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Inroduction

Recommender Systems Based on Information (1/2)

OCCF (One-Class Collaborative Filtering): The available
information is limited to whether a user interacts with an item.
SOCCF (Sequential One-Class Collaborative Filtering): It places
greater emphasis on the order relationships between items
within a sequence.
CD-OCCF (Cross-Domain One-Class Collaborative Filtering): The
interaction information is expanded from a single domain to
multiple domains, yet it lacks sequential information.

Problem

Information Single-Domain Cross-Domain
Inter-

sequence
Intra-

sequence
Inter-

sequence
Intra-

sequence
OCCF ✓

SOCCF ✓ ✓
CD-OCCF ✓ ✓

CD-SOCCF (a.k.a. CDSR) ✓ ✓ ✓ ✓

Table: A table summarizing OCCF, SOCCF, CD-OCCF and CD-SOCCF
(CDSR) based on information from different granularity.
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Inroduction

Recommender Systems Based on Information (2/2)

CD-SOCCF (Cross-Domain Sequential One-Class Collaborative
Filtering, also called Cross-Domain Sequential Recommendation,
CDSR): It combines all of the aforementioned directions and further
incorporates sequential information based on CD-OCCF and
cross-domain information based on SOCCF.

Problem

Information Single-Domain Cross-Domain
Inter-

sequence
Intra-

sequence
Inter-

sequence
Intra-

sequence
OCCF ✓

SOCCF ✓ ✓
CD-OCCF ✓ ✓

CD-SOCCF (a.k.a. CDSR) ✓ ✓ ✓ ✓

Table: A table summarizing OCCF, SOCCF, CD-OCCF and CD-SOCCF
(CDSR) based on information from different granularity.
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Inroduction
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Figure: Illustration of CDSR.
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Formulation Problem Definition

Problem Definition (1/2)

As temporal information and cross-domain information are incorporated,
the interaction data between users and items in CDSR undergoes a
gradual expansion into a four-dimensional data tensor, consisting of
dimensions about users, items, time, and domains.
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Figure: A visualization of a four-dimensional data tensor in CDSR scenarios.
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Formulation Problem Definition

Problem Definition (2/2)

The four-dimensional tensor is denoted with Γ ∈ Rn×m×s×k , where n
and m is the number of users and items in all domains, s is the number
of discrete time intervals, and k is the number of domains. (Each
element γ(u,i,t ,d) in it signifies whether there is an interaction between
user u and item i at time t in domain d .)

The goal of CDSR is to estimate the probability for all candidate items
î ∈ Id in each domain to be recommended to each user. The estimated
probability can be formalized as follows,

P( î | Γ ) ∼ f ( Γ ) (1)

where f ( Γ ) indicates the learned function to estimate P( î | Γ ).
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Formulation Multidirectional Dimensionality Reduction

Multidirectional Dimensionality Reduction (1/5)
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Figure: A visualization of dimensionality reduction for a four-dimensional data
tensor in CDSR scenarios.
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Formulation Multidirectional Dimensionality Reduction

Multidirectional Dimensionality Reduction (3/5)

W/o User Dimension. We have a single user, and his or her
interactions in chronological order can form a sequence in each
domain, which can further serve as the basis for constructing a
local graph in subsequent work.
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Formulation Multidirectional Dimensionality Reduction

Multidirectional Dimensionality Reduction (4/5)

W/o Time Dimension. Mapping the tensor along the temporal
dimension and aggregating interactions within a time lays the
groundwork for a global graph in each domain. It allows models to
learn user-to-user and user-to-item connections, which are more
skewed toward users’ global preferences.
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Formulation Multidirectional Dimensionality Reduction

Multidirectional Dimensionality Reduction (5/5)

W/o Domain Dimension. Blending two or more domains into a
hybrid domain, a model can clarify the passing relationships
between items originally in different domains. Many existing studies
treat the hybrid domain as an independent domain, and design
model fusion structures that incorporate the original domains and
the new hybrid domain in parallel.
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Formulation Multi-Type Input Representations

Multi-Type Input Representations

Researchers’ considerations on dimensionality reduction directions in
CDSR are first reflected in the input representations. Here, we
categorize conventional input representations and analyze
unconventional inputs.

