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A Bio-Inspired Approach to Task Assignment of
Swarm Robots in 3-D Dynamic Environments

Xin Yi, Anmin Zhu, Member, IEEE, Simon X. Yang, Senior Member, IEEE, and Chaomin Luo, Member, IEEE

Abstract—Intending to mimic the operating mechanism of bio-
logical neural systems, a self organizing map-based approach to
task assignment of a swarm of robots in 3-D dynamic environ-
ments is proposed in this paper. This approach integrates the
advantages and characteristics of biological neural systems. It
is capable of dynamically planning the paths of a swarm of
robots in 3-D environments under uncertain situations, such as
when some robots are presented in or broken down or when
more than one robot is needed for some special task locations.
A Bezier path optimizing algorithm and a parameter adjusting
algorithm are integrated in this paper. It is capable of reducing
the complexity of the robot navigation control and limiting the
number of convergence iterations. The simulation results with dif-
ferent environments demonstrate the effectiveness of the proposed
approach.

Index Terms—3-D environments, bio-inspired approach,
swarm robots, task assignment.

I. INTRODUCTION

MULTIROBOT system, such as a swarm of robots, a
group of unmanned air vehicles, or a group of mis-

siles, is a relatively new research area, which is derived
from the research and development of a single robotic sys-
tem [1], [2]. The research direction of multirobot system
focuses more on robots with individual simplicity, large-scale
in number, cooperative ability, and environmental adaptabil-
ity. Its applications are extended in a variety of fields [3].
The U.S. takes the lead in conducting research in mili-
tary applications. U.S. ARMY Research Laboratory invests
$38 million on the research of miniature robot group in
order to raise the army’s fighting capacity [4]. MIT has
designed a task-level control system for multiple unmanned
air vehicles [5]. Additionally, multirobot system for track-
ing and capturing multitarget has also been used in disaster
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relief, and environmental monitoring [6], [7]. Multirobot sys-
tem has found an increasingly wide utilization in all fields,
and has become one of the hot spots of robotics research
domain.

Due to the complexity of the multirobot system, and the
fact that researchers come from different disciplines, it is
reasonable that the research has different directions, includ-
ing architectural design of multirobot system, sensor network
research of mobile robots, communication protocol design of
multirobots, cooperative control design of multirobots, and
research of swarm robot intelligence [8]–[12]. Among these,
swarm robot collaborative-control is one of the key research
directions [13]. Collaboratively controlling a swarm of robots
to capture multiple moving targets in variable unknown envi-
ronments is an instance of this research direction. Specifically,
the aim is to control a swarm of robots with cooperation
among robots. The robots are able to collaborate expeditiously
to move to the targets’ positions without collision or severe
competition [14], [15]. However, because of the large amount
of robots, the uncertainty of moving target, and the unknown
of external environments, this paper on swarm robot control
encounters huge challenges. The challenges include a com-
plicated and robust control algorithm to adapt task allocation
with its own path planning, collision avoidance, and motion
control. This cannot be completed by simple summation of
individual robot functions. To control a swarm of robots, it
is not sufficient to adapt the robotic motion only according
to the current status of environments. The situations of the
swarm of robots, and the task targets also have to be con-
sidered to conduct behaviors of cooperation and coordination.
Actually, task assignment of a swarm robot system is an NP
problem [16]–[18].

