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Introduction

Problem Definition

Input:
A target-domain behavior sequence Vu = {v1, v2, . . . , vt , . . . , vL} (ordered by the
interaction time) for each user u ∈ U .
N source-domain behavior sequences, e.g., for the n-th source domain,
VSn

u = {vSn
1 , vSn

2 , . . . , vSn
t , . . . , vSn

L } (ordered by the interaction time) for the same user u.

Goal: Predict the next possible preferred item for each user u in the target domain
according to Vu and VSn

u where 1 ⩽ n ⩽ N.
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Introduction

Motivation

The limitation of existing cross-domain sequential recommendation (CDSR) methods:
There are relatively limited works on CDSR, and most methods rely on RNNs which have
limited capability in capturing the complex associations between domains.

Most existing methods capture the users’ preferences within one single domain, neglecting
the item transition patterns across sequences from different domains.

Existing methods often focus on the associations of one single source domain to a certain
target domain.
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Introduction

Overall of Our Solution

We study a new and important problem, i.e., cross-domain sequential
recommendation, and propose a novel solution named transfer via joint attentive
preference learning (TJAPL).

Specifically, we tackle the studied problem from the perspective of transfer learning
and attentive preference learning (APL).
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Introduction

Advantages of Our Solution

We treat the self-attention sequential recommendation (SASRec)
model [Kang and McAuley, 2018] as target-domain attentive preference learning (TD-APL) to
model the users’ behavior sequences and capture their dynamic preferences in the target
domain.

We propose cross-domain user attentive preference learning (CD-UAPL) to share and
transfer the users’ overall preferences from more than one source domains to the target
domain, leveraging the sequential behaviors from the source domains to address the scarcity
problem.

We also propose cross-domain local attentive preference learning (CD-LAPL) to capture the
item transition patterns across sequences from different domains and generate the users’
cross-domain local attentive preferences.
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Proposed Method

Notations (1/2)

Table: Some Notations and explanations (cont.).

Symbol Explanation

U user set

I item set for the target domain

N number of source domains

ISn Sn represents the n-th source domain; ISn is the item set for the n-th source domain

u user u ∈ U
vi the item that user interacted with at time step i in the target domain

vSn
j the item that user interacted with at time step j in the n-th source domain

L maximum sequence length

B number of attention blocks

V = {v1, v2, . . . , vL} user’s interaction sequence in the target domain

Vt = {v1, v2, . . . , vt} truncated item sequence at time step t with regard to sequence V
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Proposed Method

Notations (2/2)

Table: Some Notations and explanations (cont.).

Symbol Explanation

VSn
t ′ = {vSn

1 , vSn
2 , . . . , vSn

t ′ } truncated item sequence at time step t ′ for the n-th source domain

d latent vector dimensionality

u,V ,V Sn embedding associate with u, Vt , VSn
t ′

pt position embedding at time step t

ft target-domain attentive preference at time step t

f u
t cross-domain user attentive preference at time step t

f Sn
t cross-domain local attentive preference at time step t

ot final representation of the user’s preference at time step t

rt ,i preference score of item i at time step t
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Proposed Method

TJAPL (1/3)

TD-APL

+ positional embedding
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Figure: The framework of our proposed TJAPL (transfer via joint attentive preference learning).
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Proposed Method

TJAPL (2/3)

TD-APL (target-domain APL) is fed with the embedding of a target domain sequence,
which contains some self-attention blocks (see Eqs.(3∼7)).

CD-UAPL (cross-domain user APL) extracts a user’s overall preference in all
domains, where each domain includes a user attention layer (see Eqs.(8∼11))) to
capture the user preferences in the corresponding domain.
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Proposed Method

TJAPL (3/3)

CD-LAPL (cross-domain local APL) is fed with the embedding of a target-domain
sequence and a source-domain sequence which consists of cross-domain attention
blocks (see Eqs.(14∼16)). Notice that each source domain contains its own
CD-LAPL.