Conventional Input Representations
Pure Sequential Representation
Graph-Encoded Sequential Representation

Unconventional Inputs
Side Information

Time.
User/Item Contexts and Reviews.
Knowledge Graph.

Pre-trained Features
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Formulation Multi-Type Input Representations

Pure Sequential Representation

For each user u, we define SA
u = {iA1 , i

A
2 , . . . } and SB

u = {iB1 , i
B
2 , . . . } as

his or her interaction sequences in domain A and domain B, respectively.
If u is an overlapping user who has interactions both in domain A and
domain B, we can mix SA

u and SB
u to a hybrid sequence in

chronological order (e.g., Shybrid
u = {iA1 , i

B
1 , i

A
2 , i

A
3 , i

B
2 , . . . }), which is

viewed as a sequence of the hybrid domain.

From a pure sequential perspective, we can substitute the
four-dimensional tensor in Eq.(1) with the set of sequences in each
domain, as follows,

P( î | Γ ) → P( î |SA,SB) ∼ f (SA,SB) (2)
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Formulation Multi-Type Input Representations

Graph-Encoded Sequential Representation

Some researchers turn to construct directed graphs G = {V ,E} to
model sequential information, where V is a set of items that have been
interacted with and E is the edges that represent relations of the serial
relationship from item to item. [Guo et al., 2021, Zheng et al., 2022, Cao
et al., 2022, Zhang et al., 2023b]

Local graphs: It is constructed based on a user’s sequence within
a domain or a sequence within a session [Zheng et al., 2022, Chen
et al., 2021].
A global graph: V consists of both users and items and E is also
utilized to denote the relations between users and items [Xu et al.,
2023c].

We represent the raw data in its graph-encoded form to extend Eq.(1),
where Gl denotes all local graphs and Gg denotes the global graph, as
follows,

P( î | Γ ) → P( î |Gl ,Gg) ∼ f (Gl ,Gg) (3)
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Formulation Multi-Type Input Representations

Side Information (1/2)

More and more researchers consider incorporating side information to
enrich the semantic representation of users’ historical behaviors.

Time.
To order the interacted items
To model time interval of the interaction [Xiao et al., 2023, Wang
et al., 2022, Guo et al., 2022]
To investigate periodicity and duration of the interaction, etc.

Text.
User Contexts: e.g., city, age, etc. [Ouyang et al., 2020]
Item Contexts: e.g., categories, tags, keywords, etc. [Xiao et al.,
2023, Ouyang et al., 2020, Zhuang et al., 2020]
Review: to associate users and items
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Formulation Multi-Type Input Representations

Side Information (2/2)

Knowledge Graph.
A knowledge graph defines an entity set EKG and a relation set
RKG, which consists of multiple entity-relation-entity triples
< ei , r ,ej > (e.g., < eiA1

, Is the same category ,eiB1
> meaning that

the entity eiA1
from domain A has the same category as entity eiB1

from domain B). [Bi et al., 2020, Ma et al., 2022]

Considering the aforementioned side information, we can extend Eq.(1)
as follows,

P( î | Γ ) → P( î | Γ ,D) ∼ f ( Γ ,D) (4)

where D is the side information mentioned above and often serves as a
supplementary data to conventional inputs.
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Formulation Multi-Type Input Representations

Pre-trained Features

Considering the privacy issues in two or more domains, some works
[Ding et al., 2023, Zhang et al., 2023a, Lei et al., 2021] use
model-trained features as the input from the source domain, instead
of the raw data.

