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Introduction

Problem Definition

Multi-Behavior Recommendation

@ Input: the user-item multi-behavior interaction graph G = {V, £},
where V =UUZ = {v} = {1,2,...V} is the set of nodes in the
graph, £ is the set of edges which includes K behavior types.

@ Output: the likelihood j,,; that the user u will interact with the item i
under the target behavior bg.
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Challenge

@ The complex transition relationships across different types of
behaviors. Most existing multi-behavior recommendation methods
mainly focus on fusing different behaviors, while ignoring the
transition relationships among them.

© The varying semantic strength of different types of behaviors.
Different auxiliary behaviors exhibit varying degrees of
correlations with the target behavior.
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Introduction

Overall of Our Solution

@ We propose a novel model called VCGAE which leverages the
advantages of VAE and GNNs to model users’ different types of
behaviors.

© We design a behavior transition network that captures complex
transition relationships across different types of behaviors to learn
users’ personal preferences.

© We design a behavior contrastive regularization module that
extracts different correlations between users’ auxiliary behaviors
and target behavior to learn the semantic strength of distinct
behaviors.
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Related Work (1/2)

@ Single-Behavior Recommendation

o Multi-VAE [Liang et al., 2018] is an AE-based model and its key
idea is to model the data as a set of latent variables that follow a
prior distribution, and then generate new data points by sampling
from the learned distribution.

o LightGCN [He et al., 2020] is a graph neural network model that
simplifies the design of GCNs by removing the feature
transformation and nonlinear activation operations.

e VGAE [Kipf and Welling, 2016] is a generative model designed for
graph data that leverages the frame of VAE to learn the
low-dimensional representation of high-dimensional data.

VGAE is an innovative method that combines the strengths of VAE and
GNNs, but it is limited to only modeling single-behavior data. This
limitation motivates us to design a new method to solve the problem of
multi-behavior recommendation.
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Related Work (2/2)

@ Multi-Behavior Recommendation

o VAE++ [Ma et al., 2022] is a VAE-based model that utilizes three
types of information, including the purchase behavior, the auxiliary
behaviors, and their mixed behaviors. But it fails to capture the
high-order interaction information between users and items.

o GHCF [Chen et al., 2021] is a non-sampling graph neural network
model that designs the relation-aware GCN propagation layers to
exploit the collaborative high-hop signals. However, it ignores the
transition relationships among different behaviors.

e EHCF [Chen et al., 2020] is a non-sampling method that correlates
each behavior in a transition way to capture the users’ preferences.
However, it doesn’t effectively capture the diversity of transition
modes across different behaviors.

Inspired by the above methods, our VCGAE inherits the advantages of
VAE and GNNs and designs two modules to learn the semantic
strength and transition relationships of different behaviors.
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Figure: lllustration of our VCGAE. We assume that there are K types of
behaviors here, where by, - - - , bx_y are auxiliary behaviors (i.e., view and

favorite, respectively) and bk is the target behavior (i.e., buy).
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Modules Overview

@ Behavior-aware Graph Embedding Learning

@ Target Behavior Oriented Representation Encoder
@ Target Decoder

@ Behavior Contrastive Regularization
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Behavior-aware Graph Embedding Learning (1/3)
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Behavior-aware Graph Embedding Learning (2/3)

@ We aim to learn the representation of the users and items under
each behavior.

@ For each user u, we refine his or her embedding e2("") ¢ r1xd
in layer / + 1 under behavior bk by aggregating his or her
neighboring nodes in layer /:

ebkv(l+1) bk7
u
IGka / bk / bk (1)

where Nf,’k denotes the set of items that are interacted by user u
under behavior by, /\/,.bk denotes the set of users that interact with
item i under behavior by.
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Behavior-aware Graph Embedding Learning (3/3)

@ After L layers propagation, we obtain the user u’s representation at
different layers. Then we adopt the mean operation to derive the
user u’s final behavior embedding éﬁ" e R"* under behavior by:

_ 1 /
ey =y e’ (2)

By doing the same operation for the item side, we can get the
smoothed item i’s behavior embedding &> € R1*7.
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Modules Overview

@ Behavior-aware Graph Embedding Learning

@ Target Behavior Oriented Representation Encoder
@ Target Decoder

@ Behavior Contrastive Regularization
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Target Behavior Oriented Representation Encoder
(1/6)
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Target Behavior Oriented Representation Encoder
(2/6)

@ Behavior Transition Network

o In order to explicitly model the sequence relationships among
different behaviors, we make the assumption that different
behaviors can be arranged in a specific order based on behavior
semantic strength: by — b — ... — by.

