VAE++: Variational AutoEncoder for Heterogeneous One-Class Collaborative Filtering

Wanqi Ma\(^1, 2, 3\), Xiancong Chen\(^1, 2, 3\), Weike Pan\(^1, 2, 3\)\(^*\), Zhong Ming\(^1, 2, 3\)\(^*\)

\{mawanqi2019, chenxiancong\}@email.szu.edu.cn, \{panweike, mingz\}@szu.edu.cn

\(^1\)National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, China

\(^2\)Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, China

\(^3\)College of Computer Science and Software Engineering, Shenzhen University, China
The limitation of existing recommendation methods:

- Neural network-based models for collaborative filtering have received widespread attention, among which variational autoencoder (VAE) has shown unique advantages in the task of item recommendation.

- However, most existing VAE-based models only focus on one type of user feedback, leading to their performance bottlenecks.
We propose a novel VAE-based recommendation model called VAE++, which can effectively utilize heterogeneous feedback to boost recommendation performance.

Specifically, it combines three different types of signals, i.e., purchase feedback, examination feedback and their mixed feedback, via two well-designed modules, i.e., a target representation enhancement module and a target representation refinement module.
Advantages of Our Solution

- Our VAE++ combines three types of signals, i.e., the purchase feedback, the examination feedback and their mixed feedback, into one model, so that different types of feedback can complement each other to obtain better recommendation performance.

- Extensive experiments on three public datasets show that our VAE++ achieves the best results compared with several state-of-the-art methods.
One-Class Collaborative Filtering (OCCF)

- Variational autoencoder (VAE) [Liang et al., 2018] is a generative model with strong generalization, which enables it to accurately predict the users’ preferences towards items.

VAE is a very competitive method compared with a variety of state-of-the-art methods [Dacrema et al., 2019]. However, it is designed to solve the OCCF problem, which motivates us to design a novel method based on it to deal with the HOCCF problem.
Heterogeneous One-Class Collaborative Filtering (HOCCF)

Role-based transfer to rank (RoToR) [Pan et al., 2019] is based on the traditional MF model [Koren et al., 2009], which may not be sufficient to capture the complex interactions between users and items.

Efficient heterogeneous collaborative filtering (EHCF) [Chen et al., 2020] leverages linear functions to model the relations between multiple behaviors, which may fail to learn the users’ behavior patterns well.

Staged VAE (SVAE) [Chen et al., 2021] captures the users’ examination and purchase preferences through two separate models, which may not be a good way to share knowledge between different types of feedback.

Our VAE++ jointly models the users’ purchase, examination and their mixed feedback via two well-designed modules, and improves the reconstruction ability of VAE by sharing knowledge between different data.
Problem Definition

- **Input:** We have a set of users $\mathcal{U} = \{u\} = \{1, 2, \ldots, n\}$, a set of items $\mathcal{I} = \{i\} = \{1, 2, \ldots, m\}$, and two different types of user feedback, i.e., the target feedback such as purchases $\mathcal{R}^p = \{(u, i)\}$ and the auxiliary feedback such as examinations $\mathcal{R}^e = \{(u, i)\}$. We keep a (u, i) pair associated with both purchase and examination behaviors only in the purchase data \mathcal{R}^p, and thus have $\mathcal{I}_u^p \cap \mathcal{I}_u^e = \emptyset$.

- **Goal:** Our goal is to generate a personalized ranked list of items for each user u from the items that he/she has not purchased, i.e., $\mathcal{I} \setminus \mathcal{I}_u^p$.
Our VAE++ incorporates three types of signals, i.e., the purchase feedback, the examination feedback and their mixed feedback, into one model in a seamless manner.

It consists of four main components, including a target encoder, a target representation enhancement module, a target representation refinement module and a target decoder.
VAE++ (2/2)

Figure: Illustration of our VAE++ for modeling the target feedback, i.e., purchases (R^P), and the auxiliary feedback, i.e., examinations (R^E), in HOCCF.
Target Encoder (1/2)