We take domain A as an example and revise Eq.(1) as follows,

P( î | Γ ) → P( î | ΓA ,MB) ∼ f ( ΓA ,MB) (5)

where MB are the features of domain B after pre-training and ΓA

denotes the interaction data exclusively within domain A. Notice that in
domain B, the equation is P( î | ΓB ,MA) ∼ f ( ΓB ,MA).
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

Multi-Level Cross-Domain Fusion Structures
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Figure: The overview of multi-level fusion structures that are divided into three
levels. “A” and “B” represent domain A and domain B, respectively, and “H”
denotes a combination of two domains in chronological order.
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

One-Level Fusion Structures (1/3)

In earlier works, to combine the cross-domain information, there
are a lot of works that first learn user preferences from domain
A and domain B separately, and then fuse the representations
of the two domains using various operations (as shown in
Figure(a)). These operations include, but are not limited to,
concatenation [Lei et al., 2021, Guo et al., 2023c], summation
[Alharbi and Caragea, 2021, Ding et al., 2023], multi-layer
perceptron (MLP) [Bi et al., 2020], and some attention mechanisms
[Ouyang et al., 2020, Li et al., 2021].
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

One-Level Fusion Structures (2/3)

Additionally, some works employ transfer learning to transfer
knowledge from a source domain to a target domain [Chen et al.,
2021, Liu and Zhu, 2021], or train a discriminator to bridge the
representations of two domains with the idea of adversarial
learning [Li et al., 2022], as shown in Figure(b).
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

One-Level Fusion Structures (3/3)

In contrast to the above juxtaposed structures, there are also
works utilizing a tandem structure to fuse information [Alharbi and
Caragea, 2022] (i.e., Figure(c)).
Some works directly tackle the problem from the perspective of a
hybrid-domain view (i.e., Figure(d)). For instance, some works
[Guo et al., 2021, Guo et al., 2022] construct a global graph for the
hybrid domain to combine the cross-domain knowledge. And others
like [Ma et al., 2019, Sun et al., 2023] choose to learn the item
transition patterns in the hybrid sequences Shybrid .

(c) (d)

AB AB HH
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

Two-Level Fusion Structures

As shown in Figure(e), in order to predict the next item in a
separate domain, the hybrid domain is utilized as the main
sharer [Cao et al., 2022, Wang et al., 2022] or the bridge [Zheng
et al., 2022] to transfer knowledge from the nother domain.
There are also some works [Ye et al., 2023] that choose to
combine domain A and domain B first and then fuse the hybrid
information (i.e., Figure(f)).
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

Three-Level Fusion Structures

To delve further into the fusion structures, some researchers
continue to extend the hierarchy, as illustrated in Figure(g) [Xu
et al., 2023c], which aggregates the representations again after
combining the hybrid domain information on the basis of Figure(e).
Figure(h) [Zhang et al., 2023b] proposes a more complex structure,
which shares the coarse-grained representations of the target
domain A and the hybrid domain with each other domain.
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

Discusion (1/2)

Although there are various multi-level fusion structures, it does not
mean that a more complex structure will perform better.

Limited by the degree of fusion, the simple fusion structures, i.e.,
one-level fusion structures, are easy to implement but may not
comprehensively model the domain-specific and domain-generic
features.
While improving effectiveness, multi-level fusion structures
bring increased complexity and reduced interpretability.
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Macro-View: Fusion structure Multi-Level Cross-Domain Fusion Structures

Discusion (2/2)

Considering the symmetry and asymmetry of the structures,
researchers focus on each domain greatly affects the design of a
cross-domain fusion structure.

For example, some researchers [Ouyang et al., 2020, Bi et al.,
2020, Xu et al., 2023c] consider the two domains as source and
target domains and leverage the data-rich source domain to
assist the data-sparse target domain, which makes the target
domain dominant in the fusion structure.
Other researchers [Guo et al., 2021, Li et al., 2021, Ma et al., 2022]
aim to improve the recommendation performance of both
domains simultaneously, making the fusion structure designed
tend to be more symmetric.
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Macro-View: Fusion structure Bridges for Cross-Domain Fusion

