Lift: Exploiting Hybrid Stacked Memory for Energy-
Efficient Processing of Graph Convolutional Networks

Jiaxian Chen, Zhaoyu Zhong, Kaoyi Sun, Chenlin Ma, Rui Mao, Yi Wang
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Abstract—Graph Convolutional Networks (GCNs) are powerful
learning approaches for graph-structured data. GCNs are both
computing- and memory-intensive. The emerging 3D-stacked
computation-in-memory (CIM) architecture provides a promising
solution to process GCNs efficiently. The CIM architecture can
provide near-data computing, thereby reducing data movement
between computing logic and memory. However, previous works
do not fully exploit the CIM architecture in both dataflow and
mapping, leading to significant energy consumption.

This paper presents Lift, an energy-efficient GCN accelerator
based on 3D CIM architecture using software and hardware co-
design. At the hardware level, Lift introduces a hybrid architecture
to process vertices with different characteristics. Lift adopts near-
bank processing units with a push-based dataflow to process
vertices with strong re-usability. A dedicated unit is introduced to
reduce massive data movement caused by high-degree vertices. At
the software level, Lift adopts a hybrid mapping to further exploit
data locality and fully utilize the hybrid computing resources.
The experimental results show that the proposed scheme can
significantly reduce data movement and energy consumption
compared with representative schemes.

Index Terms—3D-Stacked Memory, Computation-in-Memory,
Graph Convolutional Networks, Accelerator.

I. INTRODUCTION

Graph convolutional networks (GCNs) are popular learning
approaches for graph-structured data [1]. GCNs are widely
applied to social networks, recommendation systems, and
other specific domains [2]. GCNs mainly consist of two time-
consuming phases: (1) combination and (2) aggregation. These
two phases have different computation and memory access
characteristics. The combination phase typically uses a multi-
layer perceptron (MLP), while the aggregation phase acts like
graph processing, where each vertex aggregates features from
its neighboring vertices. In the aggregation phase, significant
data movement is incurred by the sparse and uncertain topology
of the input graph, which poses a severe challenge to the energy-
efficient processing of GCNs.

Many domain-specific architectures have been proposed to
address the challenge for GCNs [3-5]. Some previous works
focus on reducing redundant memory accesses and computation
[6-8]. Although these works can effectively improve the
performance of GCNs, they still suffer from enormous data
movement due to the sparse input graph. Some works rely
on dedicated buffers to alleviate irregular data access [4, 9].
However, the large dimension of the vertex features seriously
degrades the efficiency of the on-chip buffers. The above works
only partially solve the problem by reducing random memory
accesses. The data movement issue still exists, which leads to
significant energy consumption.

The computation-in-memory architecture provides a promis-
ing solution to reduce data movement. The advanced 3D memory
stacks multiple DRAM dies on a base die, offering considerable
capacity and bandwidth. With the emerging integrated circuit
technology, computing units can be placed in memory to take
advantage of the huge DRAM capacity for data reuse. Therefore,
data movement between memory and computing units can be
significantly reduced. The recent work GCIM [10] adopts the
3D CIM architecture with near-bank CIM units to accelerate
GCNs. GCIM does not fully exploit the 3D CIM architecture,
leading to significant cross-bank data movement and energy
consumption. We argue that the data movement issue mainly
comes from unoptimized mapping and dataflow.

To address these challenges, this paper present Lift, an energy-
efficient GCN accelerator based on 3D CIM architectures. The
objective is to fully exploit the 3D CIM architecture and reduce
energy consumption caused by data movement. As a hardware
and software co-design solution, Lift optimizes the 3D CIM
architecture and the processing of GCNs. At the hardware
level, Lift proposes a near-bank processing unit with push-based
dataflow for efficient data reuse. A dedicated processing unit
is also introduced to reduce massive data movement incurred
by high-degree vertices. At the software level, Lift presents a
hybrid mapping to exploit data locality and fully utilize the
hybrid computing resources. Lift is compared with the baseline
scheme GCIM in terms of energy, latency, and data movement.
The experimental results show that the proposed scheme can
reduce data movement by 86% on average and achieve 6.05 x
energy reduction in comparison with baseline schemes.

The main contributions of this work can be summarized as
follows:

e A near-bank processing CIM architecture is proposed to
leverage data locality and alleviate cross-bank data fetching
caused by high-degree vertices.

o A hybrid mapping strategy is proposed to reduce data
movement and facilitate the proposed architecture.

o As a proof of concept, we compare the proposed approach
with representative schemes using a set of GCN workloads
and graph datasets.

