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Abstract

Code search is a highly required technique for software
development. In recent years, the rapid development of
transformer-based language models has made it increasingly
more popular to adapt a pre-trained language model to a code
search task, where contrastive learning is typically adopted
to semantically align user queries and codes in an embed-
ding space. Considering that the same semantic meaning can
be presented using diverse language styles in user queries
and codes, the representation of queries and codes in an em-
bedding space may thus be non-deterministic. To address
the above-specified point, this paper proposes an uncertainty-
aware contrastive learning approach for code search. Specif-
ically, for both queries and codes, we design an uncertainty
learning strategy to produce diverse embeddings by learning
to transform the original inputs into Gaussian distributions
and then taking a reparameterization trick. We also design a
hard negative sampling strategy to construct query-code pairs
for improving the effectiveness of uncertainty-aware con-
trastive learning. The experimental results indicate that our
approach outperforms 10 baseline methods on a large code
search dataset with six programming languages. The results
also show that our strategies of uncertainty learning and hard
negative sampling can really help enhance the representation
of queries and codes leading to an improvement of the code
search performance.

Introduction
In software development, a code search technique is highly
required for programmers to retrieve relevant programming
libraries (Singer et al. 2010; Nie et al. 2016; McMillan et al.
2011). In recent years, transform-based language models
have become increasingly more powerful, so it has been a
popular strategy to adapt a pre-trained language model to a
code search task (Feng et al. 2020; Guo et al. 2021, 2022;
Romera-Paredes et al. 2024; Hu et al. 2024; Phan and Jan-
nesari 2024). In this context, code search can be achieved by
measuring the matching degree of each query-code pair and
then ranking the retrieved codes according to their degrees
of matching with the given natural language query.

In recent years, related studies have paid more attention to
improving the effectiveness of measuring the similarity be-
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tween queries and codes through enhancing their represen-
tation in an embedding space. Specifically, a pre-trained lan-
guage model that is adapted to a code search task is expected
to produce meaningful embeddings of queries and codes,
such that the similarity of each query-code pair can be mea-
sured accurately. In other words, it is generally expected to
align queries and codes in an embedding space, where con-
trastive learning has been adopted typically to achieve the
alignment by pulling each positive query-code pair closer
and pushing each negative pair further away (Wang et al.
2021b,a; Jain et al. 2021; Guo et al. 2022). Some recent
code search methods driven by contrastive learning include
CodeRetriever (Li et al. 2022) and CoCoSoDa (Shi et al.
2023), which have demonstrated their effectiveness in rep-
resentation alignment of each positive query-code pair.

Despite the above-mentioned effectiveness of existing
code search methods, it is worth noting that diverse language
styles can be used in user queries and codes for presenting
the same semantic meaning, so it may be inappropriate to
consider the representation of queries and codes in an em-
bedding space to be deterministic. In other words, it seems
more reasonable to produce diverse embeddings for queries
and codes for expecting a representation enhancement.

We address above concerns by proposing an uncertainty-
aware contrastive learning with hard negative sampling ap-
proach. Specifically, we propose a strategy of uncertainty
learning to produce diverse embeddings for queries and
codes, and design a way of constructing hard negative query-
code pairs, in order to improve the effectiveness of inter-
modality alignment (for positive query-code pairs) and intra-
modality alignment (for positive pairs of queries and codes).
The contributions of this paper are summarised as follows:

• We have proposed an uncertainty-aware embedding strat-
egy to obtain diverse representation of queries and codes
for better aligning positive pairs of queries and codes.

• We have designed a strategy of hard negative sampling to
augment the negative query-code pairs for better aligning
positive query-code pairs.

• Experimental results show that our approach outperforms
baselines of code search on a dataset with six program-
ming languages and indicate the effectiveness of incor-
porating uncertainty learning and hard negative sampling
into a contrastive learning-driven method of code search.
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Related Work
Code Search Topics about learning code representation
become increasingly more popular, proving benefits for
tasks like code summarization, search, completion, and
commit message generation in software engineering. Code
search is especially important, aiding development and
maintenance by swiftly locating relevant code snippets that
meet product needs and enhance productivity.

