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Abstract—Edge computing, especially multiaccess edge com-
puting, is seen as a promising technology to improve the Quality
of user Experience (QoE) of many artificial intelligence (AI)
applications in the evolution toward Internet-of-Things (IoT)
infrastructure. However, the management and deployment of
massive edge data centers bring new challenges for the current
network. In this article, we propose a new edge-based IoT plat-
form for AI (EBI-PAI), based on software-defined network (SDN)
and serverless technology. EBI-PAI provides a unified service call-
ing interface and schedules the resources automatically to satisfy
the QoE requirements of users. To optimize performances during
incremental deployment, we formulate the deployment problem,
prove its complexity, and design heuristic algorithms to solve
it. We implement EBI-PAI based on an opensource serverless
project and deploy it in real networks. To evaluate EBI-PAI, we
conduct comprehensive simulations based on the generated and
real-world network topology, and real-world base station data set.
The simulation results show that EBI-PAI can greatly improve
QoE with the same budget and save the budget to achieve similar
QoE. We finally carry out a case study with real user demands,
and it further validates the simulation results.

Index Terms—5G, incremental deployment, multiaccess edge
computing (MEC).

I. INTRODUCTION

RECENTLY, Quality of user Experience (QoE)-aware arti-
ficial intelligence (AI) applications have been growing

actively with the Internet of Things (IoT) all around the world.
For example, AI-based self-driving vehicles need to compute
fast to guarantee safety [1]; AI-empowered cameras need high
bandwidth to upload the captured videos to video process-
ing servers; and AI-based remote control of equipment in the
industrial IoT is delay sensitive, the communication delay is
required to be less than 10 ms [2].
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Although computing power of end devices is growing, the
gap between device power and user demands is not narrow-
ing [3], so computation offloading is still required [4]. Within
the current cloud-based network, it is difficult to meet the QoE
requirements of these applications, because: 1) the cloud data
centers are far away from users and 2) the Internet provides the
best effort hop-by-hop services, and multihop communications
between cloud and users bring additional latencies, especially
during congestion conditions [5], [6].

In recent years, the IoT has become deeply ingrained
in our society by transforming everyday objects, such as
wearable devices, transportation, and augmented reality into
communication devices, and has brought new challenges and
opportunities [7]. Cisco data show that by 2020, more than 50
billion devices will be connected to the network, and it is clear
that the current infrastructure will not be able to support all the
generated data. It has the following drawbacks: 1) the delay
and bandwidth are limited due to the distance between users
and the cloud computing center and 2) it brings overheads to
the infrastructure as the traffic travels through multiple links
across the networks.

By placing micro data centers closer to users and reducing
the round-trip delay between end-user devices and computing
servers, edge computing is seen as a promising technology
to solve the problems. It is also seen as the key to serving
QoE-aware applications, such as achieving low-latency com-
munications. Currently, edge computing is considered as an
important direction for 5G, and many working groups are
working on it to standardize 5G multiaccess edge computing
(MEC) [8].

However, MEC brings more challenges for service
providers: 1) operation and maintenance of a large number of
micro and distributed data centers are more difficult than a few
large and centralized data centers; 2) users can not manipulate
the complexity of underlying infrastructures; and 3) the com-
puting and bandwidth resources need to be carefully scheduled
to satisfy the QoE requirements.

There are many IoT platforms [9] aiming at managing IoT
networks, but it is difficult to find one that complies with the
requirements of opensource and heterogeneity for the future
IoT scenario. Matsuda et al. [10], Omnes et al. [11], and
Bizanis and Kuipers [12] described the innovative technolo-
gies that will support the implementation of IoT architecture,
such as the NFV, MEC, and management and orchestration
(MANO), where NFV is for flexible architecture, MANO is for
dynamic configuration changes, and MEC for IT processing.
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Works addressed in [13] and [14] show an IoT architecture
based on software-defined network (SDN). As in the previous
works, they do not provide a single solution where the IoT
operations are managed on the SDN platform. In [15], an
SDN solution for IoT built with an open network operating
system (ONOS) as an SDN orchestrator is proposed. The
architecture is suitable for orchestrating end-to-end service
chains deployed across heterogeneous SDN/NFV domains and
define a related high-level and vendor-agnostic intent-based
northbound interface (NBI).

In this article, we first propose an edge-based IoT platform
for AI (EBI-PAI) by integrating serverless [16]–[18] and SDN
controller into edge computing. With EBI-PAI, users can uti-
lize unified interfaces, e.g., URLs, to access the distributed
edge computing resources. Such that users do not need to
face the complexity of underlying infrastructures. Their access
requests will be redirected to an appropriate data center after
domain name server (DNS) mapping. The selected edge data
center should cover the user geographically and satisfy its
QoE requirements at the same time. The redirection strate-
gies are determined by an SDN controller, which monitors
the whole network and installs the computed mapping policies
into the DNS server. The mapping strategies will be optimized
to satisfy the QoE requirements of users.

The deployment of MEC is incremental because the micro
data centers bring additional costs, including server purchases,
installation, and deployment, and the service providers have a
limited budget. Thus, the whole network cannot be upgraded
for one night. Besides, multiple base stations (BSs) can share
an MEC data center, and it is not necessary to equip every
BS in remote areas with separate MEC data centers. How to
deploy MEC data centers with a limited budget is an important
issue for service providers.

In this article, we formulate the problem and find the
optimal deployment scheme, which can save costs while sat-
isfying the QoE requirements. The solution to the problem
is not straightforward, because different locations incur dif-
ferent costs and user experiences, including delay, bandwidth,
etc., and the server load and network condition are changing
dynamically. We prove that the problem is NP-complete and
propose two heuristic algorithms to solve the problem with
polynomial time.

