90, HCS performs 35.6% better than DF. In
heavy traffic, more vehicles access the closest edge server, but
it can be overloaded with DF easily. Consequently, the con-
tainers need to be allocated to the far-away edge servers. As
for HCS, it can collect the overall information and compute the
appropriate allocation schemes so that the delay performance
of HCS remains stable in heavy traffic.

Fig. 14. Relationship between maximum delay ratio and edge server
computing capability.

Fig. 15. Relationship between maximum delay ratio and vehicle computing
capability.

5) Computing Capability of Edge Server and Vehicle:
We also study the effects of computing capabilities on the
computation delay, which are depicted in Figs. 14 and 15.
In Fig. 14, when the computing capability of edge servers
is only 4 GHz, the ratio gap between the three algorithms
reaches the largest, where HCS outperforms FIFO and DF by
28.2% and 21.5%, respectively. It means HCS can achieve
good performance even with limited computing capabilities.
The ratio gap is getting smaller as the capability increases
since the capability dominates the delay rather than algorithm
superiority, but HCS still performs better than the other two.
On the other hand, in Fig. 15, as the computing capability
of vehicles grows, the maximum delay ratios increase lin-
early, meaning that the local offloading strategy is better with
high-performance vehicles. For example, when the computing
capability of vehicles is 3.5 GHz, the local offloading delay is
smaller than the remote strategy. The results show that if com-
puting capability is large enough, vehicles will offload their
tasks locally. In the heavy traffic situations, the trends of these
two figures do not change, meaning that the remote offload-
ing delay with different computing capabilities is insensitive
to vehicle topologies.

VIII. CONCLUSION

In this article, we proposed CUTE, a containerized
and blockchain-based edge computing platform, to provide

CUI et al.: BLOCKCHAIN-BASED CONTAINERIZED EDGE COMPUTING PLATFORM FOR THE INTERNET OF VEHICLES 2407

low-latency computation service for IoV users. We intro-
duced a centralized controller to collect system information
and manage the distributed edge servers. Clients can sub-
mit computation tasks by accessing the unified interface.
Corresponding containers are scheduled to appropriate edge
servers to minimize the computation delay. CUTE also inte-
grates with blockchain to improve the security. We formulated
vehicle task offloading and container scheduling problems for
CUTE and developed a heuristic container scheduling algo-
rithm for DAG-based tasks. We conducted comprehensive
experiments and a case study to evaluate the latency perfor-
mances of CUTE. The results showed that CUTE is efficient
for latency-sensitive vehicular applications, and our container
scheduling policy outperforms the traditional algorithms.

REFERENCES

[1] J. Lee, D. Kim, H. Lee, Y. Lee, and J. H. Cheon, “Rlizard: Post-quantum
key encapsulation mechanism for IoT devices,” IEEE Access, vol. 7,
pp. 2080–2091, 2019.

[2] B. Yin, Y. Wu, T. Hu, J. Dong, and Z. Jiang, “An efficient collaboration
and incentive mechanism for Internet of vehicles (IoV) with secured
information exchange based on blockchains,” IEEE Internet Things J.,
vol. 7, no. 3, pp. 1582–1593, Mar. 2020.

[3] L. Morra, F. Lamberti, F. G. Pratticó, S. L. Rosa, and P. Montuschi,
“Building trust in autonomous vehicles: Role of virtual reality driving
simulators in HMI design,” IEEE Trans. Veh. Technol., vol. 68, no. 10,
pp. 9438–9450, Oct. 2019.

[4] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Internet
Things J., vol. 5, no. 2, pp. 829–846, Apr. 2018.

[5] K. Xue, J. Hong, Y. Ma, D. S. L. Wei, P. Hong, and N. Yu, “Fog-
aided verifiable privacy preserving access control for latency-sensitive
data sharing in vehicular cloud computing,” IEEE Netw., vol. 32, no. 3,
pp. 7–13, May/Jun. 2018.

[6] L. Cui et al., “Joint optimization of energy consumption and latency in
mobile edge computing for Internet of things,” IEEE Internet Things J.,
vol. 6, no. 3, pp. 4791–4803, Jun. 2019.

[7] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A decentral-
ized and trusted edge computing platform for Internet of things,” IEEE
Internet Things J., vol. 7, no. 5, pp. 3910–3922, May 2020.

[8] Z. Zhao, G. Min, W. Gao, Y. Wu, H. Duan, and Q. Ni, “Deploying edge
computing nodes for large-scale IoT: A diversity aware approach,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3606–3614, Oct. 2018.

[9] S. A. Soleymani et al., “A secure trust model based on fuzzy logic in
vehicular ad hoc networks with fog computing,” IEEE Access, vol. 5,
pp. 15619–15629, 2017.