e For each user u, his or her behavior transition embedding
gl e R4 js obtalned by summing his or her own behavior
embeddlng eu with the transition embedding of the other behaviors
that occurred before it in the sequence:

Eh if k = 1
g = e ped if k=2 3)
"kea“"“@ oeh ifk>2
where ¢ denotes the element-wise addition operation.
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Target Behavior Oriented Representation Encoder
(3/6)

@ Behavior Transition Network

e When k = K, we can obtain the user u’s target behavior transition
embedding &2 which takes into account the transition of different
auxiliary behaviors to the target behavior.

e Then we define it as the user u’s mean vector of the Gaussian
posterior distribution: p, = 2.

e By doing the same operation for the item side, we can get the item
i’s mean vector u; € R1*9.
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Target Behavior Oriented Representation Encoder
(4/6)

@ Auxiliary Behavior Fusion

e In a Gaussian distribution, the variance always fluctuates around
the mean.

e In a recommendation scenario, the mean typically represents a
user’s purchasing interest, and the variance indicates the range of
the user’s interest changes which can be captured by auxiliary
behaviors’ features.

e The variance o2 € R'*? can be computed as follows:

= MLP(&;' [l l[eg") (4)
where || is the concatenation operation, and MLP is a multi-layer

perceptron commonly used in VAE.
e By doing so, we can get the item /'s variance o2 € R*9,
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Target Behavior Oriented Representation Encoder
(5/6)

@ Latent Variable Sampler
e With the mean p, and the variance o2 of each node, the latent

variable z, € R'*9 can be obtained by sampling from a variational
distribution g:
%
qZ| A =1]a(z|A),
v=1
with  q(z, | A) =N (2, | pv, diag (67))
where V = (|U| + |Z|) is the number of nodes, Z is the latent

variable matrix, A is the adjacency matrix of the user-item
sub-graph G% under the target behavior by.
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Target Behavior Oriented Representation Encoder
(6/6)

@ Latent Variable Sampler

e During training, the stochastic nature of the latent variables poses a
challenge for computing gradients of the objective function. To solve
this problem, the reparameterization trick has been introduced and
widely used [Kingma and Welling, 2013, Rezende et al., 2014].

o Specifically, we first sample ¢ from a standard normal distribution:
e ~ N (0,1), and then we have z, = i, + ¢ ® o, where @ is the
element-wise product operation.
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Modules Overview

@ Behavior-aware Graph Embedding Learning

@ Target Behavior Oriented Representation Encoder
@ Target Decoder

@ Behavior Contrastive Regularization
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Target Decoder

@ After obtaining the latent variable z, and z;, the goal of the target
decoder is to reconstruct the target adjacency matrix A:

N M
pA12) =TI TP (Aulzuz).
u=1 i=1 (6)

with  p (l/z\ui | ZU7Z/> = Yui = ZUZ/T

where A is the reconstructed adjacency matrix and 2\U,- is the
probability of a connection between user u and item /.
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Modules Overview

@ Behavior-aware Graph Embedding Learning

@ Target Behavior Oriented Representation Encoder
@ Target Decoder

@ Behavior Contrastive Regularization
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Behavior Contrastive Regularization (1/2)

@ Different behaviors have different semantic features and strengths.

@ There are different semantic correlations between different
auxiliary behaviors and target behaviors.
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Behavior Contrastive Regularization (2/2)

@ These semantic correlations between different auxiliary behaviors
and target behavior can be expressed as a similarity in
mathematics. In particular, we use cosine similarity to calculate
the similarity between two behaviors:

__T
X[y

@ If behavior y has a higher similarity with x compared to z in
practical scenarios, we define (x, y) as a positive pair and (x, z)
as a negative pair. Then we aim to increase the distance between
positive and negative pairs:

(7)

sim(x, y) = cos(x, y)

BCR(x,y,z) = (1 — o(sim(x, y) — sim(x, 2)))? (8)

where o is the sigmoid function.
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Objective Function

@ Following VGAE [Kipf and Welling, 2016], the loss function can be
represented as:

L = Lprec+ LkL
= Eq(z/a)llog p(A | Z)] — KL[q(Z | A)lp(Z)]

where the first term is the reconstruction term, and the second
term is the KL divergence term. The reconstruction term
measures the difference between the predicted and actual
adjacency matrices, while the KL divergence term regularizes the
latent space by ensuring that the learned distributions match a
prior Gaussian distribution.