These modules are all based on attention mechanism thus can accelerate the
training by parallel computation. Moreover, it can be applied to scenarios with more
than one source domains.
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Proposed Method

Target-Domain Attentive Preference Learning (1/3)

We employ attention mechanism [Vaswani et al., 2017, Kang and McAuley, 2018] to
explore the sequential patterns in the target domain.
A learnable position embedding P = {p1,p2, . . . ,pL} ∈ RL×d is added to the
sequence embedding V and V Sn , then we obtain the position-aware input embedding
X = {x1,x2, . . . ,xt} and X Sn = {xSn

1 ,xSn
2 , . . . ,xSn

t ′ },

xi = vi + pi , (1)

xSn
i = vSn

i + pi . (2)
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Proposed Method

Target-Domain Attentive Preference Learning (2/3)

Next, we feed the sequence X into some stacked self-attention blocks (SABs), which
is regarded as a self-attention layer SAL(·) followed by a feed-forward network
FFN(·). Specifically, SAL(X ) can be formalized as:

αi = softmax
(

xtWQ (xiWK )
T
)
, ∀i ∈ {1,2, . . . , t} , (3)

ht =
t∑

i=1

αi (xiWV ) , (4)

It refers to using the item which was interacted with at the last time step to match
those items a user interacted with before, then obtain the item weighting information
to generate the information used for prediction at the next time step, i.e., ht ∈ Rd .
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Proposed Method

Target-Domain Attentive Preference Learning (3/3)

Then, we employ a two-layer FFN(ht) to enable the model to explore the nonlinear
features:

ft = ReLU
(

htW (1) + b(1)
)

W (2) + b(2), (5)

Stacking the SAB is usually helpful for the model to extract the more complex
sequential patterns. We denote the b-th (b > 1) SAB as:

h(b)
t = SAL(f (b−1)

t ), (6)

f (b)t = FFN(h(b)
t ). (7)

Finally, we take the final output vector f (b)t ∈ Rd from the top SAB as the
target-domain attentive preference, which represents the current interests of user at
time step t in the target domain.
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Proposed Method

Cross-Domain User Attentive Preference Learning (1/4)

Due to the property of the self-attention mechanism, it will rely on the last interaction
in a sequence to generate the relevant output. This makes the TD-APL overly
focused on the short-term preferences of users, while capturing the user’s overall
preference is beneficial for making personalized and diverse recommendations.

In addition, so far, we have focused only on the target-domain sequential information
of users, and how to make use of the source-domain sequences is also one of the
issues to be considered.
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Proposed Method

Cross-Domain User Attentive Preference Learning (2/4)

We take the learnable vector u ∈ Rd (i.e., the embedding of user u) as the query in
the attention layer, which means that the query is the same for the user u regardless
of which time step t the current interaction is at. This is beneficial for personalized
recommendation, because each user has his/her own embedding vector.

βi = softmax
(

uWQu (viWKu)
T
)
,∀i ∈ {1,2, . . . , t} , (8)

zt =
t∑

i=1

βi (viWVu) , (9)

Notice that we abandon the position information P which is also the difference
between Eq.(8) and Eq.(3) in the attention layer besides the query condition. This is
because the long-term preference is not sensitive to the position information of the
interactions compared to the short-term dynamic preference [Lin et al., 2020].
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Proposed Method

Cross-Domain User Attentive Preference Learning (3/4)

Considering that a same user usually has similar preferences beneath his or her
behaviors in different domains, similarly, we formalize the user attentive preference in
the n-th source domain as follows:

βSn
i = softmax

(
uW Sn

Qu

(
vSn

i W Sn
Ku

)T
)
, ∀i ∈

{
1,2, . . . , t ′

}
, (10)

zSn
t =

t ′∑
i=1

βSn
i

(
vSn

i W Sn
Vu

)
, (11)
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Proposed Method

Cross-Domain User Attentive Preference Learning (4/4)