Early code search engines use information retrieval to find
code fragments. These techniques rely on keyword matching
between a query and a code, focusing on textual similarity.
Recently, deep learning has received great attention, lead-
ing to more studies on deep code search that leverages neu-
ral networks to extract high level semantic information of
codes and queries. Code2Vec (Alon et al. 2019) is a foun-
dational work in code understanding, which represents code
snippets as fixed-length vectors. Gu, Zhang, and Kim pro-
posed the first deep learning-based model for code search
tasks, which is referred to as ‘CODEnn’ and maps codes and
queries into a unified semantic space using a recurrent neu-
ral network. The code represented as a graph can retain more
information than a sequence representation. Some methods
(Ling et al. 2021; Liu et al. 2023; Zeng et al. 2023) construct
codes as graph-structured data, where graph neural networks
are used to encode the data. In recent years, the utilization of
large pre-trained models has markedly improved the under-
standing of code semantics. CodeBERT (Feng et al. 2020),
which is pre-trained on query-code pairs, learns the seman-
tic relationship through masked language modeling (MLM)
and replaced token detection (RTD) tasks. Guo et al. pro-
posed GraphCodeBERT, which undertakes MLM, edge pre-
diction, and node alignment tasks to guide a model to learn
code structure and data dependencies. UniXcoder (Guo et al.
2022) is pre-trained with MLM, unidirectional language
modeling (ULM), and denoising tasks. It enhances semantic
code representations using multi-modal contrastive learning
with abstract syntax tree (AST) and cross-modal generation
with code comments.

Code Search With Contrastive Learning Recently,
many researchers (Gao, Yao, and Chen 2021; Yan et al.
2021; Zhang et al. 2022) incorporated contrastive learning
into Transformers for aligning positive text pairs while dis-
tancing negative ones, and the results have indicated the ef-
fectiveness of contrastive learning in enhancing the text rep-
resentation. Thus, there have been several approaches that
were designed to integrate contrastive learning into code
search (Li et al. 2023; Hu et al. 2023; Li, Zhou, and Shen
2024; Phan and Jannesari 2024) for improving performance
by constructing positive and negative code pairs. For exam-
ple, CodeRetriever (Li et al. 2022) implemented unimodal
and bimodal contrastive learning. Code pairs are collected
through unsupervised learning based on documentation and
function names. Shi et al. proposed CoCoSoDa that in-
volves a soft data augmentation method to construct pos-
itive code pairs and utilize a momentum encoder for con-
sistent negative samples generation to enhance code search
performance using contrastive learning. Unlike the above-
mentioned sampling techniques, we design a strategy that

can achieve positive pairs sampling based on the data dis-
tribution obtained by uncertainty learning. Also, we explore
combining BM25 (Robertson et al. 1995) and cosine simi-
larity, considering pair relation from multiple perspectives.

Uncertainty Learning In recent years, there have been in-
creasingly more studies on uncertainty modelling in deep
learning (Shen et al. 2023; Zhang and Wang 2023; Zhang
et al. 2024). There are two main types of uncertainty, i.e.,
model uncertainty (Gal and Ghahramani 2016; Kendall and
Cipolla 2016), which is related to parameter noise and indi-
cates the prediction confidence of a model, and data uncer-
tainty, which is associated with noise in training data.

Gal and Ghahramani proposed a theoretical frame-
work which leverages dropout training as an approximate
Bayesian inference in deep Gaussian processes and effec-
tively reduces model uncertainty while maintaining com-
putational efficiency. Advances in data uncertainty learn-
ing have been applied to computer vision tasks such as
face recognition (Khan et al. 2019), semantic segmentation
(Isobe and Arai 2017; Salvi et al. 2024; Gupta et al. 2024),
and person Re-ID (Yu et al. 2019; Dou et al. 2022), which
enhances the model robustness and interpretability by ad-
dressing uncertainty. Chang et al. proposed to identify in-
herent data uncertainty in the continuous mapping spaces
and on specific face datasets, and incorporate data uncer-
tainty learning into the face recognition model. To the best of
our knowledge, uncertainty learning in code search is under-
explored, so we design in the next section a strategy of learn-
ing representation uncertainty to address the diversity in lan-
guage styles used for presentations of queries and codes.

