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Introduction

Motivation

The limitation of existing recommendation methods:
Neural network-based models for collaborative filtering have
received widespread attention, among which variational
autoencoder (VAE) has shown unique advantages in the task of
item recommendation.
However, most existing VAE-based models only focus on one type
of user feedback, leading to their performance bottlenecks.
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Introduction

Overall of Our Solution

We propose a novel VAE-based recommendation model called
VAE++, which can effectively utilize heterogeneous feedback to
boost recommendation performance.
Specifically, it combines three different types of signals, i.e.,
purchase feedback, examination feedback and their mixed
feedback, via two well-designed modules, i.e., a target
representation enhancement module and a target representation
refinement module.
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Introduction

Advantages of Our Solution

Our VAE++ combines three types of signals, i.e., the purchase
feedback, the examination feedback and their mixed feedback, into
one model, so that different types of feedback can complement
each other to obtain better recommendation performance.
Extensive experiments on three public datasets show that our
VAE++ achieves the best results compared with several
state-of-the-art methods.
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Related Work

Related Work (1/2)

One-Class Collaborative Filtering (OCCF)
Variational autoencoder (VAE) [Liang et al., 2018] is a generative
model with strong generalization, which enables it to accurately
predict the users’ preferences towards items.

VAE is a very competitive method compared with a variety of
state-of-the-art methods [Dacrema et al., 2019]. However, it is
designed to solve the OCCF problem, which motivates us to design a
novel method based on it to deal with the HOCCF problem.
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Related Work

Related Work (2/2)

Heterogeneous One-Class Collaborative Filtering (HOCCF)
Role-based transfer to rank (RoToR) [Pan et al., 2019] is based on
the traditional MF model [Koren et al., 2009], which may not be
sufficient to capture the complex interactions between users and
items.
Efficient heterogeneous collaborative filtering
(EHCF) [Chen et al., 2020] leverages linear functions to model the
relations between multiple behaviors, which may fail to learn the
users’ behavior patterns well.
Staged VAE (SVAE) [Chen et al., 2021] captures the users’
examination and purchase preferences through two separate
models, which may not be a good way to share knowledge between
different types of feedback.

Our VAE++ jointly models the users’ purchase, examination and their
mixed feedback via two well-designed modules, and improves the
reconstruction ability of VAE by sharing knowledge between different
data.
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Proposed Method

Problem Definition

Input: We have a set of users U = {u} = {1,2, ...,n}, a set of
items I = {i} = {1,2, ...,m}, and two different types of user
feedback, i.e., the target feedback such as purchases
RP = {(u, i)} and the auxiliary feedback such as examinations
RE = {(u, i)}. We keep a (u, i) pair associated with both purchase
and examination behaviors only in the purchase data RP , and
thus have IPu ∩ IEu = ∅.
Goal: Our goal is to generate a personalized ranked list of items
for each user u from the items that he/she has not purchased, i.e.,
I\IPu .
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Proposed Method

VAE++ (1/2)

Our VAE++ incorporates three types of signals, i.e., the purchase
feedback, the examination feedback and their mixed feedback,
into one model in a seamless manner.
It consists of four main components, including a target encoder, a
target representation enhancement module, a target
representation refinement module and a target decoder.
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Proposed Method

VAE++ (2/2)

Target Representation Refinement

Concatenate

...

...
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Target Representation Enhancement

Transfer Gating Network

...

...

...

Target Encoder

...
...

... Encoder

Target Decoder

...

... Decoder

Figure: Illustration of our VAE++ for modeling the target feedback, i.e.,
purchases (RP), and the auxiliary feedback, i.e., examinations (RE), in
HOCCF.
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Proposed Method

Target Encoder (1/2)

Following [Liang et al., 2018], we use a variational autoencoder to
learn the users’ latent representations because of its strong
feature learning ability.
Let zPu ∈ R1×d denote the purchase latent representation of user u
with d as the latent dimensionality. The objective of the target
encoder is to produce the distribution of zPu according to the
purchase data RP .
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Proposed Method

Target Encoder (2/2)

For each user u, the input of the target encoder is a multi-hot
encoding purchase vector xPu ∈ {0,1}

1×m, and the output is the
mean µPu ∈ R1×d and the standard deviation σPu ∈ R1×d of the
latent variable zPu , which can be obtained as follows,

µPu = f (xPu Wµ1 + bµ1), (1)