There have been some studies on the task assignment of
multirobot systems. It can be broadly divided into two cat-
egories: 1) classic traditional algorithm and 2) intelligent
algorithm. Traditional methods create control model based
on the current information of static environments, and then
find optimal paths using conventional search methods, such
as gradient algorithm, A* algorithm, random search, and
enumeration methods [13]. These traditional methods have
obvious disadvantages, such as the presence of local mini-
mums, high computing cost, and unsolved high-dimensional
problems. Furthermore, with the increase in number of robots,
the computational complexity increases rapidly. To solve
the rapidly increasing complexity, improved traditional meth-
ods [19], [20] and intelligent algorithms including evolutionary
computing methods [21], swarm intelligence [22], neural
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computing methods [15], [23], and biological neural network
solutions [24]–[26] are proposed. Brass et al. [19] proposed
a concurrent path search technology for multirobot systems
in a tree and graphic environment. It can greatly improve
computational efficiency because the path search method for
multirobot system is simultaneous. Kotb et al. [20] proposed
a workflow-based framework for the cooperation of multi-
robots. This algorithm can obtain the minimum cost of the
path planning. However, these two multirobot path planning
methods are modified from the traditional method by simply
improving the path search strategy. These two methods can
apply only to specific environments, but not to complicated
and dynamic environments. Zhong et al. [21] proposed a task
assignment algorithm, which can make multiple aerial vehicles
attack targets with dynamic values. This method combined
multisubgroup ant colony optimization algorithm to a plan-
ning algorithm for multidestination routes, which can obtain a
reasonable result in a short time. However, this method cannot
apply to dynamic environments. Jevtic et al. [22] proposed a
distributed bee algorithm. This algorithm can run rational and
efficient task allocation regarding the efficiency and quality of
planned paths. However, it does not have avoidance mecha-
nisms and cannot achieve the requirements of real-time, online
planning and allocation. Zhu and Yang [14] proposed a self
organizing map (SOM)-based neural network, that can well
cope with the path planning problem of multirobot systems.
It can make real-time path planning in complex and dynamic
environments. Their extended work [15] considered the factor
of the robot’s orientation. The computational complexity of
the algorithm is low, and there is no “curse of dimensional-
ity” problem. However, the parameters of this algorithm are
dependent and sensitive, which can easily result in miscon-
vergence problem during the path planning iteration process.
Zhu et al. [23] improved the SOM-based neural network
method for dynamic task assignment of underwater robots on
3-D environment, which has low computational complexity,
high fault tolerance, and adaptability. However, this method
lacks fairness and load balance so that regnant robot will take
excessive restricted resources. Ni and Yang [24] proposed a
biological neural network-based model to solve the multirobot
hunting problem. Li et al. [25] also proposed a biological
neural network-based coordinated hybrid agent framework for
multirobot path planning. These two methods have lower com-
putational cost and are capable of real-time and on-line path
planning in complicated and dynamic environments. However,
these two methods have computing redundancy and storage
redundancy problems, so these cannot be applied to high
dimensional and large scale environments.

Most of the multirobot systems are considered in 2-D envi-
ronments. However, current applications, such as scientific
deep underwater robotic systems [23], [27], unmanned aerial
vehicles [28], [29], and missile defense systems [30], must
consider high dimensional space, especially in 3-D environ-
ments. Multirobot systems urge on-line path planning methods
in complicated, robust, fault tolerant, highly dynamic, and
highly dimensional environments.

In this paper, inspired by the self-organizing, self-
adaptive, self-repairing, self-perfecting, and self-optimizing

characteristics of biological systems, we intend to imitate
biological mechanisms and neural system functions, apply
the advantages and characteristics of the biological neu-
ral system to swarm robot system using SOM-based neural
network approach, and then identify the path planning of
a swarm of robots with cooperative processing capability
among robots in dynamic 3-D environments. Based on pre-
vious research [14], [15], [24], three aspects are different or
improved in this paper.

1) We complete the modeling of multirobot system in 3-D
space and proposed the task assignment algorithm for
swarm robots in 3-D environments in this paper, but
such system only considered 2-D environments in our
previous works.

2) New optimization methods are proposed to adjust the
learning rate, which is able to reduce the parame-
ter dependency and solve the misconvergence problem
occurred in our previous works.

3) Bezier-based optimization methods are applied to
smooth and stabilize the planned paths in this paper, but
our previous work cannot obtain a set of smooth and
steady paths, which increase the complexity of robotic
control.

The rest of this paper is organized as follows. In Section II,
the proposed bio-inspired approach to task assignment of
swarm robots in 3-D environments is presented. The sim-
ulation results and analysis on task assignment of swarm
robots in 3-D environments are presented in Section III.
A further discussion on simulation results about the path opti-
mization and parameter adjustment are given in Section IV.
Finally, concluding remarks and future work are presented in
Section V.

II. PROPOSED APPROACH

In this section, the proposed approach is introduced elabo-
rately. It is divided into five subsections.

1) Introduction of SOM: This section depicts the basic
theory of SOM algorithm.