Proposed Approach
In this section, we present our proposed approach of code
search, which consists of contrastive learning, hard negative
sampling and uncertainty-aware embedding of queries and
codes. Specifically, we set two subtasks of contrastive learn-
ing for inter-modality alignment and intra-modality align-
ment, respectively. The former subtask is to align positive
query-code pairs and the latter one aims at aligning positive
pairs of queries and codes, where a hard negative sampling
strategy is designed to create hard negative query-code pairs
and an uncertainty-aware embedding method is designed to
construct query and code pairs. The entire process of the
proposed approach is illustrated in Figure. 1.

For aligning the positive query-code pairs given in a data
set, we need to construct more negative pairs. Specifically,
in each batch, we set to have k positive pairs and construct
2k2−k negative pairs in total, where k(k−1) negative pairs
are obtained by combining query qi (i = 1, 2, . . . , k) in the
i-th positive pair with each of the codes {ci′}i′ ̸=i in the other
k − 1 positive pairs and the remaining k2 negative pairs are
produced by taking our strategy of hard negative sampling.

In the setting of hard negative sampling, our strategy is
to find k queries for each code to construct k hard negative
query-code pairs, where k is the number of positive pairs
in each batch for a contrastive learning task. Specifically,
while each query qi in the set Q is used in turn as an anchor,
each of the other |Q| − 1 queries is combined with qi to
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Figure 1: Overview of our proposed approach.

make up a query pair that is supposed to be a negative one,
and the similarity of each pair is calculated to select Top-
k candidates. Furthermore, the BM25 strategy (Robertson
et al. 1995) is taken to finally select the k

10 -th query pair from
the candidates in order to avoid sampling a false negative.
Finally, the anchor qi in the selected query pair and the code
c−i corresponding to the other query q−i in the selected pair
make up a hard negative query-code pair in the batch. In
addition, we also set to combine c−i with each of the other
k − 1 queries in the same batch to make up a hard negative
query-code pair. Therefore, given each query qi as an anchor,
k hard negative query-code pairs are constructed, and there
are totally k2 hard negative query-code pairs created in each
batch that has k queries used as anchors.

For aligning positive query pairs, as shown in Figure. 1,
a query qi is initially transformed into a vector zqi by using
CoCoSoDa with a pooling operation that takes the average
of the token embeddings from the last layer. In the setting
of uncertainty-aware embedding, qi is initially transformed
into vector z′qi by using CoCoSoDa with our designed pool-
ing operation that concatenates the average of the token em-
beddings from the last layer, the average of that from the
first and last layers, the average of that from the last two
layers and the [CLS] embedding from the last layer. Fur-
thermore, z′qi is mapped into a Gaussian distribution, where
the mean µqi and the variance σqi of the distribution are
learned simultaneously by setting two fully connected layers
in parallel and are considered as the expected representation
of a query semantically similar to qi and the corresponding
uncertainty, respectively. Through a reparameterization trick
(µqi + ϵσqi , ϵ ∼ N (0, I)), a vector of query qi is obtained,
which can be combined with zqi to make up a positive pair in
a batch for contrastive learning. Since ϵ is obtained by sam-
pling from N (0, I), we set to sample multiple values of ϵ

for reparameterization to produce multiple vectors for each
query and then select the vector z+qi that is the most simi-
lar to zqi for constructing the positive pair. In addition, the
selected vector z+qi is also combined with each other vector
zqi′ to make up negative pairs, where zqi′ is obtained using
CoCoSoDa for representing each other query qi′ in the same
batch. In this context, while each batch consists of k queries,
there are k positive query pairs and k(k − 1) negative pairs.
The same procedure specified above is also applied to pro-
ducing diverse embeddings for each code ci and aligning
positive code pairs.

