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a b s t r a c t 

Recommender systems have become more prevalent in recent years for providing users with personal- 

ized services such as movie recommendation and news recommendation. In real-world scenarios, they 

are naturally thought of as one-class collaborative filtering (OCCF) problems because most behavioral 

data are users’ interaction records, e.g., browses or clicks, which are referred to as one-class feedback or 

implicit feedback. In these problems, the sparsity of observed feedback and the ambiguity of unobserved 

feedback make it difficult to capture users’ true preferences. In order to alleviate that, two well-known 

approaches have been proposed, including factorization-based methods aiming to learn the relationships 

between users and items via latent factors, and neighborhood-based methods focusing on similarities 

between users or items. However, these two types of approaches are rarely studied in one single frame- 

work or solution for OCCF. In this paper, we propose a novel transfer learning solution, i.e., transfer by 

neighborhood-enhanced factorization (TNF), which combines these two approaches in a unified frame- 

work. Specifically, we extract the local knowledge of the neighborhood information among users, and 

then transfer it to a global preference learning task in an enhanced factorization-based framework. Our 

TNF is expected to exploit the local knowledge in a global learning manner well. Extensive empirical 

studies on five real-world datasets show that our proposed solution can perform significantly more accu- 

rate than the state-of-the-art methods. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

i  

s  

i  

n  

t  

w  

h  

i  

b  

a  

m  

(

L

p

fi  

i  

t

 

f  

g  

f  

a  

c  

s  

m  

o  

t  

l  

h

0

. Introduction 

Modern consumers are exposed to a myriad of product choices

n online services, such as e-commerce websites and audio/video

treaming services. A huge selection of products cannot meet var-

ous needs and tastes of each user, which emphasizes the promi-

ence of recommender systems [1,2] . A widely used approach to

he design of recommender systems is collaborative filtering (CF),

hich is based on analyzing copious information about users’ be-

aviors and preferences. In many real-world scenarios, user behav-

oral data such as click or not-click are more common and easier to

e obtained than the counter part of numerical rating data, which

re usually called implicit [3] or one-class feedback [4] . Therefore,

any researchers have turned to study the one-class collaborative
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ltering (OCCF) problem with one-class feedback aiming to rank

tems for each user rather than to predict users’ ratings to items in

he Netflix competition. 

The one-class collaborative filtering problem has been studied

or several years. Some previous works can be generally cate-

orized into two classes: neighborhood-based methods [5] and

actorization-based methods [6,7] . Neighborhood-based methods

re used to compute the similarities between users or items,

onsidering that similar users usually have similar behaviors and

imilar items often receive similar attention. This type of approach

ainly contains two representative methods, including (i) user-

riented collaborative filtering [8] , which is developed to predict

he preference of users to items on the basis of the records of the

ike-minded users, and (ii) item-oriented collaborative filtering [9] ,

hich explains that users are likely to prefer items similar to

hose they have observed before. Both these two methods are

ocal in their nature because they only consider a small set of

lose neighbors. 

On the contrary, factorization-based methods employ a global

iewpoint to characterize users and items. In general, they model
od-enhanced transfer learning for one-class collaborative filtering, 
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users’ preferences based on low-dimensional latent factors. Some

of the successful design of latent factor models are premised

on matrix factorization, such as Bayesian personalized ranking

(BPR) [10] and factored item similarity model (FISM) [11] . Specifi-

cally, the focus of BPR is to take pairs of items as basic units and

learn a latent representation of both users and items via maxi-

mizing the likelihood of pairwise preferences over the observed

items and unobserved items. FISM is an item-based method that

learns the (item, item) similarity matrix as the product of two low-

dimensional latent factor matrices, which implicitly helps to learn

transitive relations between items and performs better than most

other recommendation methods. So far, methods based on matrix

factorization have received a significant amount of attention due to

their effectiveness and efficiency [12,13] . 