The rest of this paper is organized as follows. Section II
provides an overview of the background and discusses the
motivation of this paper. Section III presents the proposed
technique in detail. Section IV shows the experimental results
with discussion. Finally, in Section V, we conclude this paper
and discuss the future work.

Combination

Features

Aggregation

S
&
/
/ \
/ \

Shared
Weights

i
2> &
g

S o-¥ H
(b)

Fig. 1: (a) Input graph. (b) Inference procedure of a typical
GCN model.

II. BACKGROUND AND MOTIVATION
A. Graph Convolutional Networks

Figure 1 illustrates the inference procedure of a typical
GCN model with one graph convolutional layer. The input
of a GCN model is a graph G(V, E) with feature properties
(Figure 1(a)), where V and E denote vertices and edges,
respectively. Within the input graph, the features of each vertex
are represented by a feature vector. As shown in Figure 1(b),
a graph convolutional layer typically consists of two phases:
combination and aggregation. The features of each vertex
are updated continuously with the execution of these phases.
In the combination phase, the feature vector of each vertex
is transformed into a new one via Combine functions. In
the aggregation phase, each vertex gathers all features of its
neighboring vertices and then generates a new feature vector
using Aggregate functions (e.g., Mean function). For example,
in Figure 1(b), V; gathers features of its neighbors V5 and V7,
while V7 gathers features from its neighbors Vi, Vi, and V5.
After applying multiple graph convolutional layers, the output
features can extract the high-level structural information from
the input graph. The k-th layer can be abstracted as:

X = g(AXFWF) (1)

where A is a sparse matrix derived from E. X* and W* are
matrices. They represent features of vertices and weights of the
MLP model in k-th layer, respectively. o denotes non-linear acti-
vation functions. Since each layer is abstracted into matrix chain
multiplication, the execution order between the combination and
aggregation phases can be changed. Previous works [3, 9] show
that the combination first approach (A(X*WW*)) can reuse the
sparse-dense matrix multiplication (SpMM) kernel for these
two phases and reduce arithmetic computation. Therefore, the
proposed Lift adopts the combination first approach.

B. 3D Computing-in-Memory Architecture

Figure 2 shows the 3D CIM architecture based on high
bandwidth memory (HBM) [11]. With the emerging 3D-stacking
technology, multiple DRAM dies stack on the top of a base
die, providing significant memory bandwidth. DRAM dies and
the base die are connected using through silicon vias (TSVs).
The base die mainly consists of I/O circuits and components
to support testing and debugging. As shown in Figure 2(a), a

o sy Bank
86 8
24 288 L4 -
l 868 !_
V4 % o o /ABIZFIBO Cell Array
w1
Zilll \
[N
| AU S om [_sver]
AT SOt [EEEEE

[

@ (b)

Fig. 2: (a) A typical HBM-based 3D CIM architecture. (b) A
bank with a CIM unit.

DRAM die has two channels. Each channel consists of bank
groups and TSV I/O circuitry. A bank group contains several
banks (e.g., 2 banks). Within a bank, there are DRAM cell
arrays with sense amplifiers, row and column decoders, I/O
sense amplifiers (IOSAs), and write drivers (WTD). To support
near-data computing, a portion of banks are equipped with CIM
units (Figure 2(b)), each of which contains SRAM buffers and
processing elements (PEs).

C. Pull-based and Push-based Dataflows

There are two typical strategies for the aggregation phase,
pull-based dataflow and push-based dataflow. As shown in
Figure 3(a), with pull-based dataflows, each vertex (e.g., V1)
will pull the features of its neighboring vertices to perform
computation. From the matrix perspective, the access to rows
in matrix X*WW* is random due to the uncertain distribution of
non-zero elements in matrix A. In contrast, each row of matrix
X*+1 is accessed sequentially for the row-by-row accumulation.
Therefore, the data reuse of matrix X*W* is poor, while that
of matrix X**! is good. Push-based dataflows broadcast the
features of each vertex to its neighbors, as shown in Figure 3(b).
Thus, each row of matrix X*WW* only needs to be loaded once.
However, to accumulate the partially aggregated features, matrix
X**1 will be accessed randomly. Both two dataflows can also
be adopted by the combination phase for its SpMM kernel.