(9)
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Objective Function

@ Here, we utilize the Bayesian personalized ranking (BPR) loss as
the reconstruction term in our model, which is better suited for
recommendation systems:

N
Lepr=—»_> Y Ino (zuz,-T — zuij) (10)
u=1 ieNujﬁNu
@ The overall loss function of our VCGAE is as follows:
L = Lgpr + BLKkL + A\LBcR (11)

where 5 and A are the coefficients that control the weight of the
KL regularization and the behavior contrastive regularization,
respectively.
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Research Questions

@ RQ1. How does our VCGAE perform compared with the
state-of-the-art recommendation baselines?

@ RQ2. How do the different components in our VCGAE affect the
recommendation performance?

@ RQ3. How does our VCGAE perform when handling different
numbers of behaviors?

@ RQ4. How do the hyperparameters affect the performance of our
VCGAE?
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Datasets(1/3)

@ We use three widely used datasets, i.e., Jdata 2019 (JD), Tmall,
and UserBehavior (UB), to evaluate the performance of our
VCGAE.

@ JD. This is an open dataset collected from JD, which is one of the
largest e-commerce platforms in China. There are three types of
behaviors in this dataset, including view, tag-as-favorite, and
purchase.

@ Tmall. This is an open dataset collected from Tmall. This dataset
contains three types of behaviors, namely view, tag-as-favorite,
and purchase.

@ UB. This is an open dataset about user behavior data from
Taobao. There are four types of behaviors, including view,
tag-as-favorite, add-to-cart, and purchase.
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Datasets(2/3)

@ We process the above datasets as follows:

o If there are duplicate records of (user, item, behavior) in a session,
we only keep the earliest records.

e For the items that are purchased fewer than k times, all these items
will be removed (JD: k=20, Tmall: k=20, UB: k=10).

o To delete cold-start users, we remove the sessions with fewer than
k purchase records (JD: k=5, Tmall: k=10, UB: k=5).

e Split records into three sets: training, validation, and test. Sorting
all records in ascending order according to their timestamps. The
first 80% of records are assigned to the training set, the next 10%
to the validation set, and the remaining 10% to the test set.

e Users with purchasing records in the validation set or test set but
not in the training set will be removed.

@ Note that we don’t use the leave-one-out method to split the
dataset to prevent the utilization of future records from other
related users during the prediction of a user’s current behavior.

Liu et al., (SZU) VCGAE ICDM 2023 28/48



Datasets(3/3)

Table: Statistics of the datasets used in the experiments.

Dataset #Users #ltems #View #Favorite #Cart #Purchase
JD 10,690 13,465 254,003 9,289 - 71,872
Tmall 17,202 16,177 998,032 121,146 - 240,828
UB 20,443 30,947 632,029 27,745 84,244 133,708
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Evaluation Metrics

@ To evaluate the performance of our VCGAE, we adopt four
representative evaluation metrics in the field of top-N
recommendation, i.e., precision (Prec@N), recall (Rec@N),
normalized discounted cumulative gain (NDCG@N) and hit ratio
(HR@N).

@ Users tend to pay more attention to the top few recommended
items[Collins et al., 2018]. Therefore, we report results for N = 10.
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Baselines(1/2)

@ Five single-behavior algorithms:

Multi-VAE [Liang et al., 2018] is an extension of the variational
autoencoder (VAE) model, designed to reconstruct the input data
for single-behavior collaborative filtering tasks.

VGAE [Kipf and Welling, 2016] combines graph convolutional
networks (GCNs) with variational inference to generate latent
variables of graph-structured data.

SCVG [Ding et al., 2021] is a model that builds upon the VGAE
architecture, which employs a novel semi-deterministic variational
architecture to infer latent variables.

NGCF [Wang et al., 2019] is a state-of-the-art GNN-based
algorithm that utilizes GCNs to model user-item interactions.
LightGCN [He et al., 2020] is a simplified version of NGCF, while
still achieving competitive performance in some scenarios.
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Baselines(2/2)

@ Four multi-behavior algorithms:

e EHCF [Chen et al., 2020] is a non-sampling method that utilizes
linear functions to capture the relationships among users’ different
types of behaviors.

e MBGCN [Jin et al., 2020] is a GCN-based model that designs a
unified graph to represent the multiple user-item interaction.

o VAE++ [Ma et al., 2022] is a VAE-based method that designs two
encoder modules to enhance the representations of nodes by
utilizing three types of signals, including the target behavior, the
auxiliary behavior, and their mixed behaviors.

e GHCF [Chen et al., 2021] adopts the operations of graph
convolution with the framework of multi-task learning to model
users’ different types of behaviors.
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Parameter Configurations

@ For a fair comparison, we fix the embedding size d to 100 for all
models [Ma et al., 2022] and optimize them with the Adam
optimizer with batch size fixed to 500.