We implement the prototype of EBI-PAI based on
Openwhisk [19], which is an Apache opensource project for
serverless. We deploy it on a testbed with five servers. We
conduct comprehensive simulations using both generated and
real-world topologies. We also evaluate the proposed algo-
rithms using the BS data set of Shanghai. Our simulation
results show that the heuristic algorithms can achieve near-
optimal results in 99% of experimental scenarios. EBI-PAI can
increase QoE by about 10%–25% at a given cost budget with
the generated topologies, and by 15%–35% with real-world
topologies. We compare the proposed algorithms with the cur-
rent de-facto, and the results show that they greatly improve
the performance. We carry out a case study by deploying a
real-time face recognition application in real networks. The
results further validate the above results.

In this article, our contributions are as follows.

Fig. 1. System architecture of EBI-PAI.

1) We propose EBI-PAI, a QoE-aware edge computing
platform based on the SDN controller and server-
less computing technologies, to solve the problems of
resource scheduling, service defining in future AI + IoT
scenarios.

2) To save cost for service providers and satisfy QoE
requirement for users, we study the QoE-aware server
deployment problem and design heuristic algorithms
with near-optimal performance.

3) We extensively simulate the proposed algorithms with
both generated and real-world topologies, and a real-
world BS data set collected over Shanghai, China.
Evaluation results show that EBI-PAI increases QoE by
10%–35% with the same budget, compared with the
current deployment scheme.

The remainder of this article is organized as follows.
Section II introduces the framework of EBI-PAI. Section III
formulates the deployment problem and proves the complexity
of it. In Section IV, we propose heuristic algorithms to solve
the problem with polynomial time. In Section V, we evaluate
the performance of EBI-PAI. We show the prototype of our
implementation in Section VI and conduct a case study with
a real-time face recognition application in Section VII. We
review related work in Section VIII and conclude our paper
in Section IX.

II. EBI-PAI DESIGN

The difference between our controller and SDN controller
is that the SDN controller customizes the forwarding table
of routers and switches to control the forwarding path, while
the EBI-PAI controller manipulates the path in the application
layer. The system architecture of EBI-PAI is demonstrated in
Fig. 1.

A. Platform Controller

EBI-PAI sets up a centralized controller in the cloud based
on SDN, which collects global network conditions and edge
server resource information. Service requests from mobile
devices are delivered to nearby BSs through one-hop wireless
connections. All BSs upload information about current ser-
vice requests, uplink and downlink bandwidth, and resource
usage of the MEC server to the EBI-PAI controller through an
SDN protocol [20], [21]. Through this real-time information,
the EBI-PAI controller intelligently makes online assessment
and prediction of the congestion in an edge network and a
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load of each edge server, and the optimal resource alloca-
tion and scheduling strategy are obtained through predefined
algorithms.

The controller also predicts the traffic distribution over
networks and loads of MEC servers in the future. Traffic
prediction is an important aspect of EBI-PAI, however, it is
out of the scope of this article. Our work is orthogonal with
the previous work on traffic prediction [22].

EBI-PAI is divided into three layers as follows.
1) Control Layer: The role of a centralized resource

scheduling platform in edge computing is crucial. The
distribution of functions can support multiple applica-
tion scenarios on mobile devices. The centralized control
eliminates the burden of directly configuring devices one
by one in the edge network, which realizes dynamic
customization of services in large-scale edge networks.
It also accelerates the expansion of new application
services in mobile-edge networks. First, the execution
environment and code of the AI application are created
by the developer and stored in the code repository. When
an edge server receives a request from users, the con-
troller delivers the computing environment to the edge
servers. Second, based on real-time information, EBI-
PAI predicts congestions in edge networks and loads of
edge servers, computes a scheduling strategy, and sends
instructions to each DNS server.

2) Mapping Layer: According to the instructions from the
controller, the DNS server intelligently adjusts the for-
warding path of the request in advance to balance the
load of the edge server. By resolving local requests and
forward users’ requests to the selected edge server, sub-
sequent requests from the user can be directly forwarded
to the server.

3) Edge Layer: The edge computing platform adopts a
serverless architecture, which is different from tradi-
tional virtual machines. Serverless architecture takes
over the management of computing, storage, and
network resources by establishing a service engine,
shielding users from the underlying details. Users invoke
the unified API interfaces without knowing the loca-
tions of services. Service execution is located in the edge
server, which provides computing environments for dif-
ferent services. Service requests from mobile devices are
called through Restful API. With DNS redirection, the
request is forwarded to an edge server. The edge server
is responsible for hosting the execution environment.
The edge server also reports execution status, uplink and
downlink bandwidth, and resource usage of the server
to the controller.

B. Edge Computing Platform

By combining the idea of SDN and serverless technol-
ogy, life cycles of edge resources and applications can be
easily managed. This makes it possible to dynamically cus-
tomize personalized services in a large-scale edge network
and accelerate the configuration process of new application
services.

Fig. 2. EBI-PAI’s serverless edge computing platform.

Fig. 2 shows the edge computing platform deployed on
an MEC server based on the serverless technology (such as
OpenWhisk). The entry point of the platform is a trigger asso-
ciated with a specific event. In a face recognition application,
for example, events that trigger functions include uploading
images or using video frames captured by a device camera.
These triggers make requests to the Http server, which exposes
a Restful API in the form of callable functions.

To achieve network transparency and rapid redirection, a
local DNS is deployed on the cellular infrastructure. Although
DNS will introduce extra delay: 1) the delay could be reduced
with a local DNS and 2) users only need to access DNS
when first call the APIs and resolve them to IP addresses, and
the subsequent accesses will be forwarded directly to MEC
servers.

III. QOE-AWARE SERVER DEPLOYMENT

As the first step in the deployment of edge computing archi-
tecture, deployment of the edge server is the foundation and
key [23]. Previous studies on edge server deployment have
focused on algorithms for clustering access points with the
target to find candidate locations for the servers as cluster
centers. The QoE-aware server deployment problem discussed
here differs from the traditional server deployment problem in
two ways. First, we ensure a timed response of the access
to every node in a network with the minimum number of
servers deployed. Solutions for facility location, k-means clus-
tering, and multiobjective constraint optimization all attempt
to achieve the lowest facility opening costs, regardless of
the bounded QoE requirements of each node. Second, we
set the highest priority for responsiveness requirements of
applications in edge computing.