D. Motivation

Data movement takes up most of the system energy consump-
tion. In 3D CIM architecture, the data movement issue mainly

1234567

(—W)

1 X X 111 Element
‘ g s [] Performing
@ @ (V9 () 2 X[[X x = Computing
' 5(x| [x]|x]| [x[x
6 X[[x
v HITEE] O _ g Aauregated
@ @ 1234567 Feature
1 x| [x
AN ==
3 Ix] [x[x
(0) @—(V=—() [T [x[[x[| x = Partially
' SIX] IxIx[Ix|x [&] Aggregated
@ @ g % § % X Feature
ﬁ kak Xk+l

Fig. 3: (a) Pull-based dataflow. (b) Push-based dataflow

Push Pull

CAM

4

N\
IQ/y 8868
— 4\
@r
[" nx L =

=l | =

4
rAJUT
ZI
AN $

(@

Fig. 4: A motivational example to illustrate data movement
issues.

Buffer

e Edge - Feature o Aggr Feature

comes from two aspects: unoptimized mapping and dataflow.
For the purpose of illustration, we use a motivational example
to explain this issue. For mapping, aggregation operations
are mapped to the CIM units to enjoy considerable DRAM
bandwidth. However, as shown in Figure 4(a), the high-degree
vertices (e.g., V5) will gather all their neighbors from different
banks and even different channels during the aggregation phase.
This incurs significant data movements. For dataflow, a pull-
based aggregation strategy is adopted to take advantage of large
DRAM capacity. Due to the uncertain graph topology, features
of each vertex will be accessed dynamically. The addresses of
cross-bank features need to be recorded by content addressable
memory (CAM), as shown in Figure 4(b). Therefore, the limited
capacity of CAM will lead to frequent fetching operations.
We argue that a hybrid mapping and a push-based strategy can
effectively solve the data movement issue. First, by offloading
the high-degree vertex to the base die, the cross-channel data
movement could be significantly reduced. Second, by adopting a
push-based aggregation strategy, features of each vertex will be
moved to a bank once according to Section II-C. This requires
further both architectural and system software supports. These
observations motivate us to propose a hardware and software co-
design approach to exploit the emerging 3D CIM architecture.

III. LIFT: AN ENERGY-EFFICIENT 3D CIM ACCELERATOR
FOR GCNs

A. System Overview

This paper presents Lift, a hardware and software co-design
GCN accelerator based on the 3D CIM architecture. The
objective is to minimize data movement and reduce overall
energy consumption. At the hardware level, we propose a
lightweight processing unit (LPU) with a push-based dataflow
for each CIM bank group. To process high-degree vertices
efficiently, we present an auxiliary processing unit (APU) at
the base die. At the software level, we adopt a hybrid mapping
strategy to exploit potential data locality and fully utilize the
valuable computing resources.

B. Architecture Design

Based on the conventional 3D CIM architecture (Figure 2),
we modify its architecture and add dedicated logic to address
the data movement issue for GCNs. Specifically, We introduce

two dedicated processing units, including an LPU for each CIM
bank group and an APU at the base die.

1) Lightweight Processing Unit: Typically, the capacity of
each bank group is large enough to buffer over 10° feature
vectors. Thus, we introduce LPUs for bank groups to enjoy
considerable DRAM capacity and reduce data movement.
Figure 5 illustrates the hardware design of an LPU. Each
LPU consists of an input vector buffer, a look-ahead FIFO, a
control unit, and multiply-accumulate (MAC) arrays for matrix
operations. The look-ahead FIFO is a customized scratchpad
memory and is used to buffer sparse matrix and hide latency.
The input vector buffer is deployed to buffer input vectors,
including rows of weight matrix W* or matrix W*X*.

LPUs process the SpMM kernel using push-based dataflow.
Compressed sparse column (CSC) format is adopted for the
sparse matrix to adapt the push-based dataflow. To process the
SpMM, each LPU will read a portion of the sparse matrix from
banks within the current bank group and buffer these data at
the look-ahead FIFO. After that, the column index of the sparse
matrix will be obtained and used to prefetch the corresponding
input vector from non-CIM bank group. The fetched input
vector will be transferred through TSV bus and bank group bus.
They are finally stored at the input vector buffer. Since each
input vector can be fully reused, it only needs to be temporarily
buffered rather than stored in memory banks. Then, MAC arrays
will multiply each input vector by the non-zero elements of the
sparse matrix and generate partially accumulated vectors. These
vectors will be written to I/O sense amplifiers (IOSAs) that are
connected with MAC arrays, and flushed back to memory bank
cells. After the execution of the SpMM, each output vector
that is fully accumulated will be written back to non-CIM bank
groups, waiting for further processing.