2) Environmental Representation of Robots: This section
addresses the representation of swarm robots in 2-D and
3-D environments.

3) Algorithm of Path Planning: This section described the
SOM-based planning algorithm.

4) Adjustment and Optimization of Parameters: This sec-
tion introduces the drawbacks of the conventional
method in parameter-adjustment and the superiority of
the improved method in parameter-adjustment.

5) Optimization of Bezier Curving: This section presents
the correction and adjustment of path in the optimization
of Bezier curving (OBC).

A. Introduction of SOM

Inspired by the ubiquity of cortical maps in the central neu-
ral system, SOM algorithm was first introduced by Kohonen
in the 1980s [31], and extended later [32], [33]. SOM algo-
rithm is based on the idea that there is a meaningful order
of processing units in the mammalian brain, where each part
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Fig. 1. Model of SOM.

is dedicated to a specific task and each group of neurons is
sensitive to a particular type of input signal. The units are
determined by parameters which can be changed in certain
processes to produce meaningful organizations [14]. Because
of its universal applicability, SOM algorithm became a valu-
able tool and was applied to unsupervised learning, clustering,
and other issues. The mathematical model of SOM is shown
in Fig. 1, where ||dist|| is the calculating part, P is the input
vector, IW is the weight matrix, b is the threshold vector, R
and S1 are dimensions of the vectors, and C is the competitive
layer.

According to the description in Fig. 1, the competitive layer
will obtain a winner neuron. After that, both weights and
thresholds of the SOM structure are adjusted by Kohonen
rule in the neural network. The rule of weight adjustment is
described as

IWi(t) = IWi(t − 1)

+ a(t − 1)[P(t − 1) − IWi(t − 1)], i ∈ 1, 2 . . . S1

(1)

where IWi(t) is the weight of the ith neuron in the tth calculat-
ing process, a(t − 1) is the result vector in the tth calculating
process, P(t − 1) is the input vector in the tth calculating
process, and i is the serial number of neuron.

B. Environmental Representation of Robot

The omni-directional mobile robot in 2-D space can be
described mathematically as a vector (x, y, θ), where x is the
coordinate value in the x-axis, y is the coordinate value in
the y-axis, and θ is the angle between the x-axis and the
direction of the robot. The mathematical representation of
omni-directional mobile robots in 2-D space are described as
follows:

−→ri = (xi, yi, θi), θi ∈ (−π, π); i = 1 . . . n (2)

where i is the index of the robot and n is the number of robots.
The omni-directional mobile robot in 3-D space is dif-

ferent, which can be described mathematically as a vector
(x, y, z, α, β), where x is the coordinate value in the x-axis,
y is the coordinate value in the y-axis, z is the coordinate
value in the z-axis, α is the angle between the direction of
the robot and the XOY plane, and β is the angle between pro-
jection of direction of robot in the XOY plane and the x-axis.

Fig. 2. Attributes of robot.

The mathematical attributes of omni-directional mobile robot
in 3-D space are described as follows:

−→ri = (xi, yi, zi, αi, βi), αi ∈
(
−π

2
,
π

2

)
, βi ∈ (−π, π);

i = 1 . . . n (3)

where i is the index of the robot and n is the number of robots.
The attributes of a robot are shown in Fig. 2.

The targets have some attributes in 3-D space are described
as follows:

−→tj = (
xj, yj, zj

)
j = 1 . . . m (4)

where j is the index of a target, and m is the number of targets.

C. Algorithm of Path Planning

The proposed path planning algorithm is based on SOM
neural network, which has more efficiency, fault tolerance,
and robustness. It can plan paths for a swarm of robots on-
line. Details of the path planning algorithm are explained as
follows.

1) Model of the Input Layer: There are three input neu-
rons in the input layer, which represent xj, yj, and zj of the
vector described in (4), respectively. The winning rules are
described as
−→
Tk =

[−→tj
]
, j ∈ [1, m]

⇐ random
{−→tj =(

xj, yj, zj
); j = 1...m

}
, k = 1 . . . (5)

where
−→
Tk is the kth input vector, which is selected randomly

from all of the target vectors and includes the same attributes
of the selected target vector.