σPu = expf (xPu Wσ1+bσ1 ), (2)

where Wµ1 ,Wσ1 ∈ Rm×d and bµ1 ,bσ1 ∈ R1×d are the weight
matrices and bias vectors, respectively, and f (·) is an activation
function for the hidden layer.
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Proposed Method

Target Representation Enhancement (1/7)

In most real-world applications, the purchase feedback are
relatively sparse, which may limit the generalization ability of VAE.
To overcome this obstacle, we introduce the users’ examination
feedback to accurately model their latent representations.
The examination data does not include the purchase data, i.e., for
each user u, IPu ∩ IEu = ∅. Therefore, there are two forms of
auxiliary data available. One is a mixture of the purchase data and
the examination data, denoted as RP∪E , and the other only
contains the examination data, denoted as RE .
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Proposed Method

Target Representation Enhancement (2/7)

To enhance the learning of the user
purchase representations, we leverage
the first type of auxiliary data, i.e., the
mixed data of purchases and
examinations RP∪E , in the target
representation enhancement (TRE)
module.

The purpose of TRE is to connect the
purchase feedback and the mixed
feedback via a transfer gating network,
so that the knowledge in the mixed
feedback can be used to learn the users’
purchase preferences. Target Representation Enhancement

Transfer Gating Network

...

...

...

...
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Proposed Method

Target Representation Enhancement (3/7)

We use a multilayer perceptron (MLP) to compress the mixed
vector xP∪Eu ∈ {0,1}1×m, which denotes the overall interactions of
user u on the entire item set. The obtained latent feature µP∪Eu can
be seen as the user u’s mixed preferences in the purchase data
and the examination data,

µP∪Eu = f (xP∪Eu Wµ2 + bµ2), (3)

where Wµ2 ∈ Rm×d and bµ2 ∈ R1×d are the weight matrix and bias
vector, respectively, and f (·) is an activation function for the hidden
layer.
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Proposed Method

Target Representation Enhancement (4/7)

To better fuse the purchase latent feature µPu and the mixed latent
feature µP∪Eu , different weights need to be assigned to them.
Inspired by [Lin et al., 2020], we propose a transfer gating network
to calculate their weights. The gating network is represented as
an MLP as follows,

g = σ([µPu ,µ
P∪E
u ]WG + bG), (4)

where [·, ·] is the concatenation operation, WG ∈ R2d×1 and
bG ∈ R are the parameters of the feedforward network, and σ(·) is
the sigmoid function to restrict g to (0,1).
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Proposed Method

Target Representation Enhancement (5/7)

With the gating value g, the enhanced latent feature µPe
u can be

obtained by the weighted sum of the purchase latent feature µPu
and the mixed latent feature µP∪Eu as follows,

µPe
u = µPu ⊗ g + µP∪Eu ⊗ (1− g), (5)

where ⊗ is the element-wise product. Notice that the latent
feature µPe

u is encoded with the user u’s purchase preferences
and mixed preferences, which allows it to leverage the information
obtained from the mixed behaviors to enhance the learning of the
purchase representations.
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Proposed Method

Target Representation Enhancement (6/7)

With the enhanced mean µPe
u and the standard deviation σPu , the

improved latent representation zPe
u can be obtained by sampling

from a variational distribution with model parameters φ,

qφ(zPe
u |xPu ) = N (µPe

u , diag(σPu
2)). (6)

To allow parameters to be optimized in backpropagation, the
reparameterization trick is
applied [Kingma and Welling, 2013, Rezende et al., 2014].
Specifically, we approximate the enhanced latent variable zPe

u with
the normal distribution ε ∼ N (0, diag(1)), and have
zPe

u = µPe
u + ε⊗ σPu .
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Proposed Method

Target Representation Enhancement (7/7)

The enhanced latent variable zPe
u needs to be regularized through

the Kullback-Leibler (KL) divergence between the variational
posterior qφ(zPe

u |xPu ) and the prior p(zPe
u ) as follows,

LKL(zPe
u ) = KL(qφ(zPe

u |xPu )||p(zPe
u )), (7)

which encourages the learned posterior distribution qφ(zPe
u |xPu ) to

be close to the assumed prior distribution p(zPe
u ), i.e., the

commonly used standard normal distribution.
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Proposed Method

Target Representation Refinement (1/2)

To further refine the users’ purchase
representations, we introduce the
examination data RE into the target
representation refinement (TRR)
module.
The intuition is that the users’
purchase representations can be
more accurately modeled by learning
the difference between their purchase
preferences and examination
preferences.