2) Auxiliary Processing Unit: Lift introduces an APU at
the base die to process the high-degree vertices. Although
only a small portion of vertices are with a high degree, they
usually incur severe cross-bank-group and even cross-channel
data movement. It is worse for cross-channel data movement.
Data will be transferred from one channel to the base die and
then further moved to the target channel, which needs to move
the data twice. Thus, Lift offloads high-degree vertices to the
base die to alleviate such data movement.

The hardware design of APU is shown in Figure 6. APU
mainly consists of MAC arrays and dedicated buffers. High-
degree vertices are cache-friendly for their number is much

Bank Bank

Cell Array

S

Fig. 5: A near-bank processing unit for a bank group.

Cell Array,

Controller

Look-Ahead
FIFO

Input Vector
Buffer

Bank Group Bus

MAC Array

Look-Ahead
FIFO
Sparse Matrix

Buffer

Prefetcher

Input Vector
Buffer

(I
| I | Output Vector
Controller | RCATES Buffers
_________ k-)

Fig. 6: The auxiliary processing unit at the base die.

lower than that of other vertices. Moreover, vertices with high
degrees are also highly reusable since their output vector (or
partially accumulated vectors) will be used as many times as
their degree. Due to these factors, multiple output buffers are
deployed to provide considerable on-die bandwidth and fully
reuse the output vectors. Only a few of the dedicated buffers are
used to temporarily cache the sparse matrix and input vectors.

APU adopts the push-based dataflow to reuse input vectors,
as high-degree vertices usually have many common neighbors.
Thus, the workflow of APU is similar to that of LPU. To process
the SpMM, APU will fetch non-zero elements of the sparse
matrix and prefetch input vectors from DRAM dies. Then, the
input vector buffer will broadcast vectors to MAC arrays to
perform vector-scalar multiplications. The partially accumulated
vectors will temporarily store in their corresponding buffer. After
the execution of the SpMM, each output vector will be flushed
back to DRAM.

C. Hybrid Mapping

Although Lift introduces LPU and APU for the efficient
processing of GCNs, there still lacks a mapping strategy to
fully utilize hybrid computing resources provided by the 3D
CIM architecture. Lift presents a hybrid mapping to jointly
optimize both data locality and hardware utilization to reduce
data movement and energy consumption. Vertices with strong
connections can be mapped to LPUs for in-memory data reuse,
whereas vertices with high-degree can be mapped to APU to
alleviate cross-channel data movement. The hybrid mapping is a
two-stage approach, where an initial mapping will be generated
and then reallocated to reduce overall processing latency.

1) Generating an Initial Mapping: The initial mapping
will decide which types of processing units vertices map
to according to the computing capability. Assume that the
computing capability of LPUs and APU are capy, and capy ,
respectively; and the number of input graph’s edges and vertices
are numpg and numy, respectively. Then, the threshold of
vertex degree thry can be obtained, where the total edge number
of vertices with degree greater than thry just exceeds:

capa
erpg = —— - n

ume)
capr, + capa

Vertices with degrees greater than thry will be mapped to APU,
while vertices with degrees less than or equal to thry will be
mapped to LPUs. To fully utilize the parallelism of CIM bank

Algorithm 1 Generating an initial mapping for LPUs

Require: The expected number of edges assigned to each LPU expr,
and the initial search depth of BDFS init_depth.

Ensure: LPUs’ mapping result LPU|].

1: id <0

2: for w € V do

3: if visit[u] # true then

4: BDFS(u, init_depth, id)

5 if LPU|[id].edge > expr, then

6: id <+ id+1

7: function BDFS(u, depth, id)

8 if depth > 0 and LPU[id].edge < expy, then

9: visitlu] < true

10: if u.degree < thry then

11: Assign(LPUid], u)

12: for v € Neighbor(u) do

13: if wvisit[v] # true then
14: BDFS(v, depth — 1,1id)

15: end function

groups, Lift defines the expected number of edges assigned to
each LPU:

capr, - numg
capr, + capa) - nump,

3

erpr = (

where numy, is the number of LPUs.