Responsiveness, which refers to how fast the users can
access the requested information, is an important type of
QoE requirements needed by a wide range of applications.
The desired level of performance can be specified in the
form of service level agreements (SLAs) between the con-
tent/service providers and their customers, e.g., the response
time of requests from domain A for Nasdaq.com home should
not exceed 1 s; 95% of the requests from domain B for
CNN.com home should complete in less than 2 s.

The access latency experienced by clients is affected by
factors, including network latency (in terms of the round-trip
time), server load, and network load. Similar to other stud-
ies [24]–[26], in this article, we mainly focus on the network
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Fig. 3. Multicell, multiserver MEC system.

delay factor and use the communication cost involved in ser-
vice request as a measure of responsiveness perceived by
clients. The reason is that overloaded servers or bottleneck
links can always be better provisioned to handle more user
requests (e.g., by upgrading server clusters or purchasing more
bandwidth). However, network latency cannot be improved by
simply adding hardware resources. Since the communication
cost from clients to the associated server receiving its request
is independent of the deployment strategy, for simplicity, this
part of the cost is not included in our analysis model.

A. Problem Formulation

We consider a multicell, multiserver MEC system as illus-
trated in Fig. 3, in which each BS is equipped with an
MEC server to provide computation offloading services to
the resource-constrained mobile users, such as smartphones,
tablets, and wearable devices. In general, each MEC server can
be either a physical server or a virtual machine with moder-
ate computing capabilities provisioned by the network operator
and can communicate with the mobile devices through wireless
channels provided by the corresponding BS. Suppose we want
to select appropriate locations among N BS cites distributed
in a region to deploy edge servers. Given the edge servers,
BS can offload the designated task to the neighboring edge
server. We assume that each edge server is responsible for a
subset of BS to process mobile user requests. We also assume
that each edge server has unlimited computing resources to
process mobile user requests, and each BS accessed the edge
server directly, i.e., each BS is co-located with an edge server
if provisioned.

Consider all BS in a region are connected to form a network
represented by a graph G = (V, E), where V is the set of
BS and E ⊂ V × V is the set of physical or logical links
between them. A weight s(v) is associated with each BS v ∈ V ,
representing the cost of placing servers at v. Different sites
may have different deployment costs. Moreover, a distance
d(u, v) is associated with each edge (u, v) ∈ E, representing
the communication cost of forwarding requests for execution
and associated response between u and v. We use “commu-
nication cost” as a term with a general sense, which can be
different performance metrics, such as latency and hop count.
We define d(u, v) as the communication cost between u and v.

Services are invoked by the clients outside the network of
servers. We assume each server receives requests from some
group of clients (e.g., by statically configuring the clients,
using DNS-based request direction, or intercepting requests

TABLE I
NOTATION TABLE

in a transparent fashion [27]). If the service is hosted on the
server receiving the request, the response is generated locally.
Otherwise, the server forwards the request to some other server
in the network for the first time and relays the response to the
client.

We investigate the problem of choosing BSs in an MEC
system to meet the QoE requirements of clients with the objec-
tive of minimizing the placement cost. The QoE requirements
are specified in the form of a general distance metric. Every BS
in the network has some QoE requirements on serving requests
for its clients. The QoE requirement of each BS v is speci-
fied by an upper bound q(v) on retrieval cost. If the response
can be retrieved by v within a cost of q(v), the QoE require-
ment is satisfied. Otherwise, the QoE requirement is violated.
The QoE requirements associated with different BSs can be
different. In general, a client would experience shorter access
latency if a BS with server deployed is placed in its closer
proximity. Therefore, it is desirable to allocate servers in the
network closer to the clients with higher QoE requirements.

Definition 1: The QoE-aware server deployment problem
in multicell, multiserver MEC system is to select a minimal
subset of BS in a region, where all other BS’s QoE requirement
can be satisfied by this subset.

The objective of the QoE-aware server deployment problem
is to find a deployment strategy that satisfies the QoE require-
ments of all BSs and involves the minimal cost. The corre-
sponding integer programming problem can be formulated as
follows:

Minimize
∑

i∈V

sixi (1)

s.t.
∑

d(vi,vj)≤q(vi)

xj ≥ 1 ∀i, j ∈ V (2)

xi ∈ 0, 1 ∀i ∈ V. (3)

The 0-1 variable xi indicates whether an edge server is
placed at BS vi. Constraint (2) ensures all BS’s QoE require-
ments are satisfied. The notations are listed in Table I.

B. NP-Completeness Results

We show that the minimum dominating set problem which
is known to be a special instance of a minimum set-covering
problem can be reduced to the QoE-aware server deployment
problem.

Theorem 1: The QoE-aware server deployment problem is
NP-complete.
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Proof: We start with the definition of a dominating set. In
the graph theory, if D is a subset of V and every vertex not in
D is adjacent to at least one member of D, then subset D is
said to be a dominating set of graph G = (V, E). The domi-
nating number y(G) is the number of vertices in the minimum
dominating set of G. The minimum dominating set problem
involves finding a subset D with the minimum dominating
number. It is a classical NP-complete decision problem in
the computational complexity theory. Therefore, it is believed
that there is no effective algorithm that finds all the minimum
dominating sets of a graph. Then, let us define formally the
solution of the QoE-aware server deployment problem, QAP
as follows:

{
G = (V, E), d, θ | There is Ṽ ≤ V such that di <= θ

}
.

Suppose that we are given G = (V, E) as an instance of
the minimum dominating set. We consider a delay d such that
d = 1 for every e ∈ E, and deadlines θ = 1 for each node
i ∈ V . Suppose that Ṽ is a deployment set. Since the delay
for each edge is 1 and the deadline is 1, a node must have
a neighbor in Ṽ . Therefore, Ṽ is also a minimum dominating
set for G. On the other hand, if Ṽ is a minimum dominating
set for G, then clearly, Ṽ is a deployment set for QAP with
respect to the unit delay and the unit deadlines.