Target Representation Refinement

Concatenate

...

...

...
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Proposed Method

Target Representation Refinement (2/2)

The examination latent feature µEu can be obtained by using an
MLP to compress the examination vector xEu ∈ {0,1}

1×m,

µEu = f (xEuWµ3 + bµ3), (8)

where Wµ3 ∈ Rm×d and bµ3 ∈ R1×d are the weight matrix and bias
vector, respectively, and f (·) is an activation function for the hidden
layer.
Then we adopt the concatenation operation to combine the
enhanced latent variable zPe

u and the examination latent feature
µEu, and obtain the final purchase representation zPr

u as follows,

zPr
u = [zPe

u ,µEu], (9)

where µEu serves as a signal to distinguish the most useful part of
the enhanced purchase representations, enabling the target
decoder to generate high-quality samples.
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Proposed Method

Target Decoder (1/2)

The target decoder is a generative model, whose objective is to
produce the probability distribution over the user u’s purchase
history xPu .
For each user u, it takes the final latent variable zPr

u as input and
outputs the distribution over the entire item set through a softmax
function. Then, it reconstructs the input vector from the
multinomial distribution [Liang et al., 2018],

π(zPr
u ) = softmax(fθ(zPr

u )), (10)
xPu ∼ Multi(NPu , π(z

Pr
u )), (11)

where fθ(·) is an MLP with parameters θ, π(zPr
u ) is the distribution

function of fθ(·), and NPu is the total number of purchases of user u.
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Proposed Method

Target Decoder (2/2)

Let x̂Pu denote the reconstructed purchase vector, which should be
close to the input vector xPu , so we have the reconstruction loss as
follows,

L(x̂Pu ,xPu ) ≡ Eqφ(z
Pe
u |xPu )

[log pθ(xPu |zPr
u )]. (12)

The examination and purchase preferences are jointly learned by
maximizing Eq.(12), which allows the knowledge extracted from
the users’ examination behaviors to be effectively transferred to
learning their purchase interests.
Following [Liang et al., 2018], the overall loss function of our
VAE++ is as follows,

LVAE++ = L(x̂Pu ,xPu )− βLKL(zPe
u ), (13)

where β ∈ [0,1] is a parameter to weight the regularization.
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Experiments

Research Questions

RQ1: How does our VAE++ perform compared to some
state-of-the-art recommendation methods?

RQ2: What is the impact of different components in our VAE++?

RQ3: How do hyperparameters, such as the dimensionality and the
number of recommended items, affect the performance of our VAE++?

RQ4: What is the effect of using different data as input in the target
representation enhancement module and the target representation
refinement module of our VAE++?
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Experiments

Datasets (1/3)

We use three widely used datasets, i.e., MovieLens 10M
(ML10M), Netflix and RecSys Challenge 2015 (Rec15), to
evaluate the performance of the proposed model VAE++.
ML10M and Netflix are two popular benchmark datasets related to
movies. We preprocess these two datasets in the same way
as [Pan et al., 2019]. (i) We randomly sample 60 percent of the
rating records from each dataset, keep the (user, item) pairs with a
score equal to 5 as the purchase data, and discard other records.
(ii) We divide the purchase data into three parts equally. One is
used as the training set, one is used as the validation set, and the
other is used as the test set. (iii) All the remaining 40 percent of
the rating records in each dataset are regarded as the
examination data. We repeat the above steps three times to
obtain three different copies of each dataset.
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Experiments

Datasets (2/3)

Rec15 is a real dataset released by the RecSys 2015 competition.
We process this dataset as follows. (i) For the items that are
repeatedly purchased or examined in a session, we only keep the
records with the earliest interaction. (ii) For the items purchased
fewer than 5 times and the sessions with fewer than 5 purchase
records, we remove them. (iii) For each session, we treat the
penultimate purchase record as the validation set, the last
purchase record as the test set, and the remaining records as the
training set. (iv) If the validation set or the test set contains the
examined items in the training set, we remove these items in the
training set.
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Experiments

Datasets (3/3)

Table: Statistics of the three processed datasets, including the number of
purchases (P) and examinations (E) in the training data, the number of
purchases (P(val.)) in the validation data, and the number of purchases
(P(te.)) in the test data. P/E denotes the ratio between P and E.