- Following [Liang et al., 2018], we use a variational autoencoder to learn the users’ latent representations because of its strong feature learning ability.
- Let \(\mathbf{z}_u^p \in \mathbb{R}^{1 \times d} \) denote the purchase latent representation of user \(u \) with \(d \) as the latent dimensionality. The objective of the target encoder is to produce the distribution of \(\mathbf{z}_u^p \) according to the purchase data \(\mathcal{R}^p \).
For each user u, the input of the target encoder is a multi-hot encoding purchase vector $x^P_u \in \{0, 1\}^{1 \times m}$, and the output is the mean $\mu^P_u \in \mathbb{R}^{1 \times d}$ and the standard deviation $\sigma^P_u \in \mathbb{R}^{1 \times d}$ of the latent variable z^P_u, which can be obtained as follows,

$$
\mu^P_u = f(x^P_u W_{\mu_1} + b_{\mu_1}),
$$

$$
\sigma^P_u = \exp(f(x^P_u W_{\sigma_1} + b_{\sigma_1})),
$$

where $W_{\mu_1}, W_{\sigma_1} \in \mathbb{R}^{m \times d}$ and $b_{\mu_1}, b_{\sigma_1} \in \mathbb{R}^{1 \times d}$ are the weight matrices and bias vectors, respectively, and $f(\cdot)$ is an activation function for the hidden layer.
In most real-world applications, the purchase feedback are relatively sparse, which may limit the generalization ability of VAE. To overcome this obstacle, we introduce the users’ examination feedback to accurately model their latent representations.

The examination data does not include the purchase data, i.e., for each user u, $I_u^P \cap I_u^E = \emptyset$. Therefore, there are two forms of auxiliary data available. One is a mixture of the purchase data and the examination data, denoted as $R^{P \cup E}$, and the other only contains the examination data, denoted as R^E.
To enhance the learning of the user purchase representations, we leverage the first type of auxiliary data, i.e., the mixed data of purchases and examinations R^{PUE}, in the target representation enhancement (TRE) module.

The purpose of TRE is to connect the purchase feedback and the mixed feedback via a transfer gating network, so that the knowledge in the mixed feedback can be used to learn the users’ purchase preferences.
We use a multilayer perceptron (MLP) to compress the mixed vector \(x_{P∪E}^u \in \{0, 1\}^{1×m} \), which denotes the overall interactions of user \(u \) on the entire item set. The obtained latent feature \(\mu_{P∪E}^u \) can be seen as the user \(u \)'s mixed preferences in the purchase data and the examination data,

\[
\mu_{P∪E}^u = f(x_{P∪E}^u W_{μ_2} + b_{μ_2}),
\]

where \(W_{μ_2} \in \mathbb{R}^{m×d} \) and \(b_{μ_2} \in \mathbb{R}^{1×d} \) are the weight matrix and bias vector, respectively, and \(f(\cdot) \) is an activation function for the hidden layer.
To better fuse the purchase latent feature μ_P^u and the mixed latent feature $\mu_{P \cup E}^u$, different weights need to be assigned to them. Inspired by [Lin et al., 2020], we propose a transfer gating network to calculate their weights. The gating network is represented as an MLP as follows,

$$g = \sigma([\mu_P^u, \mu_{P \cup E}^u] W_G + b_G),$$ \hspace{1cm} (4)

where $[\cdot, \cdot]$ is the concatenation operation, $W_G \in \mathbb{R}^{2d \times 1}$ and $b_G \in \mathbb{R}$ are the parameters of the feedforward network, and $\sigma(\cdot)$ is the sigmoid function to restrict g to $(0, 1)$.
With the gating value g, the enhanced latent feature μ^e_{P} can be obtained by the weighted sum of the purchase latent feature μ^P_{u} and the mixed latent feature $\mu^{P\cup E}_{u}$ as follows,

\[\mu^e_{P} = \mu^P_{u} \otimes g + \mu^{P\cup E}_{u} \otimes (1 - g), \]

(5)

where \otimes is the element-wise product. Notice that the latent feature μ^e_{P} is encoded with the user u’s purchase preferences and mixed preferences, which allows it to leverage the information obtained from the mixed behaviors to enhance the learning of the purchase representations.
With the enhanced mean μ^p_u and the standard deviation σ^p_u, the improved latent representation z^p_u can be obtained by sampling from a variational distribution with model parameters ϕ,

$$q_\phi(z^p_u|x^p_u) = \mathcal{N}(\mu^p_u, \text{diag}(\sigma^p_u^2)) \tag{6}$$