The loss function set for our proposed approach is shown
in Eq. (1), which consists of three terms, namely, contrastive
loss Lcl1 illustrated in Eq. (2) for aligning positive query-
code pairs, contrastive loss Lcl2 illustrated in Eq. (3) for
aligning positive pairs of queries and codes and KL diver-
gence regulariser Lkl illustrated in Eq. (4).

In Eq. (1), λ is a regularisation coefficient. In Eq. (2), zqi
and zci make up a positive query-code pair, zqi and zcj make
up an in-batch negative query-code pair, zqi and z−cj consti-
tute a hard negative query-code pair and τ represents the
temperature parameter of a softmax function.

Ltotal = Lcl1 + Lcl2 + λLkl (1)

Lcl1 = − log
esim(zqi ,zci )/τ∑k

j=1(e
sim(zqi ,zcj )/τ + esim(zqi ,z

−
cj

)/τ )
(2)

In Eq. (3), zqi and z+qj make up a negative query pair, z+qi is a
positive sample with respect to the query anchor zqi , zci and
z+cj constitute a negative pair of codes and z+ci is a positive

18809



Language Training Dev Test Candidates size

Python 251,820 13,914 14,918 43,827
PHP 241,241 12,982 14,014 52,660
Go 167,288 7,325 8,122 28,120
Java 164,923 5,183 10,955 40,347
JavaScript 58,025 3,885 3,291 13,981
Ruby 24,927 1,400 1,261 4,360

Table 1: Dataset statistics.

sample with respect to the code anchor zci .

Lcl2 = −(log
esim(zqi ,z

+
qi
)/τ∑k

j=1 e
sim(zqi ,z

+
qj

))/τ
+

log
esim(zci ,z

+
ci
)/τ∑k

j=1 e
sim(zci ,z

+
cj

)/τ
)

(3)

Lkl = KL[N (z+qi |µqi , σ
2
qi) ∥ N (ϵ|0, I)]+

KL[N (z+ci |µci , σ
2
ci) ∥ N (ϵ|0, I)]

(4)

In Eq. (4), the two terms are provided to drive the uncer-
tainty learning for queries and codes, respectively. As in-
spired from Chang et al., it is encouraged to have large σ for
some queries and codes and small σ for the others. In our
setting, it is expected intuitively to obtain large σ for those
queries and codes that can be presented in more diverse lan-
guage styles, and to have small σ for the others that have
limited language styles for presentations.

Experiments
Datasets
We conducted experiments on the CodeSearchNet code
corpus (Husain et al. 2019), to be consistent with Guo
et al.. CodeSearchNet contains six languages, namely, Ruby,
JavaScript, Go, Python, Java, and PHP, and has been widely
used in previous studies. To make the experimental setup
closer to the real scenarios, Guo et al. expanded the candi-
date dataset and filtered out low-quality queries on each code
corpus through rules, where the data statistics are shown in
Table 1. Following previous studies, in the inference phase, a
model retrieves the semantically closest code snippets from
the candidate set based on the given query.

Implementation Details
In previous studies on code search (Feng et al. 2020; Guo
et al. 2021; Wang et al. 2021b), it is common practice to
use other code snippets in other query-code pairs within the
same batch as negative examples for a given query-code pair.
This paper evaluates this conventional approach, which is
referred to as “In-Batch Negative” in Table 2, and compares
the approach with the “Hard Negative” method, which is in-
tegrated into our proposed negative sampling technique. The
analysis of model performance under the “Hard Negative”
setting will be further detailed in this section.