Bridges for Cross-Domain Fusion

For the bridges shown in the figure below, the first (i.e., the same users)
is prevalent in scenarios with overlapping users, while the latter two (i.e.,
contexts and clusters/groups) are applied in scenarios without
overlapping users.
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Figure: Examples of building cross-domain bridges relying on different
information.
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Macro-View: Fusion structure Bridges for Cross-Domain Fusion

Bridges for Cross-Domain Fusion

Same Users. If some same users exist, then they are often the first
choice as the bridge.
Contexts. If there are no common users, it is feasible to leverage
the semantic similarity of natural language [Liu et al., 2023].
Clusters/Groups. Further restricting the condition to no
overlapping users and no side information, the clusters/groups may
be another entry point since a specific group of users could have
similar preferences [Lin et al., 2023a].

Works relying on overlapping users often perform well but their
application scenarios may face limitations due to the sparse real-world
data. Conversely, works built on non-overlapping users can be applied
to a broader range of scenarios but may have limited performance. In
fact, cross-domain information can be built on more than one type of
bridge.
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Micro-View: Technologies

A Systematic Overview

Data Structure
Basic Technology Auxiliary Learning

Paper
GNN RNN Attention

Contrastive
Learning

Transfer
Learning

Others

Sequence

✓

π-Net [Ma et al., 2019], CDHRM [Wang et al., 2020],
SCLSTM [Yang et al., 2020], PSJNet [Sun et al., 2023]

✓
CDNST [Zhuang et al., 2020]

✓

DASL [Li et al., 2021], TJAPL [Xu et al., 2024]

✓

CMVCDR [Zang et al., 2023]
SEMI [Lei et al., 2021], DREAM [Ye et al., 2023], P-CDSR [Xiao et al., 2023],
Tri-CDR [Ma et al., 2023], CGRec [Park et al., 2023], LCN [Hou et al., 2023],
MACD [Xu et al., 2023a]
MiNet [Ouyang et al., 2020], CD-ASR [Alharbi and Caragea, 2021],
CD-SASRec [Alharbi and Caragea, 2022], MAN [Lin et al., 2023a]

✓ SATLR [Liu and Zhu, 2021]
Adversarial
Learning

RecGURU [Li et al., 2022], TPUF [Ding et al., 2023], DA-DAN [Guo et al., 2023a]

Reinforcement
Learning

RL-ISN [Guo et al., 2023c], O-SCDR [Nanthini and Kumar, 2024]

Prompt
Learning

PLCR [Guo et al., 2023b]

MSECDR [Hong and Jung, 2023], AMID [Xu et al., 2023b]

Graph ✓

✓
DCDIR [Bi et al., 2020], MIFN [Ma et al., 2022]

✓

AGNNGRU-CDR [Qu et al., 2021]
✓ DAT-MDI [Chen et al., 2021], SGCross [Li et al., 2023]

DA-GCN [Guo et al., 2021], TiDA-GCN [Guo et al., 2022]

✓

C2DSR [Cao et al., 2022], EA-GCL [Wang et al., 2023], MGCL [Xu et al., 2023c]
Federated
Learning

FedDCSR [Zhang et al., 2023a]

DDGHM [Zheng et al., 2022]
LEA-GCN [Zhang et al., 2023b], IESRec [Liu et al., 2023]
CsrGCF [Wang et al., 2022]

Table: A systematic overview of the existing models for CDSR.
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Micro-View: Technologies Basic Technologies

Basic Technologies

According to multi-type input representations in CDSR, the
cross-domain information is always considered as a pure sequential
representation or a graph-encoded sequential representation. So we
illustrate the utilization of sequence modeling technologies and graph
structure modeling technologies in CDSR, respectively.