To allow parameters to be optimized in backpropagation, the reparameterization trick is applied [Kingma and Welling, 2013, Rezende et al., 2014]. Specifically, we approximate the enhanced latent variable z^p_u with the normal distribution $\epsilon \sim \mathcal{N}(0, \text{diag}(1))$, and have

$$z^p_u = \mu^p_u + \epsilon \otimes \sigma^p_u.$$
The enhanced latent variable z_{u}^{pe} needs to be regularized through the Kullback-Leibler (KL) divergence between the variational posterior $q_{\phi}(z_{u}^{pe}|x_{u}^{p})$ and the prior $p(z_{u}^{pe})$ as follows,

$$\mathcal{L}_{KL}(z_{u}^{pe}) = KL(q_{\phi}(z_{u}^{pe}|x_{u}^{p})||p(z_{u}^{pe})), \tag{7}$$

which encourages the learned posterior distribution $q_{\phi}(z_{u}^{pe}|x_{u}^{p})$ to be close to the assumed prior distribution $p(z_{u}^{pe})$, i.e., the commonly used standard normal distribution.
Proposed Method

Target Representation Refinement (1/2)

- To further refine the users’ purchase representations, we introduce the examination data R^E into the target representation refinement (TRR) module.
- The intuition is that the users’ purchase representations can be more accurately modeled by learning the difference between their purchase preferences and examination preferences.
Target Representation Refinement (2/2)

- The examination latent feature μ^e_U can be obtained by using an MLP to compress the examination vector $x^e_U \in \{0, 1\}^{1 \times m}$,

$$\mu^e_U = f(x^e_U W_{\mu_3} + b_{\mu_3}), \quad (8)$$

where $W_{\mu_3} \in \mathbb{R}^{m \times d}$ and $b_{\mu_3} \in \mathbb{R}^{1 \times d}$ are the weight matrix and bias vector, respectively, and $f(\cdot)$ is an activation function for the hidden layer.

- Then we adopt the concatenation operation to combine the enhanced latent variable z^{Pe}_U and the examination latent feature μ^e_U, and obtain the final purchase representation z^{Pr}_U as follows,

$$z^{Pr}_U = [z^{Pe}_U, \mu^e_U], \quad (9)$$

where μ^e_U serves as a signal to distinguish the most useful part of the enhanced purchase representations, enabling the target decoder to generate high-quality samples.
The target decoder is a generative model, whose objective is to produce the probability distribution over the user u’s purchase history x_u^P.

For each user u, it takes the final latent variable z_u^{Pr} as input and outputs the distribution over the entire item set through a softmax function. Then, it reconstructs the input vector from the multinomial distribution [Liang et al., 2018],

$$
\pi(z_u^{Pr}) = \text{softmax}(f_\theta(z_u^{Pr})),
$$

$$
x_u^P \sim \text{Multi}(N_u^P, \pi(z_u^{Pr})),
$$

where $f_\theta(\cdot)$ is an MLP with parameters θ, $\pi(z_u^{Pr})$ is the distribution function of $f_\theta(\cdot)$, and N_u^P is the total number of purchases of user u.

Let \hat{x}^P_u denote the reconstructed purchase vector, which should be close to the input vector x^P_u, so we have the reconstruction loss as follows,

$$
 \mathcal{L}(\hat{x}^P_u, x^P_u) \equiv \mathbb{E}_{q_\phi(z^{Pe}_u|x_u^P)}[\log p_\theta(x_u^P|z^{Pr}_u)].
$$

(12)

The examination and purchase preferences are jointly learned by maximizing Eq.(12), which allows the knowledge extracted from the users’ examination behaviors to be effectively transferred to learning their purchase interests.

Following [Liang et al., 2018], the overall loss function of our VAE++ is as follows,

$$
 \mathcal{L}_{VAE++} = \mathcal{L}(\hat{x}^P_u, x^P_u) - \beta \mathcal{L}_{KL}(z^{Pe}_u),
$$

(13)

where $\beta \in [0, 1]$ is a parameter to weight the regularization.
Research Questions

RQ1: How does our VAE++ perform compared to some state-of-the-art recommendation methods?

RQ2: What is the impact of different components in our VAE++?

RQ3: How do hyperparameters, such as the dimensionality and the number of recommended items, affect the performance of our VAE++?