We employ concatenation to aggregate all user attentive preference from different
domains, and then feed the concatenation vector into MLP to get the final
representation of cross-domain user attentive preference:

z = concat
[
zt , . . . , z

SN
t

]
, (12)

f u
t = zW (u) + b(u), (13)

where N denotes the number of source domains, z ∈ R(1+N)d denotes the
concatenation of all user preferences and W (u) ∈ R(1+N)d×d , b(u) ∈ Rd are learnable
parameters. We take the final output vector f u

t ∈ Rd as the cross-domain user
attentive preference.
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Proposed Method

Cross-Domain Local Attentive Preference Learning (1/3)

Considering that the next interaction of user in the target domain may be related to
an item he/she recently interacted with in a certain source domain, we propose
CD-LAPL to exploit the user’s sequential information in multiple domains then
transfer knowledge across different domains.

We adapt the attention block to measure the importance of a user’s previous
interactions in a source domain to current interaction in the target domain, and
explore the transition patterns across sequences from different domains.
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Proposed Method

Cross-Domain Local Attentive Preference Learning (2/3)

Specifically, we denote the input embedding of the target-domain item at the last time
step vt as query, and denote the position-aware input embedding of the n-th
source-domain sequence X Sn as key and value, and then the cross-domain attention
layer can be formalized as follows:

αSn
i = softmax

(
vtW Sn

Q

(
xSn

i W Sn
K

)T
)
, ∀i ∈

{
1,2, . . . , t ′

}
, (14)

hSn
t =

t ′∑
i=1

αSn
i

(
xSn

i W Sn
V

)
, (15)

We also employ a two-layer FFN(·) to further improving the model performance:

f Sn
t = ReLU

(
hSn

t W Sn(1) + bSn(1)
)

W Sn(2) + bSn(2), (16)
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Proposed Method

Cross-Domain Local Attentive Preference Learning (3/3)

We take the top cross-domain attention block’s output vector f Sn
t ∈ Rd asthe

cross-domain local attentive preference, which represents a user’s cross-domain
dynamic interests at the t-th time step reflected from the target domain and the n-th
source domain.

Notice that for N source domains, we will obtain N cross-domain local attentive
preferences.
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Proposed Method

Prediction Layer (1/2)

To combine all the output vectors from TD-APL, CD-UAPL and CD-LAPL, we try
different designs for feature aggregation such as concatenation, summation and
maximum. In this paper, we employ concatenation to aggregate all features which is
the optimal choice as we found in the empirical studies.

o = concat
[
ft , f u

t , . . . , f
SN
t

]
, (17)

where o ∈ R(2+N)d denotes the concatenation of all the output vectors.
Then, the concatenation vector is fed into an MLP to obtain the final representation of
the user’s preference:

ot = oW (o) + b(o), (18)

where ot ∈ Rd denotes the final representation of the user’s preference.
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Proposed Method

Prediction Layer (2/2)

Finally, the prediction score of item i can be calculated as follows:

rt ,i = ot(vi)
T . (19)

We adopt Adam as the optimizer [Kingma and Ba, 2015] and the binary
cross-entropy loss function for our TJAPL can be formalized as:

L = −
∑
u∈U

L−1∑
t=1

δ(vt+1)[log(σ(rt ,vt+1) + log(1 − σ(rt ,j)], (20)

where j ∈ I\Vu is a sampled negative item and σ is the sigmoid function. The
indicator function δ(vt+1) = 1 only if vt+1 is not a padding item, and 0 otherwise.
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Proposed Method