Statistics ML10M Netflix Rec15
#Users 71,567 480,189 36,917
#Items 10,681 17,770 9,621

P 309,317 4,554,888 159,429
E 4,000,024 39,628,846 213,332

P(val.) 308,673 4,556,347 36,917
P(te.) 308,702 4,558,506 36,917
P/E 1:12.93 1:8.70 1:1.33

Density 0.56% 0.52% 0.11%
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Experiments

Evaluation Metrics

To evaluate the performance of item recommendation, we adopt
four widely used ranking-oriented metrics, including precision,
recall, normalized discounted cumulative gain (NDCG) and
1-call [Valcarce et al., 2018].
We report these metrics with the number of recommended items
K = 5, denoted as Prec@5, Rec@5, NDCG@5 and 1-call@5.
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Experiments

Baselines

Three OCCF algorithms:

BPR [Rendle et al., 2009].
MFLogLoss [Johnson, 2014].
VAE [Liang et al., 2018].

Four HOCCF algorithms:

VALS [Ding et al., 2018] models the pairwise relations among the
purchase data, examination data and missing data.
RoToR [Pan et al., 2019] combines purchase feedback and
examination feedback through two forms of knowledge transfer.
EHCF [Chen et al., 2020] is a deep learning method, which
considers the relations between different types of behaviors.
SVAE [Chen et al., 2021] is a two-stage model based on
VAE [Liang et al., 2018], which transfers the knowledge extracted
from the examination model to the purchase model.
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Experiments

Parameter Settings (1/2)

For a fair comparison, we fix the size of latent factor dimension
d = 100 in all models [Chen et al., 2021].
For BPR, MFLogLoss and RoToR, we set the learning rate
γ = 0.01, and search the best values of the tradeoff parameters
from {0.001,0.01,0.1} and the iteration number T from
{100,500,1000} [Pan et al., 2019].
For VALS, we follow the suggested
configurations [Ding et al., 2018], and search the weight of the
missing data from {100,200,400,800,1600,3200,6400}, the
weight of the examination data from {0.25,0.5,1,1.5,2}, and the
margin values from {0.25,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}.
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Experiments

Parameter Settings (2/2)

For the four deep learning-based models, i.e., EHCF, VAE, SVAE
and our VAE++, they are implemented in TensorFlow1, where the
batch size is set to 500 and the dropout ratio ρ is set to 0.5 to
prevent overfitting [Liang et al., 2018].
For EHCF, we set the learning rate to 0.05 and configure other
parameters by following the settings in [Chen et al., 2020].
For VAE, we follow the settings in [Liang et al., 2018], adopt a
structure with 1 hidden layer, and use the identity activation
function for the hidden layer. In addition, we select the learning
rate from {0.0001,0.001,0.01}, optimize it with mini-batch Adam,
and use an early-stop strategy with a threshold 50.
For SVAE and the proposed method VAE++, the parameter
settings are consistent with VAE.

1https://www.tensorflow.org
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Experiments

Performance Comparison (RQ1) (1/5)

Table: Recommendation performance of our VAE++ and seven baselines,
including three OCCF algorithms and four HOCCF algorithms, on ML10M.

Dataset Method Prec@5 Rec@5 NDCG@5 1-call@5

ML10M

BPR 0.0680±0.0002 0.0915±0.0003 0.0933±0.0004 0.2837±0.0023

MFLogLoss 0.0736±0.0005 0.0995±0.0010 0.1019±0.0004 0.3034±0.0017

VAE(RP ) 0.0744±0.0003 0.0997±0.0003 0.1031±0.0005 0.3067±0.0008

VAE(RE ) 0.0957±0.0010 0.1367±0.0014 0.1396±0.0019 0.3812±0.0035

VAE(RP∪E ) 0.0838±0.0003 0.1166±0.0004 0.1172±0.0005 0.3427±0.0011

VALS 0.0671±0.0006 0.0759±0.0012 0.0901±0.0011 0.2745±0.0024

RoToR 0.0872±0.0001 0.1239±0.0007 0.1235±0.0006 0.3562±0.0008

EHCF 0.0704±0.0009 0.0928±0.0023 0.0957±0.0015 0.2914±0.0044

SVAE 0.0935±0.0004 0.1369±0.0011 0.1372±0.0010 0.3752±0.0023

VAE++ 0.1071±0.0003 0.1524±0.0003 0.1567±0.0003 0.4153±0.0014
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Experiments

Performance Comparison (RQ1) (2/5)

Table: Recommendation performance of our VAE++ and seven baselines,
including three OCCF algorithms and four HOCCF algorithms, on Netflix.