RQ4: What is the effect of using different data as input in the target representation enhancement module and the target representation refinement module of our VAE++?
Datasets (1/3)

- We use three widely used datasets, i.e., MovieLens 10M (ML10M), Netflix and RecSys Challenge 2015 (Rec15), to evaluate the performance of the proposed model VAE++.

- ML10M and Netflix are two popular benchmark datasets related to movies. We preprocess these two datasets in the same way as [Pan et al., 2019]. (i) We randomly sample 60 percent of the rating records from each dataset, keep the (user, item) pairs with a score equal to 5 as the purchase data, and discard other records. (ii) We divide the purchase data into three parts equally. One is used as the training set, one is used as the validation set, and the other is used as the test set. (iii) All the remaining 40 percent of the rating records in each dataset are regarded as the examination data. We repeat the above steps three times to obtain three different copies of each dataset.
Datasets (2/3)

Rec15 is a real dataset released by the RecSys 2015 competition. We process this dataset as follows. (i) For the items that are repeatedly purchased or examined in a session, we only keep the records with the earliest interaction. (ii) For the items purchased fewer than 5 times and the sessions with fewer than 5 purchase records, we remove them. (iii) For each session, we treat the penultimate purchase record as the validation set, the last purchase record as the test set, and the remaining records as the training set. (iv) If the validation set or the test set contains the examined items in the training set, we remove these items in the training set.
Datasets (3/3)

Table: Statistics of the three processed datasets, including the number of purchases (P) and examinations (E) in the training data, the number of purchases (P(val.)) in the validation data, and the number of purchases (P(te.)) in the test data. P/E denotes the ratio between P and E.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>ML10M</th>
<th>Netflix</th>
<th>Rec15</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Users</td>
<td>71,567</td>
<td>480,189</td>
<td>36,917</td>
</tr>
<tr>
<td>#Items</td>
<td>10,681</td>
<td>17,770</td>
<td>9,621</td>
</tr>
<tr>
<td>P</td>
<td>309,317</td>
<td>4,554,888</td>
<td>159,429</td>
</tr>
<tr>
<td>E</td>
<td>4,000,024</td>
<td>39,628,846</td>
<td>213,332</td>
</tr>
<tr>
<td>P(val.)</td>
<td>308,673</td>
<td>4,556,347</td>
<td>36,917</td>
</tr>
<tr>
<td>P(te.)</td>
<td>308,702</td>
<td>4,558,506</td>
<td>36,917</td>
</tr>
<tr>
<td>P/E</td>
<td>1:12.93</td>
<td>1:8.70</td>
<td>1:1.33</td>
</tr>
<tr>
<td>Density</td>
<td>0.56%</td>
<td>0.52%</td>
<td>0.11%</td>
</tr>
</tbody>
</table>

Ma et al., (SZU) VAE++ WSDM 2022 26 / 44
To evaluate the performance of item recommendation, we adopt four widely used ranking-oriented metrics, including precision, recall, normalized discounted cumulative gain (NDCG) and 1-call [Valcarce et al., 2018].

We report these metrics with the number of recommended items $K = 5$, denoted as Prec@5, Rec@5, NDCG@5 and 1-call@5.
Baselines

Three OCCF algorithms:
- BPR [Rendle et al., 2009].
- MFLogLoss [Johnson, 2014].
- VAE [Liang et al., 2018].

Four HOCCF algorithms:
- VALS [Ding et al., 2018] models the pairwise relations among the purchase data, examination data and missing data.
- RoToR [Pan et al., 2019] combines purchase feedback and examination feedback through two forms of knowledge transfer.
- EHCF [Chen et al., 2020] is a deep learning method, which considers the relations between different types of behaviors.
- SVAE [Chen et al., 2021] is a two-stage model based on VAE [Liang et al., 2018], which transfers the knowledge extracted from the examination model to the purchase model.
Parameter Settings (1/2)

For a fair comparison, we fix the size of latent factor dimension $d = 100$ in all models [Chen et al., 2021].

For BPR, MFLogLoss and RoToR, we set the learning rate $\gamma = 0.01$, and search the best values of the tradeoff parameters from $\{0.001, 0.01, 0.1\}$ and the iteration number T from $\{100, 500, 1000\}$ [Pan et al., 2019].