To map vertices among LPUs without destroying data locality,
bounded depth-first search (BDFS) is applied for the input graph.
Algorithm 1 illustrates the generating of an initial mapping for
LPUs. Lift will traverse each vertex in a depth-first manner.
Vertices with degrees less than or equal to thry will be mapped
to the current LPU LPU [id] (Lines 10-11). Once the number of
edges assigned to the current LPU exceeds expr,, the remained
vertices will be assigned to the next LPU (Lines 5-6). After
BDFS-based traversal, all vertices are mapped to different LPUs.

2) Reallocation using Linear Programming: The initial
mapping only considers the computing capability of processing
units in spite of the latency of memory access. Such a mapping
will cause an unbalanced workload and increase the overall
processing latency and energy consumption. Thus, Lift applies
the reallocation to further minimize the processing latency.

To measure the latency, we introduce a simplified performance
model as follows:

{ APU.t = T4(APU.mem, APU.cmp)

LPUi].t = Tt (LPU[i].mem, LPU[i].cmp) “)

where APU.mem and APU.cmp are the volumes of memory
access and computation for APU, respectively; and function 74 ()
is used to estimate APU’s processing latency APU.t using the
sum of APU’s memory access latency and computation latency.
Similarly, LPUTi|.t is the estimated processing latency of i-th
LPU. To avoid unbalanced traffic caused by memory access,
Lift uses a round-robin based method to map the feature matrix
and other data evenly among non-CIM bank groups. Thus, Lift
adopts the average latency to estimate each memory access.
Lift reallocates edges and vertices assigned to each processing
unit using linear programming to minimize the latency. We use
2;(i <nump) and x4 to decide how many edges should be
reallocated between LPUs and APU, where there is). z; +
x4 = 0. Cost functions C4() and C;() are used to estimate

the average latency change due to the reallocation per edge for
i-th LPU and APU, respectively. To formulate this problem,
we use latency L to denote the maximum latency between all
processing units. Then, this problem can be solved efficiently
using the following linear program:

minimize L

subject to > . xi+xa =0
APUL + Ca(za) <L ©)
Vi : LPU[i].t + CZ(ZL‘Z) <L
For i-th LPU with z; less than zero, it needs to offload several
vertices with the highest degree to APU until x; edges are
offloaded. Similarly, ¢-th LPU with z; greater than zero will be
reassigned vertices from APU.

IV. EVALUATION
A. Experimental setup

Workloads. As shown in Table I, five frequently used graph
datasets are adopted in the evaluation. A set of representative
GCN applications are used, including GCN [1], GraphSage
(GS) [12] and GINConv (GIN) [13]. Each GCN application has
two layers with a hidden size of 128.

Simulation and Synthesis. To evaluate the performance
of our approach, we modify and extend DRAMSim3 [14], a
cycle-accurate memory simulator, to support CIM operations
for GCNs. We measure the power, area, and delay of each
component for simulation. Computing logic is implemented in
Verilog and synthesized using Synopsys Design Compiler with
the 90 nm library. CACTI [15] is adopted to estimate scratchpad
memory, interconnect components, and 3D-stacked DRAM. All
these components are converted to 32 nm technology.

Baselines. We compare Lift with HyGCN [4] and GCIM [10].
HyGCN [4] is a typical GCN accelerator with two hybrid
processing engines, while GCIM [10] is a 3D CIM architecture
with a pull-based dataflow for GCNs. Therefore, HyGCN and
GCIM are selected for comparison. To evaluate the hybrid
mapping scheme, we compare Lift with Lift-D. Lift-D only
adopts LPUs. The hardware configuration of Lift is shown in
Table II. For a fair comparison, HyGCN, GCIM, Lift-D, and
Lift use 8 GBytes 3D-stacked memories with 256 GBytes/s off-
chip bandwidth. HyGCN and GCIM both adopt 2,304 MACs as
described in [10], while Lift-D and Lift both adopt 768 MACs.

B. Results and Discussion

1) Power and Area: Table III shows the power and area of
two computing units, LPU and APU. These extended computing
units introduce extra 2.9 W power consumption. An area
overhead of 0.1098 mm? for each LPU takes up only 1.1% of

TABLE I: Graph datasets.