2) Model of the Competitive Layer: Each neuron represents
a robot in the competitive layer, respectively, which includes
the same attributes of the relative robot. The winning rules are
described as

−→
Rk = [−→ri

]
, i ∈ [1, n]

⇐ min
{

Dist
(−→

Tk ,
−→ri , ω

)
, i = 1 . . . n

}
, k = 1 . . . (6)

where
−→
Rk is the kth result vector,

−→
Tk is the kth input vector,

ω is the weight parameter, and Dist(
−→
Tk ,

−→ri , ω) is a distance
function described as follows:

Dist
(−→

Tk ,
−→ri , ω

)
= |−→Tk − −→ri | (7)

|−→Tk − −→ri | =
√(

xj − xi
)2 +

√(
yj − yi

)2 +
√(

zj − zi
)2

+ ω × ��ij, i ∈ 1, 2 . . . n, j ∈ 1, 2 . . . m

(8)
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Fig. 3. Angles of robot in 3-D space.

where j is the index of input vector, i is the index of the
robot, and ��ij is the angle between direction of the robot
and direction of the target.

Fig. 3 demonstrates the related angles. The details of these
angles are defined as

��ij = arcos
(
cos

(
αij − αi

)
cos

(
βij − βi

))

i = 1 . . . n, αij ∈
(
−π

2
,
π

2

)
, βij ∈ (−π, π) (9)

αij = artan

⎛
⎜⎝ zj − zi√(

xj − xi
)2 + (

yj − yi
)2

⎞
⎟⎠, αij ∈

(
−π

2
,
π

2

)

(10)

βij = ar sin

⎛
⎝ yj − yi√(

xj − xi
)2 + (

yj − yi
)2

⎞
⎠, βij ∈ (−π, π)

(11)

where αij, αi, βij, and βi are shown in Fig. 3, j is the index of
the input vector, and i is the index of the robot.

3) Parameter Adjustment Rules: Parameter adjustment
rules can be divided into weight adjustment, learning rate
adjustment, and scope adjustment.

The weight adjustment method is described in (12). When
the distance between the winning neuron and the input vector
is close sufficiently, the winning neuron is adjusted to the input
vector. Otherwise, the second equation will be adopted

−−−→ri,k+1 =
⎧⎨
⎩

−→
Tk Dist

(−→
Tk ,−→ri,k, ω

)
< ς min

−→ri,k + λ(k,η)f
(−→ri,k,

−→
Rk , k, G

)(−→
Tk − −→ri,k

)
other

(12)

where ς is convergence parameters, min is the minimal dis-
tance among robots, λ(η, k) is the function of the learning rate,

and f (−→ri,k,
−→
Rk , k, G) is the function of the scope.

The learning rate adjustment method is described as

λ(k, η) = (1 − dec)k−1η (13)

where k is the iterations, η is the initial learning rate, and dec
is the rate of descent. Details of the improved adjustment of
learning rate is discussed in Section II-D.

Fig. 4. Misconvergence problem by using traditional adjustment of learning
rate.

The scope adjustment method is described as

f
(−→ri,k,

−→
Rk , k, G

)
= e

−

(−→
Rk − −→ri,k

)2

(1 − dec)k−1G (14)

where −→ri,k is the vector of the ith robot in the kth iteration,
−→
Rk

is the vector of the winning robot in the kth iteration, dec is
the rate of descent, and G is the initial scope. Equation (14)
states that the affected scope of the winning neurons decreases
gradually along with the increase of iterations.

D. Optimization of Adjustment Parameters

In traditional parameter adjustment methods, the learning
rate is decreased in accordance with a certain rate, which
causes bad results for the swarm robot systems. Assume that
a robot is surrounded by several targets and some other robots
are far away from these targets, then the closer robot is hover-
ing among these targets while others cannot participate in the
competition. These are severe drawbacks of traditional param-
eter adjustment methods for path planning as shown in Fig. 4.
Some sequent influences are issued.

1) The robots are hovering among the multiple targets,
This makes the paths complicated and increases the
complexity of robotic control.

2) It is easy for the “Hovering” robot to be the winner,
while others are difficult because they are far away from
the target. It is unfair for the competition and unbalanced
for the whole system.