[10] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task offloading
in vehicular edge multi-access networks,” IEEE Commun. Mag., vol. 56,
no. 8, pp. 48–54, Aug. 2018.

[11] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[12] B. I. Ismail et al., “Evaluation of docker as edge computing platform,”
in Proc. IEEE Conf. Open Syst., Aug. 2015, pp. 130–135.

[13] G. A. Carella, M. Pauls, T. Magedanz, M. Cilloni, P. Bellavista, and
L. Foschini, “Prototyping NFV-based multi-access edge computing in
5G ready networks with open baton,” in Proc. IEEE Conf. Netw. Softw.,
Jul. 2017, pp. 1–4.

[14] W. Yu et al., “A survey on the edge computing for the Internet of things,”
IEEE Access, vol. 6, pp. 6900–6919, 2018.

[15] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and chal-
lenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1508–1532,
2nd Quart., 2019.

[16] S. Nakamoto et al., Bitcoin: A Peer-to-Peer Electronic Cash System,
2008.

[17] G. Wood et al., Ethereum: A Secure Decentralised Generalised
Transaction Ledger (Ethereum Project Yellow Paper), vol. 151, 2014,
pp. 1–32.

[18] L. Cheng et al., “SCTSC: A semicentralized traffic signal control mode
with attribute-based blockchain in IoVs,” IEEE Trans. Comput. Soc.
Syst., vol. 6, no. 6, pp. 1373–1385, Dec. 2019.

[19] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Performance
optimization for blockchain-enabled Industrial Internet of things (IIoT)
systems: A deep reinforcement learning approach,” IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3559–3570, Jun. 2019.

[20] L. Cui, S. Yang, Z. Chen, Y. Pan, M. Xu, and K. Xu, “An efficient
and compacted DAG-based blockchain protocol for industrial Internet
of things,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4134–4145,
Jun. 2020.

[21] D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[22] B. Hindman et al., “Mesos: A platform for fine-grained resource shar-
ing in the data center,” in Proc. 8th USENIX Conf. Netw. Syst. Design
Implementation, 2011, pp. 295–308.

[23] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with borg,” in
Proc. 10th Eur. Conf. Comput. Syst., 2015, pp. 18:1–18:17.

[24] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. 13th
EuroSys Conf., 2018, pp. 3:1–3:14.

[25] Y. Zhang, F. Tian, B. Song, and X. Du, “Social vehicle swarms: A novel
perspective on socially aware vehicular communication architecture,”
IEEE Wireless Commun., vol. 23, no. 4, pp. 82–89, Aug. 2016.

[26] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offloading
and resource allocation in vehicular networks based on dual-side cost
minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1079–1092,
Feb. 2019.

[27] Z. Zhou, P. Liu, Z. Chang, C. Xu, and Y. Zhang, “Energy-efficient
workload offloading and power control in vehicular edge computing,”
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, Apr. 2018,
pp. 191–196.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[29] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging trends,
techniques and open issues of containerization: A review,” IEEE Access,
vol. 7, pp. 152443–152472, 2019.

[30] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers
and virtual machines at scale: A comparative study,” in Proc. 17th Int.
Middleware Conf., 2016, pp. 1–13.

[31] W. Chen, X. Zhou, and J. Rao, “Preemptive and low latency datacenter
scheduling via lightweight containers,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 12, pp. 2749–2762, Dec. 2020.

[32] S. López-Huguet et al., “A self-managed mesos cluster for data ana-
lytics with QoS guarantees,” Future Gener. Comput. Syst., vol. 96,
pp. 449–461, Jul. 2019.

[33] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for IoT,” IEEE Access,
vol. 6, pp. 115–124, 2018.

[34] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah, and Z. Sun,
“Blockchain-based dynamic key management for heterogeneous intel-
ligent transportation systems,” IEEE Internet Things J., vol. 4, no. 6,
pp. 1832–1843, Dec. 2017.

[35] E. Jonas et al., “Cloud programming simplified: A Berkeley
view on serverless computing,” 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383.

[36] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Oper. Syst. Principles, 2017, pp. 51–68.

[37] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,” J. Grid
Comput., vol. 16, no. 1, pp. 113–135, 2018.

[38] L. Lv et al., “Communication-aware container placement and reassign-
ment in large-scale Internet data centers,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 540–555, Mar. 2019.

[39] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[40] T. Sasamoto, T. Toyoizumi, and H. Nishimori, “Statistical mechanics of
an NP-complete problem: Subset sum,” J. Phys. A, Math. Gen., vol. 34,
no. 44, pp. 9555–9567, Oct. 2001.

[41] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

2408 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

[42] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Commun. Mag.,
vol. 55, no. 3, pp. 38–43, Mar. 2017.

[43] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, “Offloading mobile
data traffic for QoS-aware service provision in vehicular cyber-physical
systems,” Future Gener. Comput. Syst., vol. 61, pp. 118–127, Aug. 2016.