Dataset ~ # of vertices # of edges # of features # of classes
Citeseer (CS) 3,327 9,104 3,703 6
Cora (CR) 2,708 10,556 1,433 7
DBLP 17,716 105,734 1,639 4
Pubmed (PB) 19,717 88,648 500 3
Reddit (RD) 232,965 114,615,892 602 41

TABLE II: Hardware configuration of Lift.

Configuration
HBM 16 channels per stack, 8 bank groups per channel,
Organization 4 banks per bank group, 32 CIM bank groups
HBM tRCD = 10, tRAS = 17, tRC = 25, tCAS = 14

tRP = 10, tRRD =5

1 KBytes look-ahead FIFO,
2 KBytes input vector buffer, 16 MACs (500 MHz)

Timing (ns)

LPU

8 KBytes sparse matrix buffer,
16 KBytes input vector buffer,
512 KBytes output buffer, 256 MACs (500 MHz)

APU

TABLE III: The power and area of different logic modules.

Module Component Power (mW) Area (mm?)
MAC Arrays 30.85 0.0659
LPU Input Vector Buffer 7.77 0.0251
Look-Ahead FIFO 6.99 0.0188
MAC Arrays 493.73 0.5273
APU Dedicated Buffers 961.37 2.1837
Others 23.66 0.0213

a bank group’s area. APU accounts for 1.7% of an HBM’s area
(i.e., 158 mm?). Lift will not introduce extra area overhead for
the base die since there is enough area budget [16].

2) Energy Consumption: Figure 7 presents the normalized
energy consumption of different benchmarks. From the experi-
mental results, Lift can significantly reduce energy consumption.
This is mainly due to the adoption of the CIM architecture. The
proposed Lift can achieve 6.33x, 6.05%, and 1.25x energy
savings compared to HyGCN, GCIM, and Lift-D, respectively.
Lift also applies APU to alleviate data movement caused by high-
degree vertices. This helps further reduce energy consumption.

3) Speedup: Figure 8 presents the speedup of different
benchmarks. The proposed Lift can achieve average speedups
of 8.69x, 4.43x, and 1.06x compared to HyGCN, GCIM,
and Lift-D, respectively. This is due to adopting near-bank
computing units with the push-based dataflow. This can help
reduce the processing latency caused by data movement. For GS
applications, Lift does not outperform Lift-D. This is because
vertices are sampled, and there is no high-degree vertex.

4) Energy Breakdown: Figure 9 shows the energy consump-
tion breakdown for GCIM, Lift-D and Lift, where labels “G”, “D”

16 [C_JHycen[_Jeeim] Lift-D I Lift
>
w10
he)
S
T
£
S
4
Q S (R Af 0% a®
60\4 V\O?’yc,ﬁ?) \\“o oW V\O% O\V\ \$\?~06,0 90 ,O%\’cﬁ'? (,9’\3

Fig. 7: Energy consumption for HyGCN [4], GCIM [10], Lift-D,
and Lift.

2 [C_JHyGCN] GCiM [Lift-D I Lift
18
15
o
212
[}
29
9 6
3
0
fosd ,o?l foy °° ,cﬁ‘ £\ 20 O
OCS 002(.)\ V\ (‘,\$ ('9\$ $ \\A $ 65 6‘5 6 9 6

Fig. 8: Speedup for HyGCN [4], GCIM [10], Lift-D, and Lift.

] Static [1MAC Dynamic [] SRAM Dynamic|

GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL GDL

S P _o° ®©
00\\\ Ocﬁ \\\0 O\A 0\4 G\\A \W $0?> @\$?06@@60060 N ,?Og@

Fig. 9: Energy breakdown for GCIM [10], Lift-D, and Lift.

and “L” represent these three schemes, respectively. Dynamic
DRAM has the highest proportion of energy consumption.
GCIM, Lift-D, and Lift consume 15.44%, 3.85%, and 3.80% of
the total energy for dynamic 3D interconnect energy, respectively.
Lift has the least consumption of dynamic interconnect energy.
This is mainly due to the joint optimization of the dataflow and
mapping for the CIM architecture.

5) Data Movement: This section presents the experimental
results for the volume of data movement. As shown in Figure 10,
Lift has the least data movement among these schemes. Com-
pared to GCIM, Lift-D and Lift reduce average data movement
by 84% and 86%, respectively. The performance gain mainly
comes from the adoption of push-based dataflow and hybrid
mapping, both of which can help reduce data movement.