Dataset Method Prec@5 Rec@5 NDCG@5 1-call@5

Netflix

BPR 0.0755±0.0004 0.0503±0.0005 0.0854±0.0004 0.2994±0.0013

MFLogLoss 0.0785±0.0003 0.0549±0.0006 0.0900±0.0004 0.3103±0.0014

VAE(RP ) 0.0860±0.0001 0.0593±0.0001 0.0996±0.0002 0.3322±0.0004

VAE(RE ) 0.0960±0.0011 0.0738±0.0011 0.1158±0.0015 0.3677±0.0032

VAE(RP∪E ) 0.0907±0.0004 0.0689±0.0005 0.1063±0.0005 0.3541±0.0013

VALS − − − −
RoToR 0.0941±0.0003 0.0750±0.0003 0.1119±0.0004 0.3674±0.0010

EHCF 0.0850±0.0007 0.0609±0.0006 0.0980±0.0008 0.3318±0.0031

SVAE 0.0986±0.0004 0.0795±0.0005 0.1187±0.0005 0.3797±0.0013

VAE++ 0.1235±0.0003 0.0961±0.0006 0.1502±0.0006 0.4409±0.0014
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Experiments

Performance Comparison (RQ1) (3/5)

Table: Recommendation performance of our VAE++ and seven baselines,
including three OCCF algorithms and four HOCCF algorithms, on Rec15.

Dataset Method Prec@5 Rec@5 NDCG@5 1-call@5

Rec15

BPR 0.0457±0.0004 0.2286±0.0017 0.1473±0.0007 0.2286±0.0017

MFLogLoss 0.0490±0.0002 0.2451±0.0006 0.1586±0.0002 0.2451±0.0006

VAE(RP ) 0.0511±0.0002 0.2553±0.0006 0.1671±0.0005 0.2553±0.0006

VAE(RE ) 0.0357±0.0002 0.1783±0.0007 0.1185±0.0004 0.1783±0.0007

VAE(RP∪E ) 0.0509±0.0001 0.2543±0.0005 0.1615±0.0003 0.2543±0.0005

VALS 0.0557±0.0001 0.2784±0.0005 0.1858±0.0003 0.2784±0.0005

RoToR 0.0534±0.0001 0.2669±0.0007 0.1734±0.0007 0.2669±0.0007

EHCF 0.0512±0.0001 0.2559±0.0005 0.1653±0.0003 0.2559±0.0005

SVAE 0.0533±0.0001 0.2664±0.0004 0.1769±0.0002 0.2664±0.0004

VAE++ 0.0558±0.0000 0.2792±0.0001 0.1861±0.0003 0.2792±0.0001
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Experiments

Performance Comparison (RQ1) (4/5)

We can have the following observations:

Compared with all the baselines, our VAE++ achieves the best
performance across the three datasets, which clearly shows the
advantage of our generic solution.
For the four baselines exploiting heterogeneous one-class
feedback, SVAE outperforms the other three methods in most
cases, but it is still worse than our VAE++. In addition, the results
of VALS and our VAE++ are comparable on Rec15, but on
ML10M, VALS does not perform well compared to all the methods.
For most HOCCF methods, including RoToR, SVAE and our
VAE++, they achieve better results compared to the three
methods that only use the purchase data, i.e., BPR, MFLogLoss
and VAE(RP), which indicates that heterogeneous behavior
information can help improve the recommendation accuracy.
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Experiments

Performance Comparison (RQ1) (5/5)

For the models exploiting homogeneous one-class feedback, we can
have the following observations:

VAE performs better than the other two methods, which illustrates
the advantage of learning the distribution of user representations.
For the three VAE-based methods with different sources of data,
VAE(RE) performs better on ML10M and Netflix, while VAE(RP)
achieves better performance on Rec15.
VAE(RP ∪RE) performs relatively poorly on the three datasets,
indicating that simply merging two different types of data cannot
capture the users’ preferences well. Therefore, it is necessary to
design an effective method to fuse them like our VAE++.
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Experiments

Ablation Study (RQ2) (1/2)

Table: Recommendation performance of our VAE++ by removing different
components, i.e., target representation enhancement (TRE), target
representation refinement (TRR) and TRE & TRR, respectively, for ablation
studies on three datasets.