3) Because the Hovering robots win frequently, the number
of iterations is increased without control. Therefore, the
convergence of the task assignment for swarm robots
becomes uncertain.

Because there are more parameters and more complex
topologies in high dimensional space than in low-dimensional
space, these problems occur far more frequently in the high-
dimensional space than in low-dimensional space. It means
that the probability of these problem occurring in 3-D space
is much higher than that in 2-D space. In addition, because
the misconvergence of the path planning occurs easily and the
parameters are required stringently, the traditional learning rate
adjustment method (13) is sensitive to the descent rate and the
number of iteration.
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In traditional methods for adjusting the learning rate (13),
the initial assumption is η, and N is the summation of robot
iterations, described in the following equation:

η + (1 − η)η + (1 − (1 − η)η − η)η . . . + (1 − η)N−1 η

= η
(
1 − (1 − η)N)

1 − (1 − η)

= (
1 − (1 − η)N)

. (15)

Therefore, only if (16) is true, the robot can reach at the
target

(
1 − (1 − η)N)

< 1 − ς (16)

where ς is the convergence parameter in (12). Then, N >

log(1−η)ς can be deduced from (16).
To solve these problems, two improved methods for adjust-

ing the learning rate are proposed [31], defined as the
following equations:

λ(k, η) =
{

η
(

k
nNδ

− 1
)2

0 < k < nNδ

η k > nNδ
(17)

and

λ(k, η) =
{

η
[
1 − sin

(
πk

nNδ

)]
0 < k < nNδ

η k > nNδ
(18)

where k is the number of iterations, n is the number of robots,
and δ is a parameter. Its value is represented by the fol-
lowing equations, respectively. δ = (2/

∫ 2
0 (x − 1)2dx) = 3,

and δ = (π/
∫ π

0 (1 − sin x)dx) = (π/π − 2). One of the two
improved methods can be used to replace (13). Compared with
the traditional method which adjusts the learning rate (13),
the improved methods in (17) and (18) do not need to set
the reducing parameter dec, and can guarantee that the path
planning can converge under the constant number of iterations.

E. Optimization of Bezier Curving

Because the above algorithm produces a set of unsmoothed
and concussive paths when planning the paths of a swarm of
robots, the complexity of the control of robots will be sub-
stantially increased. Therefore, a Bezier curving optimization
method is integrated in the algorithm to smooth the paths.

It is commonly known that the original path before opti-
mization is composed of several segments in the 3-D environ-
ment, which is described by piecewise function

Path(l) =
⎧⎨
⎩

X(l)
Y(l)
Z(l)

0 ≤ l ≤ L (19)

where l is the path length of path range from origin to current
point and L is the total length of the planning path.

The Bezier curving is described as

B(t) =
n∑

i=0

Pibi,n(t), t ∈ [0, 1] (20)

where bi,n(t) is the nth order Bernstein basement polynomial,
which is defined as

bi,n(t) =
(

n
i

)
ti(1 − t)n−i, i = 0, . . . n (21)

and Pi is the ith control point, which is defined as

Pi = (xi, yi, zi). (22)

To keep the coherence between the un-optimized path and
the optimized one, all control points must be selected from
the un-optimized path during the process of Bezier curving
optimization, i.e., Pi = Path(li). The choice of the control
point Pi will directly affect the optimization performance.
Therefore, three different methods of choosing the control
point are introduced as follows.

1) Segmental Points: The first method of choosing
the control points is named segmental points (SGPs).
Assume that there are some un-optimized paths li (i ∈
1, 2, . . . , n ∧ 0 ≤ li ≤ L), and it satisfies the equation
(dPath(l)/dl)|l=l+i

�= (dPath(l)/dl)|l=l−i
. Then we set A =

{ Path(li) i = 1, 2, . . . , n ∧ 0 ≤ li ≤ L }, which includes all the
SGP on the function Path(l), where n is the number of set.
The definition of segmental point is described as

Pi = Path(li) = (X(li), Y(li), Z(li)) ∧ Pi ∈ A, i = 1, 2, . . . n

(23)

which guarantees that the control points Pi are selected from
the un-optimized path Path(l).