Sequence Modeling Technologies
Recurrent Neural Networks in CDSR
Attention Mechanisms in CDSR

Graph Structure Modeling Technologies
Graph Neural Networks in CDSR
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Micro-View: Technologies Basic Technologies

Recurrent Neural Networks in CDSR

To employ RNNs as an encoder (e.g., GRUs) [Li et al., 2021, Chen
et al., 2021, Zang et al., 2023]
To incorporate a shared unit into each step of RNNs
(The shared unit could be a shared-account filter unit [Ma et al.,
2019, Sun et al., 2023] or the common representations of the
overlapping users [Wang et al., 2020].)
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Micro-View: Technologies Basic Technologies

Attention Mechanisms in CDSR

To use an attention-based encoder (e.g., Transformer, SASRec or
multi-head attention blocks, etc.), replacing RNNs as a sequence
encoder [Ye et al., 2023, Xu et al., 2023c, Alharbi and Caragea,
2022, Ding et al., 2023, Park et al., 2023]
To obtain learnable attention weights thus aggregating
cross-domain information at multiple levels [Ouyang et al.,
2020, Cao et al., 2022, Ma et al., 2023, Lin et al., 2023a]
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Micro-View: Technologies Basic Technologies

Graph Neural Networks in CDSR

To construct a local graph per session [Chen et al., 2021] or per
domain [Cao et al., 2022, Xu et al., 2023c]
To construct a global graph [Guo et al., 2021, Zhang et al., 2023b]
based on the hybrid domain of all users
To construct a knowledge graph to encompass more semantic
information [Bi et al., 2020, Ma et al., 2022]
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Micro-View: Technologies Basic Technologies

Key Technical Framework

Training 

Auxiliary LearningAuxiliary Learning

GNN

PredictionPrediction

Attention

RNN

Attention

RNN

Training 

Auxiliary Learning

GNN

Prediction

Attention

RNN

Figure: A schematic overview of the key technical framework. The color of the
arrows represents the output after passing through the components
represented by different colors. While models represented via graph structures
require encoding with GNN, the relationship between RNN and attention can
be used in parallel or an alternating fashion.
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Micro-View: Technologies Basic Technologies

Discussion (1/2)

While RNNs are easy to implement and are capable of modeling
the temporal relationships in sequences, they still suffer from issues
such as vanishing and exploding gradients during training.
However, attention mechanisms need to use the interaction of all
the positions when calculating the weights, so it contains a large
number of parameters and may suffer from the issue of data
sparsity.
GNNs supplementally learn complex information about nodes and
edges to capture more comprehensive preferences of users.
However, when GNNs are applied to a large-scale data, the huge
computational and storage overhead is a major drawback in most
cases.
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Micro-View: Technologies Basic Technologies

Discussion (2/2)

Moreover, we can observe that the three basic technologies are not
independent entities and can be applied interchangeably or in parallel
based on the characteristics of different technologies. Most works
combine graph encoders (i.e., GNNs) and sequence encoders (i.e.,
RNNs or attention mechanisms) as complementary parts in CDSR.
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Micro-View: Technologies Auxiliary Learning

Auxiliary Learning

In addition to the aforementioned key technologies, the utilization of
auxiliary learning technologies to facilitate the integration of
cross-domain information garners significant attention. Below, we
provide examples of common applications.

Transfer Learning
Contrastive Learning
Other Auxiliary Learning Technologies
Discussion
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Micro-View: Technologies Auxiliary Learning

Transfer Learning

Transfer learning (TL) [Pan and Yang, 2009] is primarily employed to
transfer knowledge learned from one task to another task.

CDNST [Zhuang et al., 2020] transfers the novelty-seeking trait
learned from a source domain to a target domain.
SATLR [Liu and Zhu, 2021] considers transferring knowledge by
multiplying the independently learned representations from one
domain with an orthogonal mapping matrix.
DAT-MDI [Chen et al., 2021] combines a dual transfer model with
slot attention to self-adapt item embedding from different
domains.
DASL [Li et al., 2021] applies a dual embedding component to
unify the learning process of user representations.
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Micro-View: Technologies Auxiliary Learning

Contrastive Learning

Contrastive learning (CL) [Jing et al., 2023] is also a widely applied
technique that leverages the similarities and differences between
samples to extract useful information.