We implement a dual encoder model using a Trans-
former architecture that has 12 layers, 768-dimensional hid-
den states, and 12 attention heads. The parameters of the pre-
trained CoCoSoDa (Shi et al. 2023) are utilized to initialize
this dual encoder. To reduce the total number of parameters,
we follow previous studies by sharing parameters between
the query encoder and the code one. For training, we set the
batch size to 128, the temperature hyperparameter to 0.03,
the number of epochs to 10, and the random seed to 123456.
The maximum sequence lengths are set to 256 for code snip-
pets and 128 for queries. We use the AdamW optimizer with
a learning rate of 8e-6. All experiments were conducted on
a machine equipped with four NVIDIA GeForce RTX 4090
GPUs which each has 24GB of memory.

Baselines
We compare the proposed approach with 10 baseline meth-
ods specified as follows:
• RoBERTa (code) (Guo et al. 2021) is pre-trained with

MLM objective on large code corpus. To improve model
performance, key hyperparameters are modified and the
next sentence prediction task is omitted.

• CodeBERT (Feng et al. 2020) extends the RoBERTa
framework by pre-training on both bimodal and uni-
modal data. To leverage both modalities, a hybrid objec-
tive that integrates MLM and RTD tasks is constructed.

• GraphCodeBERT (Guo et al. 2021) is pre-trained on
large code corpus by considering semantic structures of
code, where edge prediction and variable alignment tasks
are set for learning to capture structural information.

• SynCoBERT (Wang et al. 2021a) integrates source code,
AST, and comment for syntax-driven multimodal con-
trastive pre-training, with objectives for identifier predic-
tion, AST edge prediction and contrastive learning.

• UniXcoder (Guo et al. 2022) is a unified cross-modal
pre-trained model that takes AST and code comments as
inputs, involving MLM, ULM, denoising objectives, and
multi-modal contrastive learning.

• CodeRetriever (Li et al. 2022) employs both unimodal
and bimodal contrastive learning, and integrates Sim-
CSE to train a matcher, while retrieving through function
names and documentation to collect positive pairs.

• Soft-InfoNCE (Li et al. 2023) is an extension of vanilla
InfoNCE with a weight term to explicitly model relation-
ships of negative pairs. The weight terms are estimated
using BM25, SimCSE, and Trained Models.

• TOSS (Hu et al. 2023) involves a two-stage fusion frame-
work that employs text matching or bi-encoder methods
in the first stage and uses cross-encoder reranking to en-
hance performance in the second stage.

• CoCoSoDa (Shi et al. 2023) integrates momentum en-
coders to produce consistent negative code pairs and in-
volves a soft data augmentation method to create positive
pairs to set unimodal and bimodal contrastive learning.

• SEA (Hu et al. 2024) splits long code via AST, encodes
blocks into embeddings, and aggregates these based on
attention to form comprehensive code representations.
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Model Ruby Javascript GO Python Java PHP AVG.

RoBERTa (code) (Guo et al. 2021) 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT (Feng et al. 2020) 0.693 0.706 0.840 0.869 0.748 0.706 0.760
GraphCodeBERT (Guo et al. 2021) 0.703 0.644 0.897 0.692 0.691 0.649 0.713
SYNCOBERT (Wang et al. 2021a) 0.722 0.677 0.913 0.724 0.723 0.678 0.740
UniXcoder (Guo et al. 2022) 0.740 0.684 0.915 0.720 0.726 0.676 0.744
CodeRetriever (Li et al. 2022) 0.771 0.719 0.924 0.758 0.765 0.708 0.774
Soft-InfoNCE (Li et al. 2023) 0.753 0.693 0.916 0.728 0.733 0.684 0.751
TOSS (Hu et al. 2023) 0.765 0.696 0.918 0.760 0.750 0.692 0.763
CoCoSoDa (Shi et al. 2023) 0.818 0.764 0.921 0.757 0.763 0.703 0.788
SEA (Hu et al. 2024) 0.776 0.742 0.921 0.754 0.768 0.748 0.785
Our (In-Batch Negative) 0.825 0.775 0.923 0.768 0.769 0.717 0.796
Our (Hard Negative) 0.829 0.778 0.926 0.773 0.772 0.719 0.800

Table 2: Performance of different approaches on MRR. Results on compared models are from the previous papers

In our experiments, the effectiveness of our proposed
method is evaluated by comparing with the state-of-the-art
pre-trained models. The results on baseline models are taken
from their original papers or previous studies.