2) Equal-Length Point: The second method of choosing the
control points is named equal-length point (ELP). This method
takes some points from the path Path(li), and these points have
equal length of path dist. The definition of equal-length point
is described as⎧⎨

⎩
Pi = Path(li) = (X(li), Y(li), Z(li))

∧ |li − li−1| = dist, i ∈ 2, 3 . . .

P1 = Path(l1) = (X(l1), Y(l1), Z(l1)) ∧ l1 = 0.

(24)

The length dist is longer, and the number of equal-length
point is fewer.

3) Equidistant Point: The third method of choosing the
control points is named equidistant point (EDP). This method
takes some points from the path Path(li), and these points have
equal distance dist in 3-D space. The definition of equidistant
point is described as⎧⎨

⎩
Pi = Path(li) = (X(li), Y(li), Z(li))

∧ Euclid(Pi, Pi−1) = dist, i ∈ 2, 3 . . .

P1 = Path(l1) = (X(l1), Y(l1), Z(l1)) ∧ l1 = 0
(25)

where Euclid() is an operator of Euclid distance, and dist is
the distance in 3-D space. Every two adjacent points have the
same distance.

The performance of the three methods are different. By anal-
ysis (23)–(25), the performance of EDP is better than that of
ELP, and the performance of ELP is better than that of SGP.

In the proposed approach, the robot motion planning is inte-
grated with the path planning, thus the robots start to move
once the overall task assignment. The robot navigation has
the desired number of robots, even under uncertainties such
as when some robots break down. Then proposed approach is
capable of dealing with real-time and changing environment.
The complexity of the optimization in one iteration is deter-
mined by the number of robots and the number of operational
control points. During the whole process of path planning, the
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number of the control points using SGP method is the number
of segmental points, while the number of control points using
the other two methods is 	L/dist
. Therefore, the complex-
ity of the whole optimization process is O(n), where n is the
number of robots. These optimization methods fit the online
requirements of swarm robot system in real-time and dynamic
environments.

III. SIMULATION RESULT AND ANALYSIS

In order to demonstrate the effectiveness of the proposed
algorithm for task assignment of swarm robots in 3-D dynamic
environments, four different cases are studied in this section,
including two cases for the comparison with the original algo-
rithm, one case with arbitrary number of robots and targets
with unexpected events such as some robots breaking down,
and one case in a dynamic environment. For every case, the
3-D workspace is 100 × 100 × 100. The algorithms are coded
in MATLAB and implemented on a PC with an Intel Q8400
CPU, 4 GB RAM, and Win 7 operating system.

A. Comparison Studies

To demonstrate the effectiveness of the proposed algorithm,
a comparison study of original algorithm published for 2-D
environments in [14] and [15] is conducted in this section
with two cases.

In the first case, the initial positions of robots and targets are
allocated randomly in the 100×100×100 space. The number
of robots is n = 20. The number of targets is m = 20. For the
improved algorithm proposed in this paper, the initial learning
rate of the parameter adjustment is η = 0.5 and the conver-
gence rate is ς = 0.1. The comparison results are shown in
Fig. 5. Fig. 5(a) shows the results by using the original algo-
rithm. Not all of the 20 robots can arrive successfully to the
positions of the targets, while the path is unsmooth and the
number of iterations is above 5000. Fig. 5(b) shows the results
by using the improved algorithm optimization of adjustment
parameters (OAPs). All of the targets are caught by robots
under 257 iterations. The improved algorithm is better than
the original one, but the paths are unsmooth. Fig. 5(c) shows
the results by using the improved algorithm, which means
using OAP and OBC, proposed in this paper. All of the targets
are caught by robots with smooth and steady paths, while the
number of iterations is just 257.

In the second case, the initial positions of the robots and
targets are extreme. Some robots are surrounded by several tar-
gets, while some robots are far away from any target. Fig. 6(a)
shows this situation. In this case, the number of robots is
n = 6, the number of targets is m = 6, but Robot R1
is surrounded by five targets, while Robot R2 is far away
from any target. As shown in Fig. 6(b), by using the orig-
inal algorithm, Robot R1 is hovering among the surrounded
targets while Robot R2 is not moving a step, which makes the
swarm of robots unable to converge even up to 5000 iterations.
By using the improved algorithm proposed in this paper, the
swarm of robots can catch all the targets with smooth paths
as shown in Fig. 6(b).