For VALS, we follow the suggested configurations [Ding et al., 2018], and search the weight of the missing data from $\{100, 200, 400, 800, 1600, 3200, 6400\}$, the weight of the examination data from $\{0.25, 0.5, 1, 1.5, 2\}$, and the margin values from $\{0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5\}$.
For the four deep learning-based models, i.e., EHCF, VAE, SVAE and our VAE++, they are implemented in TensorFlow\(^1\), where the batch size is set to 500 and the dropout ratio \(\rho\) is set to 0.5 to prevent overfitting [Liang et al., 2018].

For EHCF, we set the learning rate to 0.05 and configure other parameters by following the settings in [Chen et al., 2020].

For VAE, we follow the settings in [Liang et al., 2018], adopt a structure with 1 hidden layer, and use the identity activation function for the hidden layer. In addition, we select the learning rate from \{0.0001, 0.001, 0.01\}, optimize it with mini-batch Adam, and use an early-stop strategy with a threshold 50.

For SVAE and the proposed method VAE++, the parameter settings are consistent with VAE.

\(^{1}\)https://www.tensorflow.org
Performance Comparison (RQ1) (1/5)

Table: Recommendation performance of our VAE++ and seven baselines, including three OCCF algorithms and four HOCCF algorithms, on **ML10M**.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Prec@5</th>
<th>Rec@5</th>
<th>NDCG@5</th>
<th>1-call@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML10M</td>
<td>BPR</td>
<td>0.0680 ± 0.0002</td>
<td>0.0915 ± 0.0003</td>
<td>0.0933 ± 0.0004</td>
<td>0.2837 ± 0.0023</td>
</tr>
<tr>
<td></td>
<td>MFLogLoss</td>
<td>0.0736 ± 0.0005</td>
<td>0.0995 ± 0.0010</td>
<td>0.1019 ± 0.0004</td>
<td>0.3034 ± 0.0017</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^P))</td>
<td>0.0744 ± 0.0003</td>
<td>0.0997 ± 0.0003</td>
<td>0.1031 ± 0.0005</td>
<td>0.3067 ± 0.0008</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^E))</td>
<td>0.0957 ± 0.0010</td>
<td>0.1367 ± 0.0014</td>
<td>0.1396 ± 0.0019</td>
<td>0.3812 ± 0.0035</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^P\cup\mathcal{E}))</td>
<td>0.0838 ± 0.0003</td>
<td>0.1166 ± 0.0004</td>
<td>0.1172 ± 0.0005</td>
<td>0.3427 ± 0.0011</td>
</tr>
<tr>
<td></td>
<td>VALS</td>
<td>0.0671 ± 0.0006</td>
<td>0.0759 ± 0.0012</td>
<td>0.0901 ± 0.0011</td>
<td>0.2745 ± 0.0024</td>
</tr>
<tr>
<td></td>
<td>RoToR</td>
<td>0.0872 ± 0.0001</td>
<td>0.1239 ± 0.0007</td>
<td>0.1235 ± 0.0006</td>
<td>0.3562 ± 0.0008</td>
</tr>
<tr>
<td></td>
<td>EHCF</td>
<td>0.0704 ± 0.0009</td>
<td>0.0928 ± 0.0023</td>
<td>0.0957 ± 0.0015</td>
<td>0.2914 ± 0.0044</td>
</tr>
<tr>
<td></td>
<td>SVAE</td>
<td>0.0935 ± 0.0004</td>
<td>0.1369 ± 0.0011</td>
<td>0.1372 ± 0.0010</td>
<td>0.3752 ± 0.0023</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.1071 ± 0.0003</td>
<td>0.1524 ± 0.0003</td>
<td>0.1567 ± 0.0003</td>
<td>0.4153 ± 0.0014</td>
</tr>
</tbody>
</table>
Performance Comparison (RQ1) (2/5)