Evaluation Metrics
We use four evaluation metrics to measure the perfor-
mance, namely, mean reciprocal rank (MRR) and top-k re-
call (R@k, k = 1, 5, 10), which are widely used in infor-
mation retrieval. MRR is defined as the mean of the recipro-
cal rankings of the target codes (corresponding to the given
queries in set Q) in the candidate sets. R@k metric quantifies
the proportion of queries which each identifies the correct
code snippet within the returned list of k ranked candidates.
They can be calculated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

Ranki
, R@k =

1

|Q|

|Q|∑
i=1

δ(Ranki ≤ k)

(5)
where Ranki is the serial number of the target code frag-

ment in the candidate queue corresponding to the i-th natural
language query. δ(·) is an indicator function that returns 1 if
Ranki ≤ k and returns 0 otherwise.

Results on Comparisons with Baselines
We compare our proposed method with six pre-training-
based methods and four fine-tuned models on CodeSearch-
Net to evaluate the effectiveness. To ensure fairness in the
comparison, the results reported in the previous papers for
the baseline methods are used. Experimental results on MRR
are presented in Table 2, while the results on R@k(k =
1, 2, 3) are shown in Figure 2. Due to space limitations, we
only present R@k results for some of the models. Conclu-
sions on MRR are consistent with ones on R@k.

The results shown in Table 2 indicate that our approach
performs better than all those baseline methods. The results
also demonstrate that incorporating hard negative sampling
to construct more negative query-code pairs in addition to
in-batch negative pairs leads to performance improvements,

Figure 2: Performance of the various approaches evaluated
on R@k(k = 1, 5, 10), with identical models indicated by
the same colour. HN is short for Hard Negative.

suggesting that negative query-code pairs with higher sim-
ilarity have some impacts on model performance. Figure 2
shows that the improvement in R@k metrics becomes more
apparent as the size of the candidate set of code snippets is
decreased for a given query. The phenomenon indicates that
our approach can achieve accurately matching and selecting
relevant code snippets even when the candidate set is small.

Moreover, compared with models trained on both codes
and natural language queries, Roberta (Guo et al. 2021),
which is trained only on a code corpus, demonstrates lim-
ited performance in downstream tasks. Among the rest of the
models, GraphCodeBERT introduces dataflow information
considering the semantic structure of the code and thus out-
performs CodeBERT. The contrastive learning based models
outperform others in code search tasks, demonstrating the
superior effectiveness of contrastive learning in represen-
tation enhancement. Unixcoder and SynCoBERT perform
better, while syntax information is utilized and AST of the
code is incorporated into multi-modal contrastive learning

18811



Method Ruby Javascript Go Python Java PHP AVG.

Bi+Uni+sort+HN 0.829 0.778 0.926 0.773 0.772 0.719 0.800
Bi+Uni+sort+RS 0.823 0.777 0.923 0.768 0.770 0.716 0.796
Bi+sort+HN 0.822 0.771 0.924 0.764 0.767 0.710 0.793
Bi+Uni+sort 0.825 0.775 0.923 0.768 0.769 0.717 0.796
Bi+Uni 0.822 0.774 0.919 0.769 0.768 0.714 0.794

Table 3: Ablation study.

task during pre-training period. Considering the potential
relationships between negative codes, UniXcoder, which is
fine-tuned using Soft-InfoNCE loss, may learn better repre-
sentation that helps improve the code search performance.
TOSS combines different methods to increase recall di-
versity and achieve higher accuracy. CodeRetriever, which
is fine-tuned on GraphCodeBERT, achieves better perfor-
mance than UniXcoder and SynCoBERT, due possibly to
an effective positive pair construction method that enlarges
the corpus. We can also observe that the SEA method us-
ing GraphCodeBERT as a code encoder improves the code
search performance over other Transformer-based models,
thanks to the AST-based splitting and attention-based aggre-
gation. CoCoSoDa, which involves soft data augmentation
and utilises a momentum encoder to enrich samples used in
a batch, shows its superiority over the other baselines.