Tri-CDR [Ma et al., 2023] closes three domains’ sequence
representations of the same user and assumes that the distance
between domain A and domain B should be larger than the
distance between domain B and the hybrid domain.
MGCL [Xu et al., 2023c] views the local and global item
representations of a user as the positive samples and the
representations from different users as the negative samples.
Additionally, some works aggregate the sequences and then
combine those processed sequences with CL.
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Micro-View: Technologies Auxiliary Learning

Other Auxiliary Learning Technologies

In addition to transfer learning and contrastive learning, there are other
auxiliary learning technologies.

Adversarial Learning: RecGURU [Li et al., 2022] and TPUF [Ding
et al., 2023] train a discriminator until it is unable to distinguish
whether a feature belongs to domain A or domain B.
Federated Learning: FedDCSR [Zhang et al., 2023a] leverages it
[Yang et al., 2019] to preserve data privacy.
Reinforcement Learning: RL-ISN [Guo et al., 2023c] utilizes
rewards to determine whether to revise the whole transferred
sequence and selects which interactions should be retained, thus
alleviating the noise introduced by transferring cross-domain
information.
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Micro-View: Technologies Auxiliary Learning

Discussion

Incorporating auxiliary learning technologies aims to enhance a model’s
ability to capture cross-domain information.

Contrastive learning can make learned representations more
discriminative and robust, but it is sensitive to the designed
contrastive strategy.
Transfer learning enables the sharing of information across
domains, but the effectiveness of knowledge transfer is affected by
the correlation between domains, i.e., there is vulnerability to
negative transfer [Zhang et al., 2023c].
Moreover, adversarial learning can unify representations from
different domains but its training process is more complex.
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Datasets and Experimental Results Datasets

Datasets

In this section, we summarize a list of commonly used datasets of
CDSR, including their corresponding domains, data types, and scales.

Datasets Domains Data types Scale

HVIDEO
[Ma et al., 2019]

V-domain:
family videos user ID, item ID, time 0.4 million +

E-domain:
educational videos

Douban
[Zhu et al., 2021]

Movies
user ID, item ID, ratings,

labels, reviews, time, users contexts
1 millions +Musics

Books

Amazon
[McAuley et al., 2015]

Books

user ID, item ID, ratings,
time, reviews, item contexts

100 millions +
Movies
Foods

Kitchens
. . .

Tenrec
[Yuan et al., 2022]

Videos
QK-video user ID, item ID, multiple-behavior interactions,

video category, watching times, user gender, user age
100 millions +

QB-video

Articles
QK-article user ID, item ID, multiple-behavior interactions,

read percentage, item contexts, read timeQB-article

Mybank-CDR
[Xu et al., 2023b]

Loan
user ID, interactive sequences 100 millions +Fund

Account

Table: A summary of commonly used datasets for CDSR.
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Datasets and Experimental Results Datasets

Experimental Results

We quote the results of some representative models. It shows that with
the increase in information and advancements in methods, the
results gradually improve.

Foods Kitchens
MRR NDCG HR MRR NDCG HR
@10 @5 @10 @1 @5 @10 @10 @5 @10 @1 @5 @10

OCCF
BPRMF [Rendle et al., 2012] 4.10 3.55 4.03 2.42 4.51 5.95 2.01 1.45 1.85 0.73 2.18 3.43
ItemKNN [Sarwar et al., 2001] 3.92 3.51 3.97 2.41 4.59 5.98 1.89 1.28 1.75 0.58 1.99 3.26

SOCCF
GRU4Rec [Hidasi et al., 2015] 5.79 5.48 6.13 3.63 7.12 9.11 3.06 2.55 3.10 1.61 3.50 5.22
SASRec [Kang and McAuley, 2018] 7.30 6.90 7.79 4.73 8.92 11.68 3.79 3.35 3.93 1.92 4.78 6.62
SR-GNN [Wu et al., 2019] 7.84 7.58 8.35 5.03 9.88 12.27 4.01 3.47 4.13 2.07 4.80 6.84