Table: Recommendation performance of our VAE++ and seven baselines, including three OCCF algorithms and four HOCCF algorithms, on Netflix.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Prec@5</th>
<th>Rec@5</th>
<th>NDCG@5</th>
<th>1-call@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netflix</td>
<td>BPR</td>
<td>0.0755±0.0004</td>
<td>0.0503±0.0005</td>
<td>0.0854±0.0004</td>
<td>0.2994±0.0013</td>
</tr>
<tr>
<td></td>
<td>MFLogLoss</td>
<td>0.0785±0.0003</td>
<td>0.0549±0.0006</td>
<td>0.0900±0.0004</td>
<td>0.3103±0.0014</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^P))</td>
<td>0.0860±0.0001</td>
<td>0.0593±0.0001</td>
<td>0.0996±0.0002</td>
<td>0.3322±0.0004</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^E))</td>
<td>0.0960±0.0011</td>
<td>0.0738±0.0011</td>
<td>0.1158±0.0015</td>
<td>0.3677±0.0032</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^{P∪E}))</td>
<td>0.0907±0.0004</td>
<td>0.0689±0.0005</td>
<td>0.1063±0.0005</td>
<td>0.3541±0.0013</td>
</tr>
<tr>
<td>Netflix</td>
<td>VALS</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>RoToR</td>
<td>0.0941±0.0003</td>
<td>0.0750±0.0003</td>
<td>0.1119±0.0004</td>
<td>0.3674±0.0010</td>
</tr>
<tr>
<td></td>
<td>EHCF</td>
<td>0.0850±0.0007</td>
<td>0.0609±0.0006</td>
<td>0.0980±0.0008</td>
<td>0.3318±0.0031</td>
</tr>
<tr>
<td></td>
<td>SVAE</td>
<td>0.0986±0.0004</td>
<td>0.0795±0.0005</td>
<td>0.1187±0.0005</td>
<td>0.3797±0.0013</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.1235±0.0003</td>
<td>0.0961±0.0006</td>
<td>0.1502±0.0006</td>
<td>0.4409±0.0014</td>
</tr>
</tbody>
</table>
Performance Comparison (RQ1) (3/5)

Table: Recommendation performance of our VAE++ and seven baselines, including three OCCF algorithms and four HOCCF algorithms, on Rec15.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Prec@5</th>
<th>Rec@5</th>
<th>NDCG@5</th>
<th>1-call@5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPR</td>
<td>0.0457±0.0004</td>
<td>0.2286±0.0017</td>
<td>0.1473±0.0007</td>
<td>0.2286±0.0017</td>
</tr>
<tr>
<td></td>
<td>MFLogLoss</td>
<td>0.0490±0.0002</td>
<td>0.2451±0.0006</td>
<td>0.1586±0.0002</td>
<td>0.2451±0.0006</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^P))</td>
<td>0.0511±0.0002</td>
<td>0.2553±0.0006</td>
<td>0.1671±0.0005</td>
<td>0.2553±0.0006</td>
</tr>
<tr>
<td>Rec15</td>
<td>VAE((\mathcal{R}^E))</td>
<td>0.0357±0.0002</td>
<td>0.1783±0.0007</td>
<td>0.1185±0.0004</td>
<td>0.1783±0.0007</td>
</tr>
<tr>
<td></td>
<td>VAE((\mathcal{R}^P∪\mathcal{E}))</td>
<td>0.0509±0.0001</td>
<td>0.2543±0.0005</td>
<td>0.1615±0.0003</td>
<td>0.2543±0.0005</td>
</tr>
<tr>
<td></td>
<td>VALS</td>
<td>0.0557±0.0001</td>
<td>0.2784±0.0005</td>
<td>0.1858±0.0003</td>
<td>0.2784±0.0005</td>
</tr>
<tr>
<td></td>
<td>RoToR</td>
<td>0.0534±0.0001</td>
<td>0.2669±0.0007</td>
<td>0.1734±0.0007</td>
<td>0.2669±0.0007</td>
</tr>
<tr>
<td></td>
<td>EHCF</td>
<td>0.0512±0.0001</td>
<td>0.2559±0.0005</td>
<td>0.1653±0.0003</td>
<td>0.2559±0.0005</td>
</tr>
<tr>
<td></td>
<td>SVAE</td>
<td>0.0533±0.0001</td>
<td>0.2664±0.0004</td>
<td>0.1769±0.0002</td>
<td>0.2664±0.0004</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.0558±0.0000</td>
<td>0.2792±0.0001</td>
<td>0.1861±0.0003</td>
<td>0.2792±0.0001</td>
</tr>
</tbody>
</table>
We can have the following observations:

- Compared with all the baselines, our VAE++ achieves the best performance across the three datasets, which clearly shows the advantage of our generic solution.