As mentioned above, the QoE-aware server deployment
problem is NP-hard. Therefore, the amount of calculation
required to obtain an accurate optimal solution is too com-
putationally intensive to be useful in practice. To evaluate the
performance of the heuristic algorithms proposed, we compute
a lower bound on the cost of minimizing any feasible solution
to the problem. We use a superoptimal algorithm based on the
Lagrange relaxation to achieve this. As the name suggests,
this algorithm may produce a better solution than the optimal
solution because it may not be feasible. Nevertheless, it serves
as a useful data point for comparison.

The upper bound of the optimal solution of an integer
programming can be given by the optimal solution of the
corresponding relaxed linear programming [28]. In our exper-
iment, by replacing the last constraint xi ∈ 0, 1 to 0 ≤ xi ≤ 1,
we relax the integer programming to a regular linear program-
ming and calculate the optimal solution to the latter. Although
the solution to linear programming may not be integral (that
is, not feasible in practice), it provides an upper bound on the
optimal solution of the edge server deployment problem.

IV. HEURISTIC ALGORITHMS FOR QOE-AWARE

SERVER DEPLOYMENT

In this section, we present two heuristic algorithms for
server deployment, all of which share the greedy approach.

A. Greedy Minimum Dominating Set Algorithm

The greedy minimum dominating set algorithm (GDSA)
(as shown in Algorithm 1) starts with an empty deployment
strategy R = ∅. It intends to insert one BS into R each
iteration. At each step, the insertion alternative with the max-
imum heuristic function value is selected, which can also be
called normalized benefit. The normalized benefit is defined

Algorithm 1: GDSA
Input: G = (V, E), every node’s QoE requirement q(i)
Output: Feasible deployment strategy
Calculate all-pairs shortest path distance;
Set Selected is initially empty;
Set NSelected include all vertices;
Set NCovered include all vertices;
/* Builds cover set */
for i = 1; i ≤ |V|; i + + do

for j = 1; j ≤ |V|; j + + do
if d(i, j) ≤ q(i) then

add j to vi’s cover set;

while there exists unsatisfied vertices do
/* Initialize maximum normalized benefit */
Max_N = −1;
for each vi in NSelected do

Ni = normalized benefit of the chosen vertex;
if Ni > Max_N then

Max_N = Ni;
best_server = vi;

mark best_server is replicated;
remove vertices satisfied by best_server from
NCovered;

as the increased number of QoE satisfied nodes divided by the
increased provision cost. The procedure repeats until all BS’s
QoE requirements are satisfied.

We analyze the time complexity of GDSA. First, GDSA
calculates the shortest path between any two vertices in the
graph. The classic Floyd algorithm is used in this step, whose
time complexity is O(|V|3). Second, the algorithm traverses all
vertices in the graph and takes vertices within the coverage as
the cover set of each vertex. Since the cover set of a vertex
may include all vertices in the graph, the time spent in this
step is O(|V|2). In the third step, the vertex with the maximum
normalized benefit is selected. Finally, repeat the third step
until all the QoE requirements are satisfied. To sum up, the
time complexity of GDSA is O(|V|2 + |V|3) = O(|V|3).

B. Greedy Cover for QoE-Aware

In this section, we propose a new heuristic algorithm called
a greedy cover for QoE-aware (GCQA), which finds a good
solution for the problem of QoE-aware server deployment in
general graphs.

We start with the definition of the cover set and reverse
cover set.

Definition 2: The cover set c(u) of BS u is the set of BS
that u can satisfy their QoE requirements, while the reverse
cover set r(u) of BS u is the set of BS that can satisfy the
QoE requirement q(u) of u.

Each BS has its own cover set and reverse cover set. If there
is a server deployed on BS w ∈ r(u), then BS w can satisfy
user requests from u. Therefore, each BS in r(u) is a candidate
that can place the server to satisfy BS u. We first observe
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Algorithm 2: GCQA
Input: G = (V, E), every node’s QoE requirement q(i)
Output: Feasible deployment strategy
Find all-pairs shortest path distance;
/* Builds cover set and rever cover set */
for i = 1; i ≤ |V|; i + + do

for j = 1; j ≤ |V|; j + + do
if d(i, j) ≤ q(j) then

add j to vi’s cover set;

if d(i, j) ≤ q(i) then
add j to vi’s reverse cover set;

Remove super reverse cover sets;
while there exists unsatisfied BS do

select min_cover_set from reverse cover sets;
/* Initialize maximum normalized benefit */
Max_N = −1;
for each vi in min_cover_set do

Ni = normalized benefit of the newly placed
server;
if Ni > Max_N then

Max_N = Ni;
best_server = vi;

mark best_server is placed;
remove BS satisfied by best_server;

that if r(u) ⊂ r(v), then r(v) may need not be considered
when choosing deployment sites. If we place a server on BS
w ∈ r(u), then BS w can satisfy both u and v.

Then, we observe that if |r(v)| > |r(u)|, BS v is easier to be
satisfied than u. The reason is that if the reverse cover set r(v)
contains more elements, r(v) is more likely to overlap with
other reverse cover sets, so v has more opportunities to be sat-
isfied when processing other reverse cover sets. Our intuition
is that when selecting candidate BS to place server, the BS
with the smallest reverse cover set is satisfied first, then the
BS is also likely to satisfy the other BS with a larger reverse
cover set. In this way, we may find a deployment strategy with
fewer edge servers and reduced opening costs. Based on these
observations and intuitions, we propose the GCQA algorithm
as shown in Algorithm 2.

The first step in GCQA is to find the cover set and reverse
cover set of each BS in the network. Second, we remove all
super reverse cover sets r(v) that contain some other reverse
cover set, r(u). That is, if r(u) ⊆ r(v), u 
= v, we remove
v from those BSs that must be satisfied. In each subsequent
step, GCQA chooses the smallest cover set c, examines every
server s, and puts a replica on a server s in c with the highest
normalized benefit.

Theorem 2: The GCQA algorithm has an asymptotic upper
bound of O(|V|3) on the worst-case running time.