Ablation Study
To evaluate the impacts of those components of our ap-
proach, some ablation experiments are conducted. Specif-
ically, we analyze the contributions of hard negative sam-
pling, uncertainty-aware embedding, and contrastive learn-
ing methods. Herein, Bi and Uni denote bimodal and uni-
modal contrastive learning, respectively, whereas HN and
RS represent hard negative sampling and random sampling
methods. Sort indicates the candidate sorting module.

Table 3 shows that the removal of any component re-
sults in a degradation of the model performance, demon-
strating that each component can impact the code search
performance. The performance can be improved by incor-
porating the candidate sorting module to select candidates
closer to the query in an embedding space. Specifically, the
absence of uncertainty-aware embedding and intra-modal
contrastive learning leads to a considerable decline in per-
formance. This decline may be attributed to the case that
uncertainty-aware embedding enhances representation di-
versity and increases the difficulty of aligning positive pairs
of queries and codes, while intra-modal contrastive learn-
ing ensures a uniform distribution of embeddings for queries
and codes. Inter-modal contrastive learning, which aims at
aligning positive query-code pairs while distancing the neg-
ative pairs, is important for developing a well aligned seman-
tic space between code snippets and queries. The removal of
hard negative samples or the substitution of semantics-based
negative sampling with random sampling can further impair
model performance. Those negative query-code pairs which
each shows high similarity assist the model in capturing sub-
tle differences between positive and negative code snippets,
thereby facilitating the representation enhancement.

Figure 3: Impacts of the hyperparameters on Python corpus.
Identical metrics are marked with the same color and marker.

Impacts of Hyperparameters
This section analyses the sensitivity of various hyperparam-
eters on the Python corpus, providing insights for optimized
configurations. Hyperparameters include the KL divergence
regularization coefficient, learning rate and temperature in
our loss function. Referring to previous studies, we explore
the effects of various hyperparameters within typical ranges.
The experimental results are shown in Figure 3.

The results obtained using varied temperatures show that
the performance is generally stable for small temperature
variations (between 0.01 and 0.05). However, a tempera-
ture above 0.04 can have an obvious effect on the model
performance. The above finding suggests that setting an ap-
propriate temperature is important. The learning rate, which
is considered as a key hyperparameter, has a stable range
between 5e-6 and 2e-5, where a high learning rate leads to
performance degradation. Setting the learning rate value to
8e-6 results in the overall peak performance of the model.
In terms of the impact of the KL divergence coefficient in
our loss function, the results show that small adjustments in
the regularisation coefficient cause only small fluctuations
in performance, while setting a large coefficient can signifi-
cantly degrade the model performance, suggesting that it is
more encouraging to set the parameter to a small value.

Analysis
Quantitive analysis Recently, Wang and Isola identified
two key properties related to contrastive learning alignment
and uniformity. Alignment measures the closeness of fea-
tures for positive pairs and reflects precise pair matching.
Uniformity evaluates the distribution of features on the hy-
persphere and promotes a uniform distribution of embed-
dings for better separation of negative pairs. Effective mod-
els promote both of these properties, thereby improving the
overall performance and the quality of representation. Math-
ematically, they can be computed as follows (assuming the
representations to be already normalized):

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f
(
x+

)
∥2

ℓuniform ≜ log E
i.i.d.

x,y∼pdata

e−2∥f(x)−f(y)∥2 (6)

where (X,Y ) ∼ ppos means that X and Y are positive
pairs , while i.i.d.

x,y∼pdata
denotes independently and identically

distribution of X and Y . To investigate the impact of our
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Figure 4: Alignment and uniformity curve during training.

method on the embedding space, we use the metrics men-
tioned above to observe changes in the distribution of em-
beddings during training.