- For the four baselines exploiting heterogeneous one-class feedback, SVAE outperforms the other three methods in most cases, but it is still worse than our VAE++. In addition, the results of VALS and our VAE++ are comparable on Rec15, but on ML10M, VALS does not perform well compared to all the methods.

- For most HOCCF methods, including RoToR, SVAE and our VAE++, they achieve better results compared to the three methods that only use the purchase data, i.e., BPR, MFLogLoss and VAE(\(\mathcal{R}^P\)), which indicates that heterogeneous behavior information can help improve the recommendation accuracy.
For the models exploiting **homogeneous one-class feedback**, we can have the following observations:

- **VAE** performs better than the other two methods, which illustrates the advantage of **learning the distribution of user representations**.
- For the three VAE-based methods with different sources of data, **VAE(ℛ^E)** performs better on ML10M and Netflix, while **VAE(ℛ^P)** achieves better performance on Rec15.
- **VAE(ℛ^P ∪ ℛ^E)** performs relatively poorly on the three datasets, indicating that simply merging two different types of data cannot capture the users’ preferences well. Therefore, it is necessary to design an effective method to fuse them like our VAE++.
Table: Recommendation performance of our VAE++ by removing different components, i.e., target representation enhancement (TRE), target representation refinement (TRR) and TRE & TRR, respectively, for ablation studies on three datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Prec@5</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-TRE</td>
<td>0.1072 ± 0.0005</td>
<td>0.1566 ± 0.0001</td>
</tr>
<tr>
<td>ML10M</td>
<td>-TRR</td>
<td>0.0845 ± 0.0007</td>
<td>0.1187 ± 0.0006</td>
</tr>
<tr>
<td></td>
<td>-TRE & TRR</td>
<td>0.0744 ± 0.0003</td>
<td>0.1031 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.1071 ± 0.0003</td>
<td>0.1567 ± 0.0003</td>
</tr>
<tr>
<td>Netflix</td>
<td>-TRE</td>
<td>0.1231 ± 0.0005</td>
<td>0.1491 ± 0.0006</td>
</tr>
<tr>
<td></td>
<td>-TRR</td>
<td>0.0952 ± 0.0003</td>
<td>0.1119 ± 0.0004</td>
</tr>
<tr>
<td></td>
<td>-TRE & TRR</td>
<td>0.0860 ± 0.0001</td>
<td>0.0996 ± 0.0002</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.1235 ± 0.0003</td>
<td>0.1502 ± 0.0006</td>
</tr>
<tr>
<td>Rec15</td>
<td>-TRE</td>
<td>0.0545 ± 0.0003</td>
<td>0.1812 ± 0.0009</td>
</tr>
<tr>
<td></td>
<td>-TRR</td>
<td>0.0528 ± 0.0001</td>
<td>0.1698 ± 0.0003</td>
</tr>
<tr>
<td></td>
<td>-TRE & TRR</td>
<td>0.0511 ± 0.0002</td>
<td>0.1671 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>VAE++</td>
<td>0.0558 ± 0.0000</td>
<td>0.1861 ± 0.0003</td>
</tr>
</tbody>
</table>
Ablation Study (RQ2) (2/2)

We have the following observations:

- **“-TRE”**. The performance of our VAE++ without TRE declines on Rec15, which demonstrates **the usefulness of the transfer gating network** in combining the purchase and mixed behaviors. Besides, it achieves comparable results with our VAE++ on ML10M and Netflix. The reason is that there are relatively more purchase data on these two datasets.

- **“-TRR”**. Our VAE++ without TRR performs much worse, which shows **the significance of learning the difference between the purchase and examination preferences** to reconstruct the input purchase samples.

- **“-TRE & TRR”**. The performance of our VAE++ without TRE and TRR further decreases, which shows that **these two modules are critical** to the performance of our VAE++.
Figure: Recommendation performance of our VAE++ with different numbers of latent dimensions on three datasets.
Hyperparameter Sensitivity (RQ3) (2/2)

Figure: Recommendation performance of our VAE++ and SVAE with different numbers of recommended items on three datasets.