@ For the three deep learning-based models, i.e., Multi-VAE, VAE++,
and EHCF, we select the learning rate from
{0.0001,0.001,0.01,0.05}, and the dropout ratio is set to 0.5 to
prevent overfitting.

@ For Multi-VAE, we follow the settings in [Liang et al., 2018] and
adopt a structure with 1 hidden layer in MLP.

@ For VAE++, the parameter settings are consistent with Multi-VAE.
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Parameter Configurations

@ For the seven GNN-based models, i.e., VGAE, SCVG, NGCF,
LightGCN, MBGCN, GHCF, and our VCGAE, the number of layers
of graph neural network L is searched from {1,2,3,4}.

@ For GHCF, we explore various combinations of weights for each
behavior to find the best configuration.

@ For our VCGAE, the KL regularization coefficient /5 is searched
from {0.01,0.1, 1}, and the behavior contrastive regularization
coefficient A is selected from {0.01,0.1,1}.

@ It should be noted that, for every test user, we utilize the predicted
scores to rank all of their uninteracted items, rather than a sample
of uninteracted items [Dallmann et al., 2021].
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Main Results (RQ1) (1/4)

Table: Recommendation performance of five single-behavior models, four
multi-behavior models, and our VCGAE on JD, Tmall, and UB.

Dataset | Metrics Mult-VAE VGAE SCVG NGCF LightGCN | EHCF MBGCN VAE++ GHCF VCGAE
Prec@10 0.0288  0.0254 0.0300 0.0300 0.0323 | 0.0322 0.0339 0.0311 0.0315 0.0342
) Rec@10 0.1308 0.1080 0.1246 0.1203 0.1357 | 0.1391 0.1401 0.1402 0.1428 0.1453
HR@10 0.1733  0.1497 0.1671 0.1695 0.1815 | 0.1881 0.1923 0.1919 0.1900 0.1950
NDCG@10 | 0.0835 0.0793 0.0790 0.0794 0.0856 | 0.0888 0.0911 0.0921 0.0924 0.0960
Prec@10 0.0013  0.0007 0.0014 0.0010  0.0012 | 0.0013 0.0014 0.0013 0.0013 0.0014
Tmall Rec@10 0.0062  0.0041 0.0058 0.0048 0.0055 | 0.0062 0.0057 0.0062 0.0062 0.0064
HR@10 0.0119  0.0074 0.0120 0.0097 0.0103 | 0.0121 0.0121 0.0119 0.0118 0.0128
NDCG@10 | 0.0036 0.0034 0.0035 0.0027 0.0038 | 0.0036 0.0036 0.0038 0.0035 0.0042
Prec@10 0.0024  0.0014 0.0023 0.0017  0.0023 | 0.0052 0.0038 0.0048 0.0062 0.0082
uB Rec@10 0.0142  0.0086 0.0134 0.0102 0.0133 | 0.0280 0.0171 0.0257 0.0336 0.0466
HR@10 0.0200 0.0123 0.0189 0.0154  0.0190 | 0.0454 0.0291 0.0409 0.0533 0.0684
NDCG@10 | 0.0086 0.0065 0.0074 0.0061 0.0077 | 0.0170 0.0120 0.0164 0.0205 0.0371
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Main Results (RQ1) (2/4)

We can have the following observations:

@ Our VCGAE outperforms other baseline models across all three
datasets on four evaluation metrics. Such remarkable
performance improvement can be attributed to the effectiveness of
our designed framework, which can better learn the users’
behavioral preferences.

@ The performance enhancements on UB are considerably more
significant than those on JD and Tmall. One possible explanation
for this could be that UB contains four different types of behavior,
which enables our VCGAE to capture user preferences and
behavior transition relationships more comprehensively.

Liu et al., (SZU) VCGAE ICDM 2023 36/48



Main Results (RQ1) (3/4)

@ The multi-behavior recommendation models (e.g., GHCF, VAE++,
MBGCN) generally outperform single-behavior models (e.g.,
Multi-VAE, SCVG, LightGCN). This demonstrates that
incorporating the auxiliary behavior data can often lead to a more
comprehensive understanding of user preferences, addressing
the issue of sparse target behavior data, and thereby enhancing
the recommendation performance.

@ However, this trend is less pronounced on Tmall, possibly due to
the noise in auxiliary behaviors or their weak correlation with the
target behavior, limiting the benefits of multi-behavior modeling.
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Main Results (RQ1) (4/4)

From the perspective of the multi-behavior, we can have the following
observations:

@ VCGAE outperforms VAE++ in the VAE-based methods and
surpasses GHCF in the GNN-based methods. Particularly, the
effects are more pronounced on UB, demonstrating that the
combination of VAE and GNNSs can lead to significant
improvement in the multi-behavior recommendation.