Proof: We analyze the time complexity of the three phases
of GCQA. In the first stage, GCQA builds a cover set and
reverse cover set for each BS in the network. The cover sets
of each BS can be found by sequentially determining other |V|
BS in the network, and the cover sets of a BS also includes

the BS itself. Since each BS has cover sets, it takes O(|V|2)
build cover sets for all BS in the network. In the second stage,
GCQA identifies and deletes all super reverse cover set in
the network. In order to identify all super reverse cover sets,
GCQA needs to check all O(|V|2) possible reverse cover set
pairs. Checking a pair of reverse cover sets requires O(|V|),
so identifying and deleting all super cover sets takes the time
of algorithm O(|V|3). In the final stage, the algorithm inserts
servers into the network in turn until all BSs are satisfied. First,
GCQA chooses the smallest reverse cover set, which can be
done by sorting the reverse cover set by size. After finding the
smallest reverse cover set c, GCQA calculates the normalized
benefit of all BS in c and places the server on the BS with
the largest normalized benefit. Due to the newly placed server,
it takes O(|V|) to calculate the increased number of satisfied
BS and the increased cost, so it takes O(|V|) to calculate the
standardized benefits of the BS. The size of the cover set is
O(|V|) in the worst case, so we need to consider the cover set
of O(|V|). As a result, it takes O(|V|log|V|+ |V|3) = O(|V|3)
time to complete the last phase.

V. IMPLEMENTATION

Due to the ongoing evolution of industrial networks from
Fieldbus technologies to Ethernet, a new opportunity has
emerged to harness the benefits of SDN. SDN was first
designed to orchestrate IT networks, but nowadays, some
SDN controllers include plugins to connect in the southbound
with IoT devices and networks [29], [30]. For example, the
proposed platform can use OpenDaylight (ODL) [31], an SDN
controller with a dedicated IoT plugin [32].

We use five high-performance Aliyun elastic compute ser-
vice (ECS) instances to build the platform controller of
EBI-PAI. Five instances run all core components of the con-
troller. The configuration of each instance is 4-Core CPU,
8-GB memory, and 50 Mb/s bandwidth. Three edge computing
clusters are deployed at the edge of the network and commu-
nicate with the platform controller through a control protocol.
Each MEC server in the edge computing cluster runs the
Ubuntu-14.04.1-server-amd64 operating system and employs
Apache OpenWhisk to virtualize server resources to support
serverless computing. Resource orchestration and management
of the entire computing cluster are through Kubernetes.

Apache OpenWhisk [19] is an opensource serverless archi-
tecture implementation. The serverless architecture is a refined
cloud computing model to process requested functionality
without preallocating any computing capability. Provider-
managed containers are used to execute functions (called
actions), which are event triggered and ephemeral.

The core components of EBI-PAI’s platform controller is
depicted in Fig. 4. The controller is responsible for code
distribution, status information collection, and user access
control, and is composed of three modules: 1) access man-
agement; 2) distributor; and 3) platform gateway. The access
management module provides an interface for the front-end
page to operate the database, writes system events (such as
user registration) to the message queue RabbitMQ, and pro-
vides a query function for statistics by initiating a request
to time-series database Prometheus. The distributor delivers
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Fig. 4. Core components of EBI-PAI’s platform controller.

TABLE II
INFORMATION OF A PART OF BSS

application images and user access control information to edge
computing nodes. The platform gateway collects function call
information reported by the edge platform and provides user
access control.

VI. SIMULATION

A. Simulation Setup

To evaluate the performance of the algorithms proposed in
this article and compare it with other algorithms in the existing
work, we simulate the behavior of the algorithms on a variety
of network topologies and real-world data set. In this section,
we discuss the network topologies and data set that we use in
our evaluations. We then describe the performance metric that
we use as a basis for comparing the algorithms.

1) Network Topologies and Data Set (Waxman Model):
We choose to use Waxman model [33], which is the most
commonly used model in previous works [34], [35]. In the
experiments, we first use the Waxman model to randomly gen-
erate the topology of the network. The cost of each link is
given by the Euclidean distance between the two endpoints.
The topology generated by this method is not guaranteed to
be single-connected. Since there are no isolated nodes or con-
nected components in the actual network topology, it may take
multiple runs to get a connected graph, and each time, we use
the minimum spanning tree algorithm [36] to test the generated
topology. The information of BSs is listed in Table II.

AT&T North America: This data set is provided by The
Internet Topology Zoo website [37] and represents the back-
bone IP network built by AT&T between major U.S. cities. The
entire network connects 25 major U.S. cities, with a total of 57
edges. The data set contains geographic location information
for these 25 cities.

Fig. 5. Shanghai Telecom BS distribution.

Fig. 6. User visits distribution on 3233 BSs.

Telecom Data Set: The data set, provided by Shanghai
Telecom [38], contains more than 7.2 million records of
accessing the Internet through 3233 BSs from 9481 mobile
phones for six months. For example, Fig. 5 shows the distri-
bution of BSs. Each circle in the figure represents a BS in
Shanghai, China. We use the size of circles to represent the
user traffic on each BS. Fig. 6 shows the distribution of user
visits for all BSs. It can be seen that the user visits have a clear
power-law distribution. Approximately, 10% of BSs have more
than 1000 user visits, while BSs with less than 200 user visits
exceed 66%.

2) Alternative Deployment Approaches: To evaluate our
algorithm on provisioning edges with bounded QoE
requirements, we compare it with two alternative approaches
in the existing work for server deployment. These approaches
are described as follows.