Algorithm 1: The learning procedure of TJAPL
1: Initialization: Initialize model parameters Θ.
2: repeat
3: for each epoch do
4: Collect a batch of users and their corresponding sequences in the target domain and the source

domains.
5: Calculate the target-domain attentive preference ft of time step t via Equations (1 - 7).
6: Calculate the cross-domain user attentive preference f u

t of time step t via Equations (8 - 13).
7: for n← 1 to N do
8: Calculate the cross-domain local attentive preference f Sn

t of time step t via Equations (14 - 16).
9: end for

10: Calculate the final representation of the user’s preference ot of time step t via Equations (17 - 18).
11: Predict the preference score rt,i of item i at each time step t via Equation (19).
12: Calculate the binary cross-entropy loss L via Equation (20).
13: Update the model parameters via ∇ΘL.
14: end for
15: until Convergence
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Experiments

Research Questions

RQ1: What’s the performance of our proposed TJAPL as compared with the state-of-the-art
methods?
RQ2: How does our TJAPL perform when using different source domains? Is it beneficial to
the model if we increase the number of source domains?
RQ3: Does our TJAPL alleviate the data sparsity issue?
RQ4: What’s the influence of various components in our TJAPL?
RQ5: How does the key parameters affect the performance of our TJAPL?
RQ6: What’s the impact of different feature aggregation methods in our TJAPL?
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Experiments

Datasets (1/3)

We conduct experiments on Amazon1, which is a review data collected
by [McAuley et al., 2015] from the eponymous e-commerce platform.

The Amazon data contains overlapped users in multiple domains, which make it suitable for
the study of CDSR compared with other datasets.

We choose three datasets with different categories, i.e., “Movie”, “CD” and “Book” from the
Amazon data.

1http://jmcauley.ucsd.edu/data/amazon/
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Experiments

Datasets (2/3)

According to the setting in [Kang and McAuley, 2018, Lin et al., 2020], we preprocess the
datasets as follows:

(1) We suppose that the presence of review, check-in and purchase behaviors are positive
feedback (i.e., a user interacted with an item) and use the timestamps to determine the order
of the interactions.

(2) We only keep the users and items with no fewer than five related interactions. And we
discard later duplicated (user, item) pairs.

(3) We only keep the sequence of a user who has interactions in all the three domains.

(4) We adopt the leave-one-out evaluation by splitting each sequence into three parts, i.e.,
the last interaction for test, the penultimate interaction for validation and the remaining
interactions for training.
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Experiments

Datasets (3/3)

Table: Statistical details of the datasets.

Dataset # Overlapped-Users # Items # Interactions Avg. Length Density
Movie

10929
59513 460226 42.11 0.07%

CD 91169 344221 31.50 0.03%
Book 236049 607657 55.60 0.02%
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Experiments

Evaluation Metrics

We adopt two common ranking-based metrics:
HR@10 (hit ratio) refers to the proportion of the ground-truth items appearing in the
top-10 recommended lists.
NDCG@10 (normalized discounted cumulative gain) is sensitive to the exact ranking
positions of the items in the lists.

Following the common strategy in [Kang and McAuley, 2018], we sample 100
negative items as candidates to avoid heavy computation on all the (user, item) pairs.
These 100 negative items have not been interacted with by the corresponding users
and are sampled according to their popularity to ensure that they are informative and
representative [Lin et al., 2020].
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Experiments

Baselines (1/2)

Two general recommendation methods:
BPRMF [Rendle et al., 2009]. A traditional model which optimizes a matrix factorization task using
a pairwise ranking loss.
CoNet [Hu et al., 2018]. A neural transfer learning model which enables dual information transfer
across domains by developing cross-connection units on MLPs.

Six sequential recommendation methods:
FPMC [Rendle et al., 2010]. A classic method that combines matrix factorization and Markov
chains to model the sequential pattern.
GRU4Rec [Hidasi et al., 2016]. An RNN-based method which explores the item dependencies
over sequences by adopting GRUs.
GRU4Rec+ [Hidasi and Karatzoglou, 2018]. An improved model based on GRU4Rec which
adopts a new loss function and an sampling strategy.
Caser [Tang and Wang, 2018]. A CNN-based model which employs horizontal and vertical
convolutional filters to model the sequences.
GCSAN [Xu et al., 2019]. A GNN-based model which constructs directed graphs for the
sequences and applies gated GNNs to obtain all node vectors involved in the session graphs.
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Experiments

Baselines (2/2)
SASRec [Kang and McAuley, 2018]. An attention based model that employs the attention
mechanism to capture the dynamic preferences.