@ The GNN-based models for multi-behavior recommendation
achieve good performance in many cases, demonstrating the
effectiveness in capturing high-order connectivity over user-item
interaction graphs, allowing for a more comprehensive
understanding of the complex relationships between users and
items.
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Ablation Study (RQ2) (1/4)

Table: Recommendation performance of our VCGAE by removing different
components, i.e., behavior-aware graph embedding learning (BGEL),
behavior transition network (BTN), and behavior contrastive regularization

(BCR), respectively, for ablation studies on JD, Tmall, and UB.

Liu etal., (SZU)

Dataset | Method Prec@10 Rec@10 HR@10 NDCG@10

w/o BGEL  0.0277 0.1194  0.1644 0.0779

D w/o BTN 0.0332 0.1388  0.1857 0.0885
w/o BCR 0.0349 0.1489  0.1978 0.0944

VCGAE 0.0342 0.1453  0.1950 0.0960

w/o BGEL  0.0005 0.0027  0.0047 0.0016

Trmall w/o BTN 0.0012 0.0056  0.0110 0.0036
w/o BCR 0.0013 0.0060 0.0124 0.0041

VCGAE 0.0014 0.0064 0.0128 0.0042

w/o BGEL  0.0011 0.0069  0.0103 0.0040

uB w/o BTN 0.0025 0.0140  0.0209 0.0084
w/o BCR 0.0048 0.0270  0.0394 0.0183

VCGAE 0.0082 0.0466  0.0684 0.0371
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Ablation Study (RQ2) (2/4)

We have the following observations:

@ “w/o BGEL”’. The performance of our VCGAE without BGEL
declines on all three datasets, demonstrating the effectiveness of
graph neural networks (GNNSs) in learning node representations.

@ “w/o BTN”. The performance of our VCGAE without BTN
declines on all three datasets. This demonstrates the usefulness
of the behavior transition network in capturing behavior transition
relationships, especially with a higher number of behaviors.

@ “w/o BCR”. The performance of our VCGAE without BCR
decreases on both Tmall and UB. This indicates the advantage of
our designed BCR module in capturing semantic correlations
between auxiliary behaviors and target behavior. The effect on JD
is less pronounced due to the fewer target behaviors, potentially
introducing noise from auxiliary behaviors when constructing
behavior pairs.
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Impact of Auxiliary Behavior Data (RQ3) (1/2)
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Figure: Recommendation performance of our VCGAE by leveraging different
auxiliary behavior data for ablation studies on JD, Tmall, and UB.
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Impact of Auxiliary Behavior Data (RQ3) (2/2)

We have the following observations:

@ As the number of auxiliary behaviors increases, the
recommendation performance also improves in general.
Moreover, the best results are achieved when all behavior data is
utilized in most cases. This observation showcases the
effectiveness of our VCGAE in integrating diverse behavioral data
to improve the performance of the recommendation system.

@ The NDCG@10 score of VCGAE-PV is lower than that of
VCGAE-P on Tmall. This could be attributed to the large volume
of view behavior data in the Tmall dataset, which may contain a
certain amount of noise, negatively affecting the recommendation
performance.
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Hyperparameter Sensitivity (RQ4) (1/3)
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Figure: Recommendation performance of our VCGAE with different depths of
GNNs on JD, Tmall, and UB.
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Hyperparameter Sensitivity (RQ3) (2/3)
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Figure: Recommendation performance of our VCGAE with different values of
B on JD, Tmall, and UB.
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Hyperparameter Sensitivity (RQ3) (3/3)
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Figure: Recommendation performance of our VCGAE with different values of
Aon JD, Tmall, and UB.
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Conclusions and Future Work

Conclusion

@ We propose a novel model called VCGAE which combines the
merits of variational autoencoder (VAE) and graph neural
networks (GNNSs) to address the problem of multi-behavior
recommendation.

@ We develop a behavior transition network that is capable of
capturing the complex transition relationships that exist among
different types of behaviors. This module enables us to learn
about users’ personal preferences based on their behavior
patterns.

@ We design a behavior contrastive regularization module that helps
extract different correlations between users’ auxiliary behaviors
and their target behavior. By doing so, we are able to better
understand the semantic strength of different behaviors and how
they relate to each other.
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Future Work

@ We will consider extending our VCGAE by incorporating some
side information, such as items’ categories and users’ social
networks to further improve the recommendation accuracy.

@ We plan to explore incorporating temporal dynamics into our
model to capture evolving user preferences more effectively.
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