Fig. 5. Comparative results of path planning algorithms. (a) Using the original
algorithm without optimization. (b) Using it with OAP. (c) Using it with OAP
and OBC.

B. Arbitrary Number of Robots and Targets

The proposed algorithm is robust and fault-tolerant. It can
work in cases with arbitrary number of robots, targets and
unexpected events with satisfaction. It allows for a sudden
change of the environment such as a breakdown of some robots
during the movement. Fig. 7 shows this kind of situation.
There are 20 robots and 15 targets randomly distributed in
the 100 × 100 × 100 space. Assume that each robot has cer-
tain breakdown probability during the task process. It is set
as 0.02 in this case. When a robot breaks down, it will stop
and cannot execute the task anymore. This means other robots
have to replace this broken robot to finish its task.

The simulation result is shown in Fig. 7, where the squares
indicate the positions of the targets, the circles represents the
initial positions of the robots, the real red lines are the paths
of the robots, the asterisks indicate the positions of the broken
robots, and the triangles indicate the positions of the nonstarted
robots because of redundancy. These results show that all of
the targets are caught by robots with smooth paths even when
some robots are broken down during the process.
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(a)

(b)

Fig. 6. Comparative results of path planning algorithms in extreme situations.
(a) Using the original algorithm without optimization. (b) Using the proposed
algorithm with optimizations.

Fig. 7. Experiment of reliability.

If the number of targets is higher than the number of robots,
these robots also can reach the targets one by one. From the
mathematical perspective, it is easy to achieve. This is one of
the advantages of this algorithm. According to this algorithm,
especially under unpredictable and dynamic environments, any
change in the number of robots would not affect task comple-
tion. When a robot reaches any target, it will become free
again. This free robot will immediately enter the competition
of catching other targets.

C. In Dynamic Environment

The improved algorithm proposed in this paper can work
properly in dynamic environments. In this case, assume that
each target can move randomly in the workspace. Robots can
still catch the target individually. Fig. 8 shows the results,
where the squares represent initial positions of the targets and
the asterisks depict the positions of the caught targets.

Fig. 8. Experiment of dynamic environment.

(a) (b)

(c) (d)

Fig. 9. Result of Bezier optimization using SGP, ELP, and EDP. (a) Original
path. Path by (b) SGP, (c) ELP, and (d) EDP.

IV. FURTHER DISCUSSION

In this section, a further discussion on simulation results
about the path optimization and parameter adjustment is pre-
sented in detail, including Bezier optimization, parameter
adjustment, and the online ability of the path planning.

A. Bezier Optimization

Bezier optimization methods are discussed in this section
with simulation results in Fig. 9. An original path generated by
the original method is illustrated in Fig. 9(a), where the starting
point (marked as a circle) of the path is (2, 1, 1), and the
destination (marked as a square) is (14, 4, 4). This means that a
robot is marching from point (2, 1, 1) to point (14, 4, 4). Based
on the same situation, three different methods of choosing
the control points are applied to optimize the path as shown
in Fig. 9(b)–(d). These three different methods named SGP,
ELP, and EDP, described in Section II-E. It is obvious from
this figure that the EDP method is the best one of the three
optimization methods.

In comparison of these three methods theoretically, four
evaluation items are introduced, including average angular
velocity, total length of path, maximum angular velocity, and
deviation of the path. Details are described as follows.

1) Average Angular Velocity: It is described as

AVG =
∫ L

0 |ω(l)|dl∫ L
0 dl

(26)

where ω(l) is the angular velocity when the robot
marches to l along the path Path(l). This value AVG
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TABLE I
COMPARISON RESULTS BY DIFFERENT PARAMETERS

is the major one of the evaluation items used to analyze
the complexity of robotic control.

2) Total Length of Path: It is described as

Length =
∫ L

0
dl (27)

where L is the total length of the path Path(l).
3) Maximum Angular Velocity: It is described as

MAX = max(|ω(l)|), 0 ≤ l ≤ L (28)

where max() is the maximum operator. This value MAX
is a minor one of the evaluation items in the analysis of
the complexity of robotic control.