V. CONCLUSION

This paper presents Lift, a hardware and software co-design
approach to exploit the energy-efficient processing of GCNs
on the 3D-stacked CIM architecture. At the hardware level,
Lift optimizes the system architecture by integrating dedicated
computing units for vertices with different characteristics. At the
software level, Lift presents a hybrid mapping to leverage hybrid
computing resources and exploit potential data locality. This

5] GCiv [Lift-D [Lift
£1.0

g

©0.8

=

©06

®©

004

©

(]

~NO0.2

g 0.0 I I I I I l I [] [] I [] I []
S X3) < Q 0% a0
S o*oo*o 0"’”@’? $ 0‘* w" &QC;:»O o 0""”09’? 0

Fig. 10: Data movement for GCIM [10], Lift-D, and Lift.

joint optimization effectively captures the execution pattern
of GCNs and fully utilizes the computing capability of the
CIM architecture. The experimental results show that Lift can
significantly reduce data movement and energy consumption
compared with representative schemes. In the future, we plan
to work on parameterized compiler design space exploration
and obtain accurate execution patterns of GCN applications.

VI. ACKNOWLEDGMENT

This work was supported in part by NSFC (61972259,
62072311, 62122056, 62102263, and U2001212), in part by
Guangdong Basic and Applied Basic Research Foundation
(2019B 151502055, 2020B1515120028, 2022A1515010180),
in part by Shenzhen Science and Technology Program
(RCJC20221008092725019, JCYJ20210324094402008,
JCYJ20210324094208024, and 20220810144025001), in part
by Tencent “Rhinoceros Birds” - Scientific Research Foundation
for Young Teachers of Shenzhen University. Yi Wang is the
corresponding author.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in ICLR, 2017, pp. 1-14.

[2] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph
Neural Networks and Reinforcement Learning,” in DAC, 2020, pp. 1-6.

[3] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che,
S. Reinhardt, and M. C. Herbordt, “AWB-GCN: A Graph Convolutional
Network Accelerator with Runtime Workload Rebalancing,” in MICRO,
2020, pp. 922-936.

[4] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,

and Y. Xie, “HyGCN: A GCN Accelerator with Hybrid Architecture,” in

HPCA, 2020, pp. 15-29.

S. Mondal, S. D. Manasi, K. Kunal, and S. S. Sapatnekar, “GNNIE: GNN

Inference Engine with Load-Balancing and Graph-Specific Caching,” in

DAC, 2022, pp. 565-570.

[6] Z. Zhou, B. Shi, Z. Zhang, Y. Guan, G. Sun, and G. Luo, “BlockGNN:

Towards Efficient GNN Acceleration Using Block-Circulant Weight

Matrices,” in DAC, 2021, pp. 1009-1014.

T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt, Y. Lin,

and A. Li, “I-GCN: A Graph Convolutional Network Accelerator with

Runtime Locality Enhancement through Islandization,” in MICRO, 2021,

pp. 1051-1063.

C. Chen, K. Li, Y. Li, and X. Zou, “ReGNN: A Redundancy-Eliminated

Graph Neural Networks Accelerator,” in HPCA, 2022, pp. 429-443.

[9] J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A Flexible and

Energy-Efficient Accelerator for Graph Convolutional Neural Networks,”

in HPCA, 2021, pp. 775-788.

J. Chen, Y. Lin, K. Sun, J. Chen, C. Ma, R. Mao, and Y. Wang, “GCIM:

Toward Efficient Processing of Graph Convolutional Networks in 3D-

Stacked Memory,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 3579-3590, 2022.

S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,

K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and

N. S. Kim, “Hardware Architecture and Software Stack for PIM Based

on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021,

pp. 43-56.

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation

Learning on Large Graphs,” in NIPS, 2017, pp. 1024-1034.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph

Neural Networks?” in ICLR, 2019, pp. 1-17.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMSim3: A

Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer

Architecture Letters, pp. 106-109, 2020.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.

Jouppi, “CACTI-3DD: Architecture-Level Modeling for 3D Die-Stacked

DRAM Main Memory,” in DATE, 2012, pp. 33-38.

X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and Y. Xie,

“SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory

Accelerator,” in HPCA, 2021, pp. 570-583.

[5

—_

[7

—

[8

[

[10]

[11]

[12]
[13]

[14]

[15]

[16]