CD-OCCF
NCF-MLP [He et al., 2017] 4.49 3.94 4.51 2.68 5.10 6.86 2.18 1.57 2.03 0.91 2.23 3.65
CoNet [Hu et al., 2018] 4.13 3.61 4.14 2.42 4.77 6.35 2.17 1.50 2.11 0.95 2.07 3.71

CD-SOCCF
(a.k.a. CDSR)

π-Net [Ma et al., 2019] 7.68 7.32 8.13 5.25 9.25 11.75 3.53 2.98 3.73 1.57 4.34 6.67
MIFN [Ma et al., 2022] 8.55 8.28 9.01 6.02 10.43 12.71 4.09 3.57 4.29 2.21 4.86 7.08
C2DSR [Cao et al., 2022] 8.91 8.65 9.71 5.84 11.24 14.54 4.65 4.16 4.94 2.51 5.74 8.18
P-CDSR [Xiao et al., 2023] 9.87 9.57 10.72 6.66 12.34 15.94 4.78 4.37 5.08 2.69 6.06 8.27
DREAM [Ye et al., 2023] 9.33 10.05 11.25 6.08 13.75 17.45 4.82 5.19 6.15 2.74 7.52 10.51

Table: Experimental results (%) on two domains of Foods and Kitchen of
Amazon. Notice that the results are copied from [Cao et al., 2022, Xiao et al.,
2023, Ye et al., 2023] for reference. We bold the best results and underline the
second-best results.
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Future Directions

Future Directions (1/3)

Multi-Domain Simultaneous Improvement. In real-world
applications, users tend to have interactions in multiple domains.
Exploring how to integrate information from multiple domains (e.g.,
dozens of domains) and simultaneously improve the performance of
each domain is a crucial research direction for the future of CDSR.
Heterogeneous Information Fusion. Apart from the side
information mentioned above, there is a large amount of relevant
heterogeneous information in real-world applications. For example,
users are likely to transfer from browsing short videos to
purchasing items mentioned in the videos. Therefore, it is worth
investigating effective methods that combine heterogeneous
information (e.g., image, video, etc.) and traditional ID-based
information, to address the challenges in CDSR.
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Future Directions

Future Directions (2/3)

Deep Utilization of Non-overlapping Information. Indeed, the
majority of current models rely on overlapping users to bridge
different domains, but non-overlapping data also contain rich
semantic information that is worth exploring and extracting [Liu
et al., 2023]. So researchers can conduct deeper studies on
non-aligned information.
Privacy Preservation. When it comes to sensitive user
information, encryption and protection of data is crucial. Particularly
within the realm of CDSR, there is a greater inclusion of user data.
Therefore, designing effective federated learning methods to
ensure privacy while minimizing the loss of valuable information in
the cross-domain scenario is a meaningful but less studied area
[Lin et al., 2023b].
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Future Directions

Future Directions (3/3)

Fairness and Interpretability. Fairness and interpretability are
crucial research topics in recommender systems. In CDSR, it is
essential to reduce the bias between different domains and to
interpret CDSR results to users.
More Advanced Technologies. We analyze the technologies used
in existing CDSR models from a micro view. However, achieving
greater leaps in performance demands more advanced
technologies. For instance, exploring the application of large
language models (LLMs) [Wu et al., 2023] in the CDSR scenario is
also a promising direction.
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Conclusions

Conclusions

Cross-domain sequential recommendation (CDSR) extends traditional
recommender systems by incorporating sequential and cross-domain
information, aiming to address the data sparsity issue.

We first formulate the CDSR problem and modeling tasks,
considering various dimensionality reductions and different
input representations.
From a macro view, we present an overview of multi-level fusion
structures, discussing how to fuse information across different
domains and exploring bridges for cross-domain fusion.
From a micro view, we conduct a detailed analysis of various
technologies employed by existing works that are categorized into
basic and auxiliary learning technologies.
Furthermore, we list the datasets commonly used in CDSR and
the representative experimental results as well as provide some
insights into potential future directions.
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