In this paper, we propose a novel transfer learning [14] solu-

tion, i.e., transfer by neighborhood-enhanced factorization (TNF), in

which we extract the local knowledge of neighborhood and then

transfer it into a global preference learning task for each user via

matrix factorization techniques. In this way, we study these two

methods in one single framework, expecting to inherit the mer-

its of the localized neighborhood-based method and the globalized

factorization-based method. More importantly, this factored rep-

resentation of users and items allows TNF to capture and model

transitive relations within a group of close neighbors on datasets

of low density. We conduct empirical studies on five real-world

datasets in order to verify our proposed solution. Experimental re-

sults show that our solution can indeed improve the recommenda-

tion accuracy. 

In Section 2 , we introduce some related recommendation ap-

proaches, including neighborhood-based methods, factorization-

based methods and deep learning based methods. In Section 3 ,

we formulate the studied one-class collaborative filtering prob-

lem and describe our proposed transfer learning solution in detail.

In Section 4 , we present our experimental results and associated

analysis. In Section 5 , we conclude this work with some future

directions. 

2. Related work 

In this section, we review some classical approaches, including

(i) neighborhood-based recommendation, (ii) factorization-based

recommendation, and (iii) deep learning based recommendation. 

2.1. Neighborhood-based recommendation 

In industry, neighborhood-based recommendation methods

have been effectively deployed, the mechanism of which is to re-

late users to new items by following chains of (user, item) ad-

jacency. Neighborhood-based methods contain two specific types

of approaches, i.e., user-oriented methods [8] and item-oriented

methods [9] . User-oriented methods mainly focus on the like-

minded users with similar behaviors, i.e., purchasing or browsing

similar items, while item-oriented methods estimate users’ prefer-

ences on the basis of the similarities between the target item and

items that they have observed before. For user-oriented and item-

oriented methods, neighborhood construction is always an essen-

tial step, which employs some similarity measurement between

two users or two items. For implicit feedback, we have similarities

such as cosine similarity, Jaccard index and their extensions [9] . For

instance, in user-oriented approaches, the weighted positive feed-

back to an item by the most close neighbors of a target user u is

used to provide a prediction ˆ r ui as follows, 

ˆ r ui = 

∑ 

w ∈U i ∩N u 
s uw 

, (1)
a  

Please cite this article as: W. Cai, J. Zheng and W. Pan et al., Neighborho
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here s uw 

is the similarity between user u and user w , and U i and

 u denote the set of users interacted with item i and the set of

earest neighbors of user u , respectively. They are not only easy

nd intuitive to implement, but also can generate relatively precise

esults. In addition to the user-oriented and item-oriented collab-

rative filtering methods, some researchers have also unified these

wo methods with the notion of similarity fusion [15] . 

.2. Factorization-based recommendation 

In recent years, factorization-based methods have been widely

nvestigated by many researchers and have also been well rec-

gnized as the state-of-the-art methods in most recommendation

roblems. A typical factorization-based method associates users

nd items with vectors of latent features, i.e., matrix factoriza-

ion (MF) [3,16] , which estimates (user, item) interactions in the

ow-dimensional latent space. In this way, the sparsity problem of

ecommender systems can be alleviated to some extent. Among

actorization-based methods, the resulting dot product, i,e., U u ·V T i · ,

aptures the global interest of the user u in connection with the

tem i . Studies also show that most recommender systems perform

etter if user biases and item biases are taken into account [7] .

ence, the overall prediction rule can be written as follows, 

ˆ 
 ui = b u + b i + U u ·V 

T 
i · . (2)

For one-class collaborative filtering, factored item similarity

odel (FISM) is proposed to improve the predefined similarity in

eighborhood-based methods by learning the similarities among

tems. It learns the (item, item) similarity matrix as a product of

wo low-dimensional latent factor matrices, which allows FISM to

apture and model relations between items on sparse data to a cer-

ain degree. Formally, the prediction rule is as follows, 

ˆ 
 ui = b u + b i + 

1 √ |I u \{ i }| 
∑ 

i ′ ∈ I u \{ i } 
W i ′ ·V 

T 
i · , (3)

here W i ′ · and V i · denote the embedding vectors for item i ′ 
nd i , respectively. Given the well-defined predictive model of

qs. (2) and (3) , one can learn model parameters by optimiz-

ng loss functions for recommendation, such as point-wise classi-

cation loss [4] , pairwise regression loss [10] , and listwise rank-

ng loss [17] . In addition, some auxiliary information from other

omains can also be incorporated into factorization-based meth-

ds [18,19] . In our work, we adopt a simple but novel way to in-

orporate the knowledge learned from the neighborhood informa-

ion into the factorization-based methods, which is rarely studied

n one single framework. 