Five cross-domain sequential recommendation methods:
π-Net [Ma et al., 2019]. An RNN-based model which devises a cross-domain transfer unit to
extract and share the user information across different domains at each timestamp.
DA-GCN [Guo et al., 2021]. A GNN-based model which employs graph convolution networks to
learn the complicated interaction relationships and the structural information in a cross-domain
sequence graph.
CD-SASRec [Alharbi and Caragea, 2022]. An improved method based on
SASRec [Kang and McAuley, 2018] which fuses the source-domain aggregated vector into the
target-domain item embedding to transfer information across domains.
RecGURU [Li et al., 2022]. It employs a self-attentive autoencoder to derive latent user
representations, and proposes an adversarial learning method to unify user embeddings
generated from different domains into a single global generalized user representation, which
captures the overall preferences of users.
C2DSR [Cao et al., 2022]. A novel model which adopts a graphical and attentional encoder to
capture the item relationships, and devises two sequential objectives with a contrastive objective
to jointly learn the single-domain and cross-domain user representations.
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Experiments

Implementation Details

For the general setting, we set the latent dimensionality d to 50, the mini-batch size to 128, the dropout
rate to 0.5, the learning rate to 0.001 and the maximum length of a sequence L to 100.

For the methods with Transformer architectures (i.e., SASRec, CD-SASRec and our TJAPL), we adopt
single-head attention layers and two attention blocks.

For the GNN-based methods (i.e., GCSAN and DA-GCN), we set the depth of the GNN layer to 2.

For the shared-account recommendation methods (i.e., π-Net and DA-GCN), the latent user number is
set to 1.

For other key parameters, we reference the suggestions of the corresponding papers or tune them on
the validation data.

For cross-domain recommendation methods, we only report the performance of the best-performing
model with the corresponding source domain. For our proposed TJAPL, since it can be applied to a
multi-domain scenario, we report the results of simultaneously utilizing two source domains.
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Experiments

Overall Performance Comparison (1/3)

Table: Recommendation performance of our TJAPL and the baselines.

Method
Movie CD Book

NDCG@10 HT@10 NDCG@10 HT@10 NDCG@10 HT@10
BPRMF 0.0597 0.1256 0.0492 0.1142 0.0465 0.1088
CoNet 0.0675 0.1489 0.0756 0.1484 0.0764 0.1819
FPMC 0.0723 0.1697 0.0819 0.1785 0.0695 0.1416

GRU4Rec 0.1017 0.1984 0.1210 0.2247 0.1066 0.2162
GRU4Rec+ 0.1133 0.2157 0.1440 0.2536 0.1293 0.2407

Caser 0.1231 0.2243 0.1267 0.2473 0.1163 0.2274
GCSAN 0.1576 0.2889 0.1783 0.3206 0.1291 0.2409
SASRec 0.1822 0.3234 0.1978 0.3569 0.1401 0.2607
π-Net 0.1113 0.2080 0.1265 0.2335 0.1042 0.2101

DA-GCN 0.1736 0.3124 0.1897 0.3458 0.1283 0.2375
CD-SASRec 0.1789 0.3173 0.2009 0.3614 0.1481 0.2737
RecGURU 0.1884 0.3433 0.2044 0.3649 0.1373 0.2556

C2DSR 0.1922 0.3423 0.1978 0.3435 0.1486 0.2752
TJAPL 0.2133 0.3769 0.2199 0.3907 0.1632 0.2984

Xu et al. (Shenzhen University) TJAPL INS 2024 31 / 52



Experiments

Overall Performance Comparison (2/3)