Laizhong Cui (Senior Member, IEEE) received
the B.S. degree from Jilin University, Changchun,
China, in 2007, and the Ph.D. degree in computer
science and technology from Tsinghua University,
Beijing, China, in 2012.

He is currently a Professor with the College
of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China. He led more
than ten scientific research projects, including the
National Key Research and Development Plan of
China, the National Natural Science Foundation

of China, the Guangdong Natural Science Foundation of China, and the
Shenzhen Basic Research Plan. He has published more than 70 papers, includ-
ing IEEE TRANSACTIONS ON MULTIMEDIA, IEEE INTERNET OF THINGS

JOURNAL, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT, ACM Transactions on Internet
Technology, IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND

BIOINFORMATICS, and IEEE NETWORK. His research interests include
future Internet architecture and protocols, edge computing, multimedia
systems and applications, blockchain, Internet of Things, cloud and big data
computing, software-defined network, social network, computational intelli-
gence, and machine learning.

Prof. Cui serves as an Associate Editor or a Member of editorial board
for several international journals, including International Journal of Machine
Learning and Cybernetics, International Journal of Bio-Inspired Computation,
Ad-Hoc and Sensor Wireless Networks, and Journal of Central South
University. He is a Senior Member of CCF.

Ziteng Chen received the B.Sc. degree from
Shenzhen University, Shenzhen, China, in 2018,
where he is currently pursuing the M.Sc. degree.

His research interests include software-defined
network, edge computing, and blockchain.

Shu Yang received the B.Sc. degree from Beijing
University of Posts and Telecommunications,
Beijing, China, in 2009, and the Ph.D. degree from
Tsinghua University, Beijing, in 2014.

He is currently an Associate Researcher with
the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen,
China. His research interests include network
architecture, edge computing, and high-performance
router.

Zhongxing Ming (Member, IEEE) received the
B.Eng. degree from the College of Software
Engineering, Jilin University, Changchun, China, in
2009, and the Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2015.

He is currently an Associate Research Fellow
with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China.
His research interests include future Internet archi-
tecture, Internet of things, blockchain, and edge
computing.

Qi Li (Senior Member, IEEE) received the Ph.D.
degree from Tsinghua University, Beijing, China, in
2012.

He is currently an Associate Professor with the
Institute for Network Sciences and Cyberspace,
Tsinghua University. He has worked with ETH
Zurich, Zürich, Switzerland, the University of Texas
at San Antonio, San Antonio, TX, USA, the Chinese
University of Hong Kong, Hong Kong, and the
Chinese Academy of Sciences, Beijing. His research
interests include network and system security, par-

ticularly in Internet and cloud security, mobile security, and big data security.
Dr. Li is currently an Editorial Board Member of the IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING and ACM Digital Threats:
Research and Practice.

Yipeng Zhou received the M.Phil. and Ph.D.
degrees from the Information Engineering
Department, Chinese University of Hong Kong,
Hong Kong, in 2008 and 2012, respectively.

From 2016 to 2018, he was a Research Fellow
with the Institute for Telecommunications Research,
University of South Australia, Adelaide, SA,
Australia. From 2013 to 2016, he was a Lecturer
with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China.
He is currently a Lecturer with the Department of

Computing, Macquarie University, Sydney, NSW, Australia.
Dr. Zhou is a recipient of ARC DECRA in 2018.

Shiping Chen (Senior Member, IEEE) received the
Ph.D. degree from the University of New South
Wales, Sydney, NSW, Australia, in 2001.

He is a Principal Research Scientist with CSIRO
Data61, Sydney. He is an Adjunct Associate
Professor with the University of Sydney, Sydney,
and the University of New South Wales, Sydney,
through teaching and supervising Ph.D. students. He
has been working on distributed systems for over 20
years with focus on performance, security, and trust.
He is also actively involved in computing research

community through publications, journal editorships, and conference TPC
services, including WWW, EDOC, ICSOC, and IEEE ICWS/SCC/CLOUD.
His current research interests include data services, secure data sharing, and
services for collaboration. He has published more than 150 research papers
in the above areas.

Qinghua Lu (Senior Member, IEEE) received the
Ph.D. degree from the University of New South
Wales, Sydney, NSW, Australia, in 2013.

She was a Researcher with the National ICT
Australia, Sydney. She was an Associate Professor
with the China University of Petroleum, Beijing,
China. She is a Senior Research Scientist with
Data 61, CSIRO, Sydney, as well as a Conjoint
Senior Lecturer with the University of New South
Wales. She has authored or coauthored more than 80
academic papers in international journals and con-

ferences. Her current research interests include blockchain application design,
blockchain as a service, self-sovereign identity, Internet of Things, reliability
of cloud computing, and big data deployment.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