.3. Deep learning based recommendation 

Deep learning techniques have become increasingly important

hese days due to their excellent performance. Deep neural net-

orks show their ability to learn underlying features from data,

eing well known for extracting and representing high-level ab-

tractions from low-level original data, such as audio data [20] and

mage data [21] . For recommendation, DNN has been mainly em-

loyed for modelling auxiliary information, such as textual descrip-

ion [22] and acoustic features of music data [23] . While in recent

ears, some existing works [24] have explored deep learning mod-

ls for recommendation based on implicit feedback and explicit

atings. The collaborative denoising auto-encoder (CDAE) [25] is

ne of the eye-catching work for improving CF with implicit feed-

ack. It learns distributed representation of the users and items

sing a denoising auto-encoder structure and additionally plugs

 user node to the input of auto-encoders for reconstructing the

sers’ preferences. Distinct from CDAE, NeuMF is proposed by Xi-

ngnan He et al. [26] and it adopts a two pathway architecture
od-enhanced transfer learning for one-class collaborative filtering, 
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Table 1 

Some notations and their explanations. 

n number of users 

m number of items 

u ∈ U user ID 

i, i ′ ∈ I item ID 

R = { (u, i ) } universe of all possible (user, item) pairs 

P = { (u, i ) } the whole set of observed (user, item) pairs 

A , |A| = ρ|P| a sampled set of negative feedback from R\P
I u item set observed by user u 

d number of latent dimensions 

b u ∈ R user bias 

b i ∈ R item bias 

V i · ∈ R 1 ×d item-specific latent feature vector 

X u ′ · ∈ R 1 ×d user-specific latent feature vector 

N u a set of nearest neighbors of user u 

ˆ r ui predicted preference of user u to item i 

αv , αx , βu , βv trade-off parameters on the regularization terms 

γ learning rate 

T iteration number in the algorithm 
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e  

o  

e  

m  

e  

c  
o model (user, item) interactions with a multi-layer feed-forward

eural network. The authors also devise three user-based CF mod-

ls. Moreover, deep matrix factorization model [13] is proposed to

earn a common low-dimensional space for the representation of

sers and items with a deep architecture. 

. Transfer by neighborhood-enhanced factorization 

.1. Problem definition 

In one-class collaborative filtering with only positive feedback

uch as browses or clicks, we have n = |U| users, m = |I| items,

nd the corresponding one-class feedback in the form of (user,

tem) pairs denoted as P = (u, i ) . Our goal is to learn users’ pref-

rences from such behavioral data and recommend each user u a

ersonalized ranked list of items from I\P u , which represents the

ot yet observed items for each target user u ∈ U . 

We put some commonly used notations and their explanations

n Table 1 . 

.2. Neighborhood construction 

In order to extract the local knowledge from the records of

sers’ behaviors, we first select the neighbors for each user via

 commonly used similarity measurement. More specifically, we

alculate the cosine similarity between user u and user w as

ollows, 

 uw 

= 

|I u ∩ I w 

| √ |I u | 
√ |I w 

| , (4) 

here |I u | , |I w 

| , |I u ∩ I w 

| denote the number of items observed

y user u , user w , and both user u and user w , respectively. In our

olution, we adopt cosine similarity mainly for two reasons. Firstly,

osine similarity is a normalized version of Jaccard index. Secondly,

he performance of cosine similarity is comparable or sometimes

etter than that of Jaccard index in our experience. Once the simi-

arity of each user pair has been calculated, we can obtain a set of

he most similar users of each user u to construct a neighborhood

 u . This neighborhood denotes the local knowledge of the users. 