Dataset Method Prec@5 NDCG@5

ML10M

-TRE 0.1072±0.0005 0.1566±0.0001

-TRR 0.0845±0.0007 0.1187±0.0006

-TRE & TRR 0.0744±0.0003 0.1031±0.0005

VAE++ 0.1071±0.0003 0.1567±0.0003

Netflix

-TRE 0.1231±0.0005 0.1491±0.0006

-TRR 0.0952±0.0003 0.1119±0.0004

-TRE & TRR 0.0860±0.0001 0.0996±0.0002

VAE++ 0.1235±0.0003 0.1502±0.0006

Rec15

-TRE 0.0545±0.0003 0.1812±0.0009

-TRR 0.0528±0.0001 0.1698±0.0003

-TRE & TRR 0.0511±0.0002 0.1671±0.0005

VAE++ 0.0558±0.0000 0.1861±0.0003
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Experiments

Ablation Study (RQ2) (2/2)

We have the following observations:

“-TRE”. The performance of our VAE++ without TRE declines on
Rec15, which demonstrates the usefulness of the transfer gating
network in combining the purchase and mixed behaviors. Besides,
it achieves comparable results with our VAE++ on ML10M and
Netflix. The reason is that there are relatively more purchase data
on these two datasets.
“-TRR”. Our VAE++ without TRR performs much worse, which
shows the significance of learning the difference between the
purchase and examination preferences to reconstruct the input
purchase samples.
“-TRE & TRR”. The performance of our VAE++ without TRE and
TRR further decreases, which shows that these two modules are
critical to the performance of our VAE++.
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Experiments

Hyperparameter Sensitivity (RQ3) (1/2)
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Figure: Recommendation performance of our VAE++ with different numbers
of latent dimensions on three datasets.
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Experiments

Hyperparameter Sensitivity (RQ3) (2/2)
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Figure: Recommendation performance of our VAE++ and SVAE with different
numbers of recommended items on three datasets.
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Experiments

Effect of Input Data (RQ4) (1/2)

Table: Recommendation performance of our VAE++ by using different input
data in TRE and TRR, i.e., EE, EM, MM and ME, respectively, on three
datasets. Notice that the default configuration of our VAE++ is ME, i.e., using
the mixed data RP∪E in TRE and the examination data RE in TRR.

Dataset Method Prec@5 NDCG@5

ML10M

EE 0.1072±0.0002 0.1564±0.0005

EM 0.0796±0.0007 0.1107±0.0008

MM 0.0804±0.0001 0.1124±0.0001

ME 0.1071±0.0003 0.1567±0.0003

Netflix

EE 0.1228±0.0004 0.1487±0.0004

EM 0.0879±0.0004 0.1027±0.0005

MM 0.0907±0.0001 0.1065±0.0001

ME 0.1235±0.0003 0.1502±0.0006

Rec15

EE 0.0548±0.0001 0.1825±0.0004

EM 0.0520±0.0003 0.1661±0.0003

MM 0.0517±0.0003 0.1659±0.0001

ME 0.0558±0.0000 0.1861±0.0003
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Experiments

Effect of Input Data (RQ4) (2/2)

We have the following observations:

ME, i.e., our VAE++, outperforms the other three in most cases,
which showcases that using the mixed feedback in TRE and the
examination feedback in TRR can obtain excellent
recommendation results.
The performance of EE, i.e., using the examination data as the
input of TRE and TRR, is comparable to that of ME, i.e., our
VAE++, on ML10M and Netflix. The reason is that these two
datasets are relatively dense, so only using the examination data
can also help learn the users’ purchase preferences.
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Conclusions and Future Work

Conclusions

We propose a novel and generic VAE-based recommendation
framework, i.e., VAE++, for dealing with the HOCCF problem.
It utilizes three types of signals, including the purchase behaviors,
the examination behaviors and their mixed behaviors, via two
well-designed modules, i.e., a target representation enhancement
module and a target representation refinement module.
Extensive empirical studies on three public datasets show that our
VAE++ achieves very promising performance compared with
some highly competitive baseline methods.
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Future Work

For future works, we will consider introducing some additional
information into our VAE++, such as temporal
dynamics [Bian et al., 2021] and social
networks [Chen and Wong, 2021], to better transfer knowledge
between different types of data.
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