Form Table 4, we have the following observations:
Our proposed TJAPL outperforms all the baselines on all the three datasets, and gains
9.46% NDCG@10 and 8.43% HR@10 improvements on average against the strongest
baseline, which demonstrates the capability of our TJAPL to model the sequential information
with cross-domain data.
The sequential recommendation methods outperform the general recommendation baseline,
which indicates the importance of extracting sequential information from users’ behavior.
The cross-domain sequential recommendation methods outperform most traditional
sequential recommendation methods, which demonstrates the significance of taking into
account the cross-domain information.
The attention-based models achieve outstanding performances in both sequential
recommendation and cross-domain sequential recommendation, which demonstrates the
superiority of the attention mechanisms in modeling dynamic preference.
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Experiments

Overall Performance Comparison (3/3)

The “Movie” dataset has the most significant improvement, which probably because the
“Movie” dataset is more tightly related to the other domains, i.e., a user’s interaction
sequences in the “Book” and “CD” domains are likely to influence his/her next interaction in
the “Movie” domain, so knowledge transfer is more effective.
The cross-domain sequential recommendation methods achieve relatively small
improvements on the “Book” dataset, since the source domain (“Movie” or “CD”) is sparser
(as is shown in Table 3). And our TJAPL can still achieve superior performance on the “Book”
dataset because it can utilize both the “Movie” domain and the “CD” domain as source
domains simultaneously, which demonstrates the effectiveness of knowledge transfer across
multiple domains.
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Experiments

Influence of Source Domains (1/3)

The recommendation performance of our TJAPL with different source domains is shown
in Table 5. Notice that “Both” means leveraging both the other two domains for knowledge
transfer and preference learning.

Table: Performance of different source domains, including knowledge transfer from one or two
source domains.

Source Domain
Target Domain Movie CD Book

NDCG@10 HT@10 NDCG@10 HT@10 NDCG@10 HT@10
Movie - - 0.2136 0.3842 0.1684 0.3059

CD 0.2024 0.3625 - - 0.1612 0.2986
Book 0.2062 0.3687 0.2189 0.3895 - -
Both 0.2133 0.3769 0.2199 0.3907 0.1632 0.2984
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Experiments

Influence of Source Domains (2/3)

Form Table 5, we have the following observations:
The “Movie” dataset and the “CD” dataset achieve the best performance when leveraging the
other two domains (i.e., “Both”) while the second best performance is obtained for the “Book”
domain. This indicates that our model can effectively improve the recommendation
performance by transferring knowledge from more than one source domain to a target
domain. Our TJAPL is able to capture more user preference in a dense domain with more
interaction data and then transfers it to a sparse domain. Hence, using two source domains
performs better than using one single source domain.
Moreover, when leveraging only a single domain, transferring knowledge from the “Book”
domain seems more helpful because it contains more interaction data (as is shown in
Table 3).
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Experiments

Influence of Source Domains (3/3)

For the “Book” domain, it achieves the best performance when using the “Movie” domain as
the source domain. The reason is that the “Movie” domain may be more tightly related to the
“Book” domain and therefore performs better. Besides, leveraging the “CD” domain as the
source domain also performs better than leveraging both domains. The reason may be that
for a user, data across multiple source domains is not always related, in which case the
introduction of extra information and noise would make it less efficient than leveraging a
single domain.
Our TJAPL still outperforms all the baselines on all the datasets (as shown in Table 4) when
only leverages one single domain for knowledge transfer, which demonstrates the stability
and the superiority of our TJAPL.
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Experiments

Performance Analysis w.r.t. Sparsity

In this subsection, we conduct two experiments to verify the effectiveness of introducing
cross-domain information to alleviate the data sparsity problem.

(1) We divide users into groups according to their behavior sequence length in the target
domain, and identify the reasons of improvement by comparing performance of SASRec and
TJAPL in different user groups.