.3. Neighborhood-enhanced factorization 

In real-world scenarios, the records of feedback such as browses

r clicks provided by users to items make an extremely small

roportion of the (user, item) matrix, which results in the so-

alled sparsity problem of the training data. In order to ease this

roblem, methods based on matrix factorization are employed to
Please cite this article as: W. Cai, J. Zheng and W. Pan et al., Neighborho
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apture global relationships between users and items by project-

ng the original feedback data to a low-dimensional space, while

eighborhood-based methods concentrate on a small set of close

eighbors to calculate the similarities between users or items. By

he comparison between these two types of methods, we find that

e could take a further step to integrate their merits to better ad-

ress the existing problem. 

With the intention of making full use of the two types of

he aforementioned recommendation methods, we propose a novel

ransfer learning solution, which transfers the extracted knowledge

f close neighbors into a general global optimization framework.

n our TNF shown in Fig. 1 , we assume that the knowledge of

eighborhood extracted from the local association can be incorpo-

ated into a global factorization framework so as to better capture

he latent representation. This process is just as human learning,

n which people with intense concentration would digest knowl-

dge locally but effectively while others with a big picture in mind

re experts in building correlations between different domains or

asks. We make an assumption that the learners who are able to

xploit a key combination of the local and global cues may make

 greater achievement. Hence, for the studied OCCF problem, we

ridge the localized neighborhood-based method with the glob-

lized factorization-based method in an enhanced factorization-

ased framework. Specifically, a recent work [27] inspires us to

ggregate the like-minded users’ preferences. Finally, we have the

stimated preference of user u to item i as follows, 

ˆ 
 ui = b u + b i + 

1 √ |N u | 
∑ 

u ′ ∈N u 
X u ′ ·V 

T 
i · . (5) 

he variables in the prediction rule in Eq. (5) are the user bias

 u ∈ R , the item bias b i ∈ R , the user-specific latent feature vector

 u ′ · ∈ R 

1 ×d , and the item-specific latent vector V i · ∈ R 

1 ×d . Notice

hat 1 √ |N u | 
∑ 

u ′ ∈N u X u ′ · aggregates the preferences of close neigh-

ors to represent user u ’s interest. We replace the user-specific la-

ent factor of user u with this aggregated one in the prediction

ule, for which we call it a virtual user-specific feature vector. In

his way, the local knowledge of neighborhood can be transferred

nto the factorization-based method. For this reason, we call it

ransfer by neighborhood-enhanced factorization (TNF). Such a mod-

ling approach shows improvement of recommendation accuracy

n our empirical studies that will be discussed in Section 4 . The

ocal knowledge of neighborhood are clearly one salient source of

nformation, and the effectiveness of TNF here demonstrates the

mportance of the second phase of our transfer learning solution.

his implies that the local knowledge of users’ neighborhood are

ransferred to the global learning task in a way that ensures the

actorization-based method can learn users’ preferences with deep

oncentration as well as global association. 

Notice that one key difference between our solution and

ISM [11] is that we learn a latent representation of users and

tems by transferring the neighborhood knowledge of user u (i.e.,

 u ), while FISM focuses on learning the factored item similarity by

ncorporating the knowledge of items that have been observed by

ser u (i.e., I u ). 

.4. Loss function 

In our TNF, we adopt pointwise preference learning as our pref-

rence learning paradigm, which is more flexible than the pairwise

ne. The focal point of the latter is modeling the preference differ-

nce of a user u to two items i and j [10] , i.e., ˆ r ui − ˆ r u j , instead of

odeling the preferences ˆ r ui and ˆ r u j separately in pointwise pref-

rence learning. With the pointwise preference assumption, we en-

ode the probability of a user u choosing to interact with an item
od-enhanced transfer learning for one-class collaborative filtering, 
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Fig. 1. Illustration of our transfer learning solution, i.e., transfer by neighborhood-enhanced factorization, for one-class collaborative filtering (OCCF). Our TNF consists of two 

phases, one of which is to extract the local knowledge by constructing a neighborhood for each user, and the other captures the latent representation of the users and items 

via a factorization-based global preference learning task. 
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i as: 

p(r ui = 1 | �) = σ ( ̂ r ui ) , (6)

where σ ( · ) is the sigmoid function: 