Multirounds K-Medoids: We adapt the k-medoids cluster-
ing algorithm used in [39] to solve the QoE-aware server
deployment problem. The tailored algorithm is called mul-
tiround K-medoids (MRKMs). First, MRKM sets K as the
number of groups in the first iteration of the algorithm, then
uses the k-medoids clustering algorithm to divide all BSs into
K clusters, and deploys K edge servers on the central BSs of
each cluster. As the center of each cluster, the sum of square
distances between it and all other BSs in the cluster should
be the smallest. Different from the common k-medoids algo-
rithm, MRKM then checks whether the QoE requirements of
each BS are met under the current deployment strategy after
each iteration, that is, the distance from any BS to the cen-
tral BS of its cluster is within the QoE requirements. If all of
them are satisfied, the final server deployment strategy will be
output; otherwise, the number of k-medoids clustering groups
is increased by one, and MRKM enters the next round of
iteration.
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Multirounds Top-K (MRTK): We adapt the top-K greedy
algorithm to solve the QoE-aware server deployment problem.
The improved algorithm is called MRTK. In MRTK, all can-
didate BSs are arranged in descending order according to the
number of mobile user requests received. In each iteration, the
BS with the largest number of user requests in the unselected
set is selected to place edge servers. Different from the top-
K algorithm, MRTK checks whether the QoE requirements
of each server are met under the current server deploy-
ment strategy after each iteration. If they are met, the final
server deployment strategy will be output; otherwise, the next
iteration will be carried out.

3) Performance Metric:
1) Normalized Deployment Cost: To compare the

performance of the algorithms on the various network
topologies and telecom data set, we use the relative
performance of the algorithms as a metric. We define
the relative performance as the ratio between the cost of
the feasible solution found by the algorithm to the cost
determined by the superoptimal algorithm. The relative
performance is an appropriate metric since it reflects the
cost we want to minimize. The smaller the value of the
relative performance, the better the algorithm performs.
The relative performance of 1 implies the algorithm
finds an optimal solution, but the optimal solution need
not necessarily have a relative performance of 1, since
the superoptimal solution may not be achievable.

2) Number of Servers Placed: Under a certain network
scale, node QoE requirements, and workload level, the
number of servers that need to be placed in the network
is obtained by the algorithm.

3) Maximum Unsatisfied QoE: Maximum unsatisfied QoE
refers to the maximum distance between all unsatisfied
nodes in the entire network with the nearest node on
which the server has been placed. This value describes
the capability of the algorithm to meet QoE requirements
under given cost budget constraints.

B. Experimental Results

In simulation experiments, we use a total of three network
topologies to evaluate the performance of the four algorithms
mentioned above. These are the random network topologies
generated using the Waxman model, the AT&T North America
backbone IP network topology (AT&T North America), and
the Shanghai Telecom BS data set (Telecom Data set). Among
them, the edges in the first two networks are wired connec-
tions, and the entire network can be abstracted into a graph
structure, while the vertices in the last network are telecom
BSs scattered throughout the city, where the BSs communicate
wirelessly.

1) Evaluation Results on the Waxman Model: We choose
four important parameters into consideration, including
network scales, node out-degrees, QoE tightness (delay con-
straint), and cost budget, which were commonly selected in
previous works [40], [41]. The network scale is an important
factor to consider. The placement cost obtained and algorithm
efficiency can vary depending on the input number of nodes.
Each simulation was performed ten times with the network

TABLE III
MAJOR PARAMETERS OF NETWORK SCALE SIMULATION

Fig. 7. Comparison for the relative performance of four algorithms in
different network scales.

topologies generated by the Waxman model with the values
of parameters listed in Table III, and the normalized deploy-
ment costs are averaged. The distribution of node out-degrees
obeys the power-law distribution. A simple way to generate
a graph that obeys a power law is to use that power law to
guide the construction of the graph, and node out-degree is a
straightforward property to manipulate. The bigger the value
of QoE, the more possible the QoE of the node is satisfied. We
consider the influence of QoE tightness on various algorithms.

As expected, GCQA generally outperforms the other three.
These performance trends are consistent over different settings
of network parameters and network sizes examined.

Fig. 7 shows the relative performance of the four algo-
rithms under the same QoE requirements and different scale
network topologies as the network size increases compared to
optimal. The horizontal axis represents the scale of the gener-
ated network. We change the number of initialized vertices to
simulate networks of different sizes. The vertical axis repre-
sents the performance of the algorithm relative to the optimal.
The smaller the value, the closer the result of the algorithm
is to the optimal solution. We can see that the performance
of the GCQA algorithm on networks of different sizes is the
best among the four algorithms, and the gap between the
GCQA algorithm and the optimal is not more than 10% in
all cases; the performance of GDSA is second only to GCQA,
and the gap with the optimal is kept within 15%. As the scale
of the network increases, the performance of four algorithms
decreases compared to the optimal, ranging from 10% to 40%.

Fig. 8 shows the relative performance of the four algo-
rithms on the same network topology with the same scale
and node out-degree as the QoE requirements of the nodes in
the network change compared to optimal. The horizontal axis
represents the QoE requirements of nodes. The smaller the
value, the higher user’s requirements for the delay, and the
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Fig. 8. Given the delay constraint, the normalized deployment cost of four
algorithms.

Fig. 9. Comparison for the relative performance of four algorithms in
different node out-degrees.

more servers that need to be placed in the network accord-
ingly. The vertical axis represents the performance of the
algorithm relative to optimal. We can see that the performance
of GCQA under different QoE requirements is the best among
the four algorithms, and the gap between GCQA and the
optimal does not exceed 10% in all cases; the performance of
GDSA is second only to GCQA, and the gap with the optimal
is kept within 20%. With the increase of QoE requirements,
the performance of the four algorithms is compared with the
optimal algorithm has decreased to a certain extent, ranging
between 10% and 100%.

Fig. 9 shows how the four algorithms perform relative to the
optimal on multiple network topologies with the same network
scale and QoE requirements as the maximum out-degree of
each node in the network changes. The horizontal axis repre-
sents the maximum out-degree of each node, and the larger
the value, the more connections each node can establish with
other nodes. The vertical axis represents the performance of
the algorithm relative to the optimal. The results maintain the
same trend as before. The performance of GCQA in differ-
ent out-degrees is the best among the four algorithms, and the
gap between GCQA and the optimal does not exceed 12%
in all cases. The performance of GDSA is slightly inferior to
GCQA, and the gap remains within 6%. With the increase of
node out-degree, the performance of four algorithms compared
with the optimal declines at the beginning and then increases.
The turning point appears when the node out-degree is 20.