(2) We divide the users into groups according to their behavior sequence length in the source
domain while fixing the target-domain sequence length interval, and study how the
source-domain sequence length affects the recommendation performance.
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Experiments

Performance Analysis w.r.t. Sparsity
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Figure: Performance of different target-domain sequence lengths.
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Figure: Performance of different source-domain sequence lengths.
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Experiments

Performance w.r.t. Target-Domain Sequence Length

Form Fig. 2, we have the following observations:
The interaction data of the majority of users is sparse in the target domain. The group with
the shortest sequence length contains the most users on all the datasets, and the number of
users decreases as the sequence length interval of the group gets longer.
TJAPL achieves significant improvement on users within short sequence length intervals,
with relative largest improvement ranging from 17.48% to 20.57% on all the datasets. That’s
because the shorter users’ sequence lengths indicate the sparser their interaction data, in
which case the traditional single-domain method (i.e., SASRec) struggles to adequately
capture users’ preferences. In contrast, the introduction of the rich source-domain data can
enhance users’ preferences, and the knowledge transfer across domains seem to be more
effective in this situation.
Our TJAPL achieves better performance than SASRec on most user groups, which confirms
the superiority of our TJAPL in sequential recommendation.
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Experiments

Performance w.r.t. Source-Domain Sequence Length

Form Fig. 3, We have the following observations:
Similar to the target domain, user group with the shortest source-domain sequences length
interval contains the most users in all the datasets, and the the number of users decrease as
the sequences become longer.
The recommendation performance in the target domain generally improves as the sequence
length in the source domain increases. This is reasonable since the model can capture user’s
preference better in the source domain with more interaction data, so as to transfer a more
comprehensive user’s preference to the target domain.
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Experiments

Ablation Study (1/4)

We conduct an ablation study to evaluate the contribution of different components of our
TJAPL.

We report the results of “Movie” and “CD” when leveraging the “Book” domain for knowledge
transfer, and leveraging the “Movie” domain for “Book”.
We compare the separate effect of TD-APL (i.e., SASRec, denoted as ‘T’) with the joint
effects that additionally add CD-UAPL (denoted as ‘U’) and CD-LAPL (denoted as ‘C’).
We also examine the effects of different domains on CD-UAPL, i.e., target-domain user
attentive preference learning (denoted as ‘U1’) and source-domain user attentive preference
learning (denoted as ‘U2’).
Moreover, we compare the joint effects of all the combination approaches.
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Experiments

Ablation Study (2/4)

Table: Recommendation performance in ablation studies of our TJAPL with different architectures.
Notice that ‘T’, ‘U’, ‘C’, ‘U1’, ‘U2’ represent TD-APL, CD-UAPL, CD-LAPL, target-domain UAPL
and source-domain UAPL, respectively.

Architecture
Setting Book→ Movie Book→ CD Movie→ Book

NDCG@10 HT@10 NDCG@10 HT@10 NDCG@10 HT@10
T 0.1840 0.3291 0.1978 0.3569 0.1401 0.2607

T + U 0.1864 0.3531 0.2201 0.3881 0.1665 0.3076
T + U1 0.1822 0.3445 0.2154 0.3842 0.1629 0.2953
T + U2 0.1876 0.3459 0.2118 0.3775 0.1619 0.2924
T + C 0.1922 0.3586 0.2097 0.3756 0.1579 0.2883

T + C + U 0.2062 0.3687 0.2189 0.3895 0.1684 0.3059

Xu et al. (Shenzhen University) TJAPL INS 2024 42 / 52



Experiments

Ablation Study (3/4)

Form Table 6, we have the following observations:
‘T + U’ vs. T. The integrated model with the addition of CD-UAPL always significantly
outperforms the separate one, which demonstrates the importance of capturing the
cross-domain user attentive preference and indicates the effectiveness of our CD-UAPL.