σ (z) = 

1 

1 + e −z 
. (7)

We can have the log-likelihood for an observed pair (u, i ) ∈ P and

an unobserved pair (u, i ) ∈ A as follows, 

log 
∏ 

(u,i ) ∈P∪A 
p(r ui = 1 | �) r ui (1 − p(r ui = 1 | �)) 1 −r ui , (8)

which will encourage to find the parameters that maximize the

preference of user u to an observed item i and minimize the pref-

erence of user u to an unobserved item i . With Eq. (6) , we can

rewrite the log-likelihood in Eq. (8) as follows: 

−(r ui log (1 + exp (−ˆ r ui )) + (1 −r ui ) log (1 + exp ( ̂ r ui )) . (9)

In our solution, instead of using r ui = 1 and r ui = 0 to denote pos-

itive and negative preference for an observed (u, i ) ∈ P pair and

an unobserved (u, i ) ∈ A pair, respectively, we equivalently convert

them to r ui = 1 and r ui = −1 for simplicity. Then, we have the fol-

lowing formula: 

− log (1 + exp (−r ui ̂  r ui )) . (10)

Combining all possible observed ( u, i ) pairs for each user u ∈ U , we

reach the overall log-likelihood: 
∑ 

(u,i ) ∈P∪A 
− log (1 + exp (−r ui ̂  r ui )) . (11)

3.5. Objective function 

Maximizing the overall log-likelihood in Eq. (11) is equivalent

to solve the following optimization problem: 

min 

�

∑ 

(u,i ) ∈P∪A 
f ui + R (�) , (12)

where f ui = log (1 + exp (−r ui ̂ r ui )) is the loss function we have

mentioned before, and � = { X u ′ ·, V i ·, b u , b i } , i, i ′ = 1 , . . . , m, u, u ′ =
1 , . . . , n denotes the model parameters to be learned. In addition,

we introduce the regularization term R (�) = 

αx 
2 

∑ 

u ′ ∈N u || X u ′ ·|| 2 F +
αv 
2 || V i ·|| 2 F 

+ 

βu 
2 b 

2 
u + 

βv 
2 b 

2 
i 

so that it can contribute to avoiding over-

fitting, where αx , αv , βu and βv are trade-off hyper parameters. 

3.6. Gradients and update rules 

In order to solve the optimization problem in Eq. (12) , we adopt

the commonly used stochastic gradient descent (SGD) algorithm.
Please cite this article as: W. Cai, J. Zheng and W. Pan et al., Neighborho
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pecifically, we calculate the gradients, i.e., ∇ X u ′ ·, ∇ V i · , ∇ b u and

b i for each (u, i ) ∈ P ∪ A as follows, 

X u ′ · = 

∂ f ui 

∂X u ′ ·
= −e ui 

1 √ |N u | 
V i · + αx X u ′ ·, u 

′ ∈ N u , (13)

V i · = 

∂ f ui 

∂V i ·
= −e ui 

1 √ |N u | 
∑ 

u ′ ∈N u 
X u ′ · + αv V i ·, (14)

b u = 

∂ f ui 

∂b u 
= −e ui + βu b u , (15)

b i = 

∂ f ui 

∂b i 
= −e ui + βv b i , (16)

here e ui = 

r ui 
1+ exp (r ui ̂ r ui ) 

, and Ū u · = 

1 √ |N u | 
∑ 

u ′ ∈N u X u ′ · is a certain vir-

ual user-specific latent feature vector of user u aggregated from

he set of user neighborhood N u . For each (u, i ) ∈ P ∪ A , we have

he update rules, 

 u ′ · = X u ′ · − γ∇X u ′ ·, u 

′ ∈ N u , (17)

 i · = V i · − γ∇V i ·, (18)

 u = b u − γ∇b u , (19)

 i = b i − γ∇b i , (20)

here γ > 0 is the learning rate. 