4) Deviation of the Path: It is described as

Dev =
∫ L

0 Euclid

(
Pathopt

(
l × Lopt

L

)
, Path(l)

)
dl

∫ L
0 dl

(29)

where Lopt is the total length of the optimized path, and L
is the total length of the original un-optimized path. This
value analyzes the difference between the optimized path
and the original un-optimized path.

Several experiments are conducted using different parame-
ters. Table I summarizes the results in detail.

As shown in Table I, the complexity of robotic control
is decreased after the optimizing process by Bezier curving.
Meanwhile, three different methods (named SGP, ELP, and
EDP) of choosing control point, have different performance
on optimization. The performance of all optimized paths is
better than the original un-optimized one. EDP has the best
performance among three methods, while SGP is the easiest
method to realize. However, the higher both dist and num are,
the lower both MAX and AVG are. Hence, the complexity
of robotic control decreases and the deviation between un-
optimized paths and optimized paths increases. In conclusion,
the Bezier curving optimization can decrease the complexity
of robotic control effectively and lead to better performance.

B. Parameter Adjustment

To analyze the effectiveness of the parameter adjustment,
100 experiments with 20 randomly distributed robots and tar-
gets are conducted. Because all the iteration numbers using

Fig. 10. Iteration number using two methods. (a) First method by (17).
(b) Second method by (18).

the original method are over 4000. Fig. 10 records only the
iteration numbers using two different parameter adjustment
methods with three different learning rate.

In Fig. 10, the left and right column figures are the exper-
imental results using two methods, respectively. These two
methods are described in (17) and (18). The top, middle, and
bottom figures are the results using the initial learning rate
0.4, 0.5, and 0.6, respectively.

As shown in Fig. 10, by adjusting parameters, the improved
methods not only reduce two parameters in the original method
to one, but also enable the number of iterations controllable
and reduce the dependency and sensitivity of the parameters.

C. Online Ability

To analyze the online processing ability, 100 experiments
are carried out in this section. In these experiments, the num-
ber of robots is n = 20. The number of targets is m = 20. The
initial positions of robots and targets are allocated randomly
in the 100 × 100 × 100 workspace. The initial learning rate
is η = 0.5 using method (17). The convergence parameter is
ς = 0.1. Table II shows the statistical results extracted from
the above 100 experiments with comparison of three different
methods. One is the original method named SOM, and one is
the improved method with only parameter adjustment named
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TABLE II
STATISTICAL RESULT OF COMPARISON

SOM+OAP, one is the improved method with parameter
adjustment and Bezier curving named SOM+OAP+OBC.

As shown from Table II, the average iteration using the
improved methods is much lower than that using original
methods, and the average processing time using the improved
methods is also less than that using original methods. The
improved algorithm SOM+OAP decreases the number of
iterations effectively. Even if the improved path planning algo-
rithm SOM+OAP+OBC has two processes of optimization,
the processing time is still low and less than the original
method. This meets the requirements of real-time and online
path planning in dynamic and complex environments.

V. CONCLUSION

An improved path planning approach is proposed for task
assignment of swarm robots in 3-D dynamic environments
in this paper. With a self-organizing process, the proposed
approach has some interesting features and advantages. It is
suitable for online path planning with arbitrary number of
robots and tasks. It is capable of dealing with sudden changes
in the situation such as the breakdown of some mobile robots.
It can deal with changing environments such as movable tar-
gets. It can generate steady and smooth paths and reduce
the complexity of robotic control with strong fault tolerance
and robustness. Compared with the original approach, the
improved aspects are summarized as follows.

1) The improved approach extends to 3-D environments
from the original 2-D environments.

2) In order to solve the misconvergence problem in the
original approach, two optimizing methods of adjusting
the learning rate are proposed, which enable all of the
robots to converge in controllable iterations.

3) Bezier path optimization methods are applied to achieve
smooth and steady paths with reduction of the complex-
ity of robotic control.

In this paper, the cooperation and coordination among a
large number of robots and target positions in dynamic 3-D
environments are mainly considered, while obstacle avoidance
situation is not considered. In our earlier study [34], obstacle
avoidance situation is considered in 2-D environments. For
further work, it would be taken into account in detail.
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