As shown in Figure 4, we can observe a gradual decrease
in the uniformity loss of the model, indicating alleviation
in anisotropy. Combining with the findings drawn from Ta-
ble 2, which shows that our method effectively improves the
model performance, it is suggested that our approach helps
to align code and query representations. However, the loss
of alignment is increased during training. These two find-
ings consistently indicate that the model sacrifices some de-
gree of alignment in order to optimise the overall uniformity
of the feature space. This trade-off helps to prevent overfit-
ting and leads to a better semantic space, thus improving se-
mantic understanding. The aforementioned results indicate
that our approach enhances the uniformity of hypersphere
despite compromising on alignment. In this situation, the
model can be enhanced to analyse the semantic relationships
between codes and natural language queries, leading to an
improvement of the performance in code search tasks.

Qualitative analysis t-SNE is a dimensionality reduction
technique that visualises high-dimensional data while pre-
serving pairwise similarities. For our analysis, we used t-
SNE to visualise embeddings obtained from the CoCoSoDa
model and our proposed method. We randomly sampled 300
query-code pairs from the Go corpus, reduced their dimen-
sionality to 2D, and compared the embeddings to analyse
the performance. This visualisation helps us to understand
the effectiveness of a model in preserving meaningful struc-
ture in code representation.

As illustrated in Figure 5, code snippets and queries are
highlighted in purple and pink, respectively, with green
lines indicating the pairwise distances that query-code pairs
have. The figure demonstrates that most sample pairs ex-
hibit relatively short distances, indicating that both the pre-
trained CoCoSoDa model and the model enhanced using our
method effectively map positive samples to closely related
embeddings in the feature space. Although the right image
shows more long lines compared with the left image, these
distances are not as extreme as those observed in the left
image. Additionally, the right image displays points that are
more uniformly and widely distributed, in contrast to the left
image where points are more concentrated in the center.

This observation aligns with our analysis shown in the
curves for ℓalign and ℓuniform during model training (see
Figure 4). Throughout the training process, the model ad-
justs the feature space structure to achieve a more uniform

Figure 5: T-SNE visualizations of representations produced
by CoCoSoda (left image) and our method (right image) are
shown, while blue denotes code(Go) and the ones on queries
are in pink, with green lines indicating distances between
pairs. Purple signifies overlapping query and code, indicat-
ing that the paired code was successfully retrieved.

distribution of feature embeddings, while involving a com-
promise in alignment. Accordingly, in comparison with the
left image, the right image shows a larger number of long
lines and thus indicates that the model fine-tuned using
our method exhibits slightly lower alignment than the pre-
trained model. However, as shown in Table 2, this align-
ment compromise does not adversely affect the performance
of the model. Although there are more long lines in the
right image, their lengths are smaller than the ones of those
long lines in the left image. Meanwhile, the points in the
right image are more uniformly distributed, reflecting a more
coordinated feature space. The phenomenon suggests that
our method leads to a more balanced and effective embed-
ding space. Overall, the visualization results indicate that the
model enhanced using our method produces superior em-
beddings compared with the pre-trained CoCoSoDa model.

Conclusion

In this paper, we have proposed an approach of uncertainty-
aware contrastive learning with hard negative sampling for
code search tasks. Specifically, for improving the effective-
ness of inter-modal alignment (for positive query-code pairs)
and intra-modality alignment (for positive pairs of queries
and codes) in an embedding space, we have proposed a strat-
egy of uncertainty learning to produce diverse embeddings
for queries and codes and have designed a way of construct-
ing hard negative query-code pairs. The experimental results
on a large benchmark dataset with six programming lan-
guages indicate that our approach outperforms 10 baseline
methods. The results of ablation experiments show that the
incorporation of uncertainty learning and hard negative sam-
pling into contrastive learning can really help enhance the
representation of queries and codes leading to an improve-
ment of the code search performance. In the future, we will
explore diffusion-driven strategies of generating diverse user
queries that can be used for searching same code snippets.
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