.7. Algorithm 

We depict the learning algorithm in Algorithm 1 and we can

ee that our TNF contains two phases. In the first phase, we con-

truct a neighborhood for each user via a neighborhood-based

ethod. In the second phase, we have two loops. In the outer loop,

e randomly sample a set of not yet observed items for each user

n order to construct an expanded set of users’ behaviors with both

ositive feedback and negative feedback, i.e., P ∪ A . In the inner

oop, we update the model parameters based on each randomly

rawn ( u, i ) pair from P ∪ A , which is more efficient than the user-

ise sampling strategy in [28] . 

. Experimental results 

.1. Datasets and evaluation metrics 

In our empirical studies, we evaluate the performance of our

roposed TNF on five real-world datasets with different densities,
od-enhanced transfer learning for one-class collaborative filtering, 

https://doi.org/10.1016/j.neucom.2019.03.016
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Algorithm 1 The algorithm of transfer by neighborhood-enhanced 

factorization (TNF). 

1: Input: Observations P
2: Output: Recommended items for each user 

3: Initialize model parameters �

4: Construct a neighborhood N u for each user u 

5: for t 1 = 1 , . . . , T do 

6: Randomly pick up a set A with |A| = ρ|P| 
7: for t 2 = 1 , 2 , . . . , |P ∪ A| do 

8: Randomly draw a (u, i ) pair from P ∪ A 

9: Calculate Ū u · = 

1 √ |N u | 
∑ 

u ′ ∈N u X u ′ ·

10: Calculate ˆ r ui = b u + b i + Ū u ·V T i ·
11: Calculate e ui = 

r ui 
1+ exp (r ui ̂ r ui ) 

12: Update b u , b i , V i · and X u ′ · for u ′ ∈ N u 

13: end for 

14: end for 

Table 2 

Statistics of the datasets used in the experiments, including the number of 

users ( n ), the number of items ( m ), the number of (user, item) pairs in the 

training data ( |P| ), the number of (user, item) pairs in the test data ( |P te | ), 
and the density of each data i.e., (|P| + |P te | ) /n/m . 

Dataset n m |P| |P te | (|P| + |P te | ) /n/m 

ML100K 943 1682 27,688 27,687 3.49% 

ML1M 6040 3952 287,641 287,640 2.41% 

UserTag 30 0 0 20 0 0 123,218 123,218 4.11% 

Netflix5K5K 50 0 0 50 0 0 77,936 77,936 0.62% 

XING5K5K 50 0 0 50 0 0 39,197 39,197 0.31% 
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amely MovieLens 1 100K and 1M, UserTag [4] , a subset of Net-

ix 2 and a subset of XING 

3 , which have been used in [28,29] .

ovieLens 100K (ML100K) and MovieLens 1M (ML1M) are the sub-

ets of data from the MovieLens research project, UserTag is about

he users’ tagging behaviors, and Netflix5K5K and XING5K5K are

he subsets of the data extracted from the Netflix Prize dataset

nd the XING job recommendation contest dataset, respectively.

or ML100K, ML1M and Netflix5K5K, we only retain the ratings

arger than 3 as the observed positive feedback to simulate the

ne-class feedback. For UserTag, the tagging behaviors are taken

s one-class feedback. For XING5K5K, we take click, bookmark and

eply as positive feedback. For our five datasets, we randomly sam-

le half of the observed (user, item) pairs as training data, and the

est as test data. Through randomly taking one (user, item) pair for

ach user on average from the training data, we construct a val-

dation set. Then we repeat the above procedure for three times.