Fig. 10 shows the maximum unsatisfied QoE requirements
of the four algorithms on the same network topology where
the network size and QoE requirements are kept the same,
under a given cost budget. The horizontal axis represents fixed
deployment cost, represented by the number of servers placed
in the network. The overall downward trend of the four curves

Fig. 10. Given cost budgets, the maximum unsatisfied QoE requirements of
four algorithms.

Fig. 11. Given the delay constraint, the comparison for the normalized
deployment cost on the realistic topology.

in the figure shows that the greater the number of servers
under the same QoE requirement, the fewer the nodes with
unsatisfied demand, and the smaller the distance between the
unmet nodes and the nearest node that has placed the server.
The value of the vertical axis is selected from the maximum
distance between all unsatisfied nodes in the entire network
and the nearest node on which the server has been placed. The
smaller the value, the better the algorithm’s performance. We
can see that GCQA’s capability to satisfy QoE requirements
is the best among four algorithms in different cost budgets.
The downward trend of GCQA is obvious, which conveys that
for newly added servers, GCQA can more effectively deploy
servers in key locations to meet the node’s QoE requirements
to the greatest extent.

2) Evaluation Results on AT&T North America: Fig. 11
shows the performance of the four algorithms on the AT&T
North America IP backbone network as the QoE requirements
of the nodes in the network change. The horizontal axis rep-
resents the QoE requirements of nodes. We can see that when
the network size is small, the performance of GCQA and
GDSA under different QoE requirements is close, and the
performance relative to the optimal is stable; and the gap
between MRKM and the optimal is not more than 12%. With
the increase of QoE requirements, the performance of MRTK
has greatly decreased compared to the optimal.

Fig. 12 shows the largest unsatisfied QoE requirements of
the four algorithms on AT&T North America network under a
given cost budget. The value on the horizontal axis indicates
the number of servers placed. The value is small because the
network scale is also small. The four curves in the figure still
show an overall downward trend. Different from the previous
results in the generated topology, GCQA falls behind to GDSA
for the first time, but as the number of placed servers increased,
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Fig. 12. Given cost budgets, the comparison for the maximum unsatisfied
QoE requirements on the realistic topology.

Fig. 13. Given the delay constraint, the normalized deployment cost of four
algorithms.

the performance of GCQA showed a trend of overtaking. We
speculate that the reason for this phenomenon is that GCQA’s
server selection strategy is not as effective as the greedy GDSA
algorithm in the initial stage, but as the number of servers to
be deployed increases, GCQA’s strategy is still optimal among
all algorithms.

3) Evaluation Results on Telecom Data Set: Fig. 13
shows the relative performance of the four algorithms on the
Shanghai Telecom BS data set as the QoE requirement of
nodes in the network changes. The value on the horizontal
axis is smaller than the previously generated network. The
reason is that BSs are densely distributed in the city, and BSs
are often deployed within a visible range. The communication
delay between BSs and the user is typically a few millisec-
onds. GDSA and MRKM have outperformed and approached
GCQA in a few cases, but the overall performance of GCQA
is more stable, and the gap with the optimal remains within
23%, while the performance of GDSA has great fluctuations
relative to the optimal, with a range of 5%–100%.

Fig. 14 shows the number of servers placed by the four algo-
rithms on the Shanghai Telecom BS data set under the same
QoE requirements as the network size changes. The horizontal
axis represents the selection criteria of BS, and the vertical axis
represents the number of servers that need to be deployed to
meet QoE requirements. We select a subset of all BSs through
user requests processed by BS within a cycle, which is the
workload of BS. We evaluate the performance of four algo-
rithms at five different workload levels and select a part of all
BSs with workload above 200, 400, 600, 800, and 1000. The
number of BSs in each set, which is also equal to the size of
the network, is 1198, 869, 619, 443, and 309. The reason we
do this is that in the early deployment of an MEC server, edge
computing needs of areas with higher user density should be

Fig. 14. Given the level of user connected (from 200 to 1000 over a period),
comparison between the deployment costs of four algorithms.

Fig. 15. Given cost budgets, the comparison for the maximum unsatisfied
QoE requirements of four algorithms under a high workload level.

met first, and the load of BS is a good indicator that can be
referred to. It can be seen that GCQA is still outstanding, with
a maximum 25% reduction in deployment cost compared with
GDSA, and the performance is more stable. On the whole, the
four curves show a downward trend, because as the load level
increases, the scale of the network decreases, and the number
of servers to be deployed also decreases.

Fig. 15 shows the maximum unsatisfied QoE requirements
of the four algorithms on the Shanghai Telecom BS network
with the same network scale and QoE requirements under
different server cost budgets. The value on the horizontal
axis indicates the number of servers placed. The experimental
results on larger network topology (node size exceeds 1000)
confirm our previous speculation that GCQA’s server selection
strategy is not as effective as the other three algorithms in the
initial stage, but with the number of servers to be deployed
increased, the strategy of GCQA can quickly find the optimal
solution. The correspondence in the figure is that after the
number of placed servers exceeds 10, the largest unmet QoE
requirement of GCQA remains unchanged, which is equal to
the experimentally set QoE requirement, indicating that the
algorithm has calculated the optimal deployment, under which
all nodes’ QoE requirements have been met.

Fig. 16 shows the largest unsatisfied QoE requirements of
the four algorithms on the Shanghai Telecom BS network
under the same network scale and QoE requirements under
different server cost budgets. The difference from the previous
experiment lies in the scale of the network. This time, a
network consisting of BSs with a workload above 1000 was
selected. The experimental results are basically the same as
the previous experiment. The characteristic of GCQA has been
verified again. Although the performance of the initial strategy
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Fig. 16. Given cost budgets, the comparison for the maximum unsatisfied
QoE requirements of four algorithms under a low workload level.

Fig. 17. K-medoids clustering of BS data set under K = 20.

is not as good as other algorithms, in the long run, this choice
has a positive influence on subsequent performance.

Fig. 17 shows the processing results of the Shanghai
Telecom BS data set using the K-medoids clustering algo-
rithm. The experiment sets the number of clusters to 20, that
is, all BSs are divided into 20 clusters according to distance.
A server is deployed on the central BS of each cluster so that
the sum of the distance between the BS and all other BSs in
the cluster is the smallest, The maximum distance from the
cluster center to other nodes in the cluster is used as the QoE
requirement that the algorithm can satisfy.