(a) ML10M
(b) Netflix
(c) Rec15

Figure: Recommendation performance of our VAE++ and SVAE with different numbers of recommended items on three datasets.
Effect of Input Data (RQ4) (1/2)

Table: Recommendation performance of our VAE++ by using different input data in TRE and TRR, i.e., EE, EM, MM and ME, respectively, on three datasets. Notice that the default configuration of our VAE++ is ME, i.e., using the mixed data $\mathcal{R}^{P\cup E}$ in TRE and the examination data \mathcal{R}^{E} in TRR.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Prec@5</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML10M</td>
<td>EE</td>
<td>0.1072±0.0002</td>
<td>0.1564±0.0005</td>
</tr>
<tr>
<td></td>
<td>EM</td>
<td>0.0796±0.0007</td>
<td>0.1107±0.0008</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>0.0804±0.0001</td>
<td>0.1124±0.0001</td>
</tr>
<tr>
<td></td>
<td>ME</td>
<td>0.1071±0.0003</td>
<td>0.1567±0.0003</td>
</tr>
<tr>
<td>Netflix</td>
<td>EE</td>
<td>0.1228±0.0004</td>
<td>0.1487±0.0004</td>
</tr>
<tr>
<td></td>
<td>EM</td>
<td>0.0879±0.0004</td>
<td>0.1027±0.0005</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>0.0907±0.0001</td>
<td>0.1065±0.0001</td>
</tr>
<tr>
<td></td>
<td>ME</td>
<td>0.1235±0.0003</td>
<td>0.1502±0.0006</td>
</tr>
<tr>
<td>Rec15</td>
<td>EE</td>
<td>0.0548±0.0001</td>
<td>0.1825±0.0004</td>
</tr>
<tr>
<td></td>
<td>EM</td>
<td>0.0520±0.0003</td>
<td>0.1661±0.0003</td>
</tr>
<tr>
<td></td>
<td>MM</td>
<td>0.0517±0.0003</td>
<td>0.1659±0.0001</td>
</tr>
<tr>
<td></td>
<td>ME</td>
<td>0.0558±0.0000</td>
<td>0.1861±0.0003</td>
</tr>
</tbody>
</table>
We have the following observations:

- **ME**, i.e., our VAE++, outperforms the other three in most cases, which showcases that using the mixed feedback in TRE and the examination feedback in TRR can obtain excellent recommendation results.

- The performance of **EE**, i.e., using the examination data as the input of TRE and TRR, is comparable to that of ME, i.e., our VAE++, on ML10M and Netflix. The reason is that these two datasets are relatively dense, so only using the examination data can also help learn the users’ purchase preferences.
Conclusions

We propose a novel and generic VAE-based recommendation framework, i.e., VAE++, for dealing with the HOCCF problem.

It utilizes three types of signals, including the purchase behaviors, the examination behaviors and their mixed behaviors, via two well-designed modules, i.e., a target representation enhancement module and a target representation refinement module.

Extensive empirical studies on three public datasets show that our VAE++ achieves very promising performance compared with some highly competitive baseline methods.
Future Work

For future works, we will consider introducing some additional information into our VAE++, such as *temporal dynamics* [Bian et al., 2021] and *social networks* [Chen and Wong, 2021], to better transfer knowledge between different types of data.
We thank the anonymous reviewers for constructive and expert comments, and the support of National Natural Science Foundation of China Nos. 61836005 and 62172283. We thank Mr. Dugang Liu for his helpful discussions and assistance.

If you have any questions, please feel free to contact us.
Denoising user-aware memory network for recommendation.

Efficient heterogeneous collaborative filtering without negative sampling for recommendation.

An efficient and effective framework for session-based social recommendation.
In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM'21, page 400–408.

Staged variational autoencoder for heterogeneous one-class collaborative filtering (in chinese).

Are we really making much progress? a worrying analysis of recent neural recommendation approaches.

Improving implicit recommender systems with view data.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, pages 3343–3349.

Logistic matrix factorization for implicit feedback data.

Auto-encoding variational Bayes.

Matrix factorization techniques for recommender systems.

Variational autoencoders for collaborative filtering.

FISSA: Fusing item similarity models with self-attention networks for sequential recommendation.
In *Proceedings of the 14th ACM Conference on Recommender Systems*, RecSys’20, pages 130–139.

Transfer to rank for heterogeneous one-class collaborative filtering.

BPR: Bayesian personalized ranking from implicit feedback.

Stochastic backpropagation and approximate inference in deep generative models.

On the robustness and discriminative power of information retrieval metrics for top-n recommendation.