‘T + U’ vs. ‘T + U1’ or ‘T + U2’. CD-UAPL is considered as the combination of the
target-domain and source-domain user attentive preference learning modules. We can find
that ‘T + U1’ is generally more effective than ‘T + U2’ (except on “Movie”) which means that
users tend to generate the corresponding user preferences by applying their own
target-domain data when it is sufficient. Furthermore, ‘T + U’ achieves the best overall
performance, which indicatesthe benefit of combining the target-domain and source-domain
user attentive preference.
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Experiments

Ablation Study (4/4)

‘T + C’ vs. T. Without CD-LAPL (i.e., ‘C’), we find that the performance is much worse. It
confirms that this module can learn the cross-domain local attentive preference from the
recent interactions of the target and source domain, which indicates the significance of
capturing the transition patterns across sequences from different domains.

‘T + C + U’ vs. ‘T + U’ or ‘T + C’. We can see that almost all the best results are from ‘T + C
+ U’, which demonstrates the complementarity of these three parts. It captures the local
attentive preference and user attentive preference from both the target and source domains,
balancing these representations and improving the effect for sequential recommendation.
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Experiments

Influence of Hyper-parameters (1/3)

In this subsection, we explore the influence of two hyper-parameters (i.e., the latent
dimensionality d and the number of attention blocks B) on the model performance.
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Experiments

Influence of Hyper-parameters (2/3)
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Figure: Performance of different dimensionalities d on three datasets (B = 2).

Our model typically benefits from some relatively larger values of the dimensionality d , and it
tends to be stable with d ≥ 40 on all datasets. This means that a larger dimensionality does
not always result in the better performance due to the overfitting problem.
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Experiments

Influence of Hyper-parameters (3/3)
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Figure: Performance of different numbers of blocks B (d = 50) for SASRec and our TJAPL.

We observe that unlike SASRec, it is sufficient to get the best performance for our TJAPL in
most cases by setting the number of attention blocks B = 2, and stacking more blocks may
not further improve the performance. That’ s because in the hierarchical structure, the feature
learned by SASRec in the bottom attention block can be seen as the long-term preference,
which is similar to the user attentive preference learned in our TJAPL, and the increased
model capacity may lead to overfitting.
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Experiments

Aggregation Methods Comparison (1/2)

In this subsection, we discuss the effects of different designs for feature aggregation
in Eq.(17). As stated in Section 3.5, we employ concatenation to aggregate the
features (i.e., target-domain attentive preference, cross-domain user attentive
preference, and cross-domain local attentive preference) in the prediction layer. We
replace the method of feature aggregation with summation, average and maximum,
to examine their performance.
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Experiments

Aggregation Methods Comparison (2/2)
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Figure: Performance of different feature aggregation methods.

When employing concatenation to aggregate the features, our TJAPL achieves the
best performance, while average performs better than summation and maximum
(except on CD). It confirms that concatenation can effectively balance the information
to aggregate all the features.
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Conclusions and Future Work

Conclusions

We propose an effective transfer learning solution called transfer via joint attentive preference
learning (TJAPL) for cross-domain sequential recommendation.
we adopt the attention mechanisms in TD-APL to effectively capture the dynamic preferences
in the target domain. Moreover, we design CD-UAPL to enable knowledge transfer from
multiple source domains to a target domain, leveraging the behavior sequences from the
source domains to capture the user’s overall preferences.
We also design CD-LAPL to explore the item transition patterns across sequences from
different domains and capture the user’s dynamic interests at each time step reflected from
different domains.
Our TJAPL can be applied to a multi-domain scenario, which is more adaptable and flexible
in real-world recommender systems.
Extensive empirical studies on three real cross-domain datasets demonstrate that our TJAPL
outperforms the competitive baselines in all cases.
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Conclusions and Future Work

Future Work

We aim to apply our TJAPL to scenes of cross-domain or cross-organization
privacy-aware federated recommendation [Lin et al., 2023], which can reduce the
risk of privacy leakage from the introduction of rich source-domain data
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