C. Discussion

The GDSA algorithm is intuitive, while the GCQA algo-
rithm solves the problem based on the concept of the reverse
cover set. When the network size is large, GCQA obtained
results closest to the optimal solution. But as shown in
Figs. 13, 16, and 17, when the network size is small, e.g.,
the number of nodes is smaller than 10, the GDSA algorithm
performs better than the GCQA.

VII. REAL-TIME FACE RECOGNITION FOR EBI-PAI:
CASE STUDY

We evaluate EBI-PAI with a real-world case study, which
is a real-time face recognition application. In this case, we
choose suitable sites to deploy edge servers.

In this case, we transfer data-intensive tasks of surveillance
video streams from cloud to edge servers, to realize real-
time video monitoring. There are two possible deployment
approaches as shown in Fig. 18: 1) on the MEC server or
2) in a traditional cloud computing environment. The con-
troller of EBI-PAI is implemented on a laptop. OpenWhisk
is running on a virtual machine with 4-Core CPU, 4-GB
memory, and 40-GB SSD. The cloud solution uses Aliyun and
its face recognition services. The image is uploaded through

Fig. 18. Experimental setup for real-time face recognition.

(a) (b)

Fig. 19. Experimental results for 100, 500, and 1000 concurrent requests in
the edge-based and cloud-based deployments. (a) Latency. (b) Throughput.

the Aliyun object storage service (OSS) bucket (step 3.b). An
RTSP server based on Node.js captures and uploads images
from devices such as cameras, provides endpoints for requests
and image uploads (steps 1 and 2), and then triggers dif-
ferent subsequent steps based on two different deployments:
steps 3.A, 4.A, and 5.A represent edge-based serverless solu-
tions, steps 3.b, 4.b, and 5.b are for cloud-based solutions. In
addition, the Node.js server collects metrics, such as latency,
throughput, and computation time.

Fig. 18 shows the execution results of 100, 500, and 1000
concurrent requests of EBI-PAI and cloud-based solutions. We
run each experiment ten times, calculate the average value,
and show the results in Fig. 19(a). With 100 requests, the
latency of EBI-PAI is 62% lower than the cloud solution. With
500 requests, the delay of EBI-PAI increases due to resource
limitations. With 1000 requests, EBI-PAI fails to satisfy user
demands. Fig. 19(b) shows the throughput under different con-
figurations. With 100 requests, the throughput of EBI-PAI is
nearly three times higher than the cloud-based solution. With
500 concurrent requests, the throughput of EBI-PAI decreases.

For deployment, we need to choose appropriate sites from
17 major cities to deploy edge servers. The goal of this deploy-
ment is to meet the QoE requirements of applications (delay
should be less than 50 ms) while minimizing the deployment
cost. The input includes a delay between major cities and the
deployment cost of each city, and we compute the optimal
deployment locations. Fig. 20 shows that MRKM needs to
deploy six sites as there are six clusters with different shapes,
GCQA needs to deploy five sites (the name is colored in red).
We can see that GCQA saves 20% deployment cost compared
with MRKM.

VIII. RELATED WORK

The Internet is facing great challenges in the new era of IoT
and AI, which will bring a huge amount of traffic [42]. Edge
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Fig. 20. Comparison of actual deployment effects of EBI-PAI under MRKM
and GCQA algorithms.

computing improves user experiences by letting users access
the computing resources with a lower distance. Nowadays,
researchers have proposed many edge computing solutions
in different fields [43], [44]. Different aspects of edge com-
puting [45] have been taken into consideration, however,
deployment of edge computing is still a big issue.

Edge servers, though densely distributed, have limited
resources and require hosted applications and services to use
them effectively. To address this challenge and the trend of var-
ious application scenarios, serverless paradigms for edge com-
puting are emerging [16]–[18]. Serverless computing, a cloud
computing model for stateless and event-driven applications, is
expected to use temporary containers to remove the burden of
always-on server infrastructures, further improving QoE. On
the other hand, the short-term and mobility characteristics of
edge users make serverless computing the most efficient and
effective way to ensure resource utilization.

In edge computing, scheduling of edge computing resources
remains challenging, and many resource scheduling schemes
for edge computing have been proposed [46]–[48]. We note
that traditional edge resource scheduling schemes focus on
the optimization of propagation latency, load imbalance, etc.,
but ignores the deployment of distributed edge servers, which
have a great impact on edge network performance [24]. In this
article, we focus on the deployment of the edge servers.

The MEC server deployment problem was studied in [24],
which shows that the locations of MEC servers have a great
impact on the QoE and operational costs. Previous works
usually use the clustering algorithm to find a suitable loca-
tion to deploy servers among all candidate locations [23],
[25], [26], [40], [49]–[51]. Among them, clustering algo-
rithms use k-means [25], [49], graph theory [40], hierarchi-
cal tree-like structures [23], [26], multiobjective constraint
optimization [50], and mixed-integer linear programming [51].
A heuristic decision-support management system for server
deployment was proposed in [41].

However, guaranteeing QoE with traditional cluster-based
algorithms is not satisfactory in terms of the cost of bud-
gets. In this article, we develop EBI-PAI to optimize server
deployment while satisfying QoE at the same time.

IX. CONCLUSION

In this article, we combined the idea of the software-defined
and serverless computing paradigm, proposed an architecture

that provides real-time services to users through MEC, and
studied the implementation of the edge computing platform
deployed within BSs, and edge server deployment issues. We
proposed EBI-PAI, a lightweight resource scheduling plat-
form, to solve resource scheduling, unified service access, and
edge computing platform implementation in the future AI +
IoT scenario. A new scheduling platform enables highly scal-
able, intelligent, and cost-effective use of edge resources with
minimal configuration and setup. Fault tolerance is an impor-
tant aspect of EBI-PAI, we will take it into consideration in
our future work, e.g., introducing multiple controllers into the
system to improve its reliability [52].
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