s such, we have three copies of training data, validation data and

est data. The experimental results are averaged over the perfor-

ance on those three copies of test data. The characteristics of all

he datasets are summarized in Table 2 . Notice that the datasets

nd code are publicly available. 4 

In prediction, we will recommend a ranked list of items for

ach user u as generated by the recommendation algorithms. The

anked list is sorted by the predicted preference scores of user u

o all the not yet observed items, i.e., I\P u , from which we se-

ect the first k items and denote them as I re 
u . According to the rec-

mmendation results, we can then calculate the following ranking-

riented evaluation metrics. 
1 https://grouplens.org/datasets/movielens/ . 
2 https://www.netflix.com/ . 
3 https://www.netflix.com/ . 
4 http://csse.szu.edu.cn/staff/panwk/publications/TNF/ . 
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• Precision is used to show the ratio of true predictions in the

recommendation list: 

Prec@ k = 

1 

| U 

warm | 
∑ 

u ∈ U warm 

1 

k 

k ∑ 

l=1 

δ(i (l) ∈ I te 
u ) . (21) 

where U warm = U tr ∩ U te denotes the set of warm-start users

who appear both in the training data and the test data, I te 
u 

denotes the item set preferred by user u in the test data, i ( l )

represents the l th item in the recommendation list, and δ( x ) is

an indicator function with the value 1 when x is true and the

value 0 when x is false. 

• Recall is used to describe the ratio of truly predicted items in

the test set, 

Rec@ k = 

1 

| U 

warm | 
∑ 

u ∈ U warm 

1 

|I te | 
k ∑ 

l=1 

δ(i (l) ∈ I te 
u ) . (22) 

• F1 combines precision and recall: 

F1 @ k = 2 × Prec@ k × Rec@ k 

Prec@ k + Rec@ k 
. (23) 

• NDCG is mainly used to emphasize the ranked positions of the

items in the list: 

NDCG @ k = 

1 

| U 

warm | 
∑ 

u ∈ U warm 

1 

Z u 
DCG u @ k (24) 

where DCG u @ k = 

∑ k 
l=1 

2 δ(i (l) ∈I te 
u ) −1 

log (l + 1) 
, and Z u is the best DCG u @ k

score. 

• 1-call is used to show whether there is at least one item truly

predicted in the recommendation list: 

1-call @ k = 

1 

| U 

warm | 
∑ 

u ∈ U warm 

δ(( 
k ∑ 

l=1 

δ(i (l) ∈ I te 
u )) > 0) . (25) 

For each evaluation metric, we first calculate the performance

or each user from the test data, and then obtain the averaged per-

ormance over all the users in the test data. 

.2. Baselines and parameter settings 

In our experiments, we use the following three closely related

aseline algorithms for the studied problem: 

• UCF (user-oriented collaborative filtering) [8] is a typical

neighborhood-based method for OCCF. We use the cosine simi-

larity as the similarity measurement for every two users when

implementing this method. 

• MF (matrix factorization) [7] is the most basic factorization-

based method which learns the latent representation of users

and items. We use square loss as our loss function when im-

plementing this method. 

• BPR (Bayesian personalized ranking) [10] is one of the most

accurate recommendation algorithms for OCCF, which captures

users’ preferences according to the assumption that a user

prefers an observed item to an unobserved one. 

• FISM (factored item similarity model) [11] is an item-based

method and it learns the similarity among items in latent

factors, which aims to improve the predefined similarity in

neighborhood-based methods for OCCF. 

• NeuMF (neural matrix factorization) [26] is built on deep neu-

ral network model and adopts a two pathway architecture, in-

cluding generalized matrix factorization (GMF) and multi-layer

perceptron for recommendation tasks. 

Our TNF (transfer by neighborhood-enhanced factorization) ex-

racts the local knowledge of neighborhood via cosine similarity

nd then transfers it to a globalized factorization-based framework.
od-enhanced transfer learning for one-class collaborative filtering, 

https://grouplens.org/datasets/movielens/
https://www.netflix.com/
https://www.netflix.com/
http://csse.szu.edu.cn/staff/panwk/publications/TNF/
https://doi.org/10.1016/j.neucom.2019.03.016
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Table 3 

Recommendation performance of user-oriented collaborative filtering (UCF) [8] , matrix factorization (MF) [7] , Bayesian personalized rank- 

ing (BPR) [10] , factored item similarity models (FISM) [11] , neural matrix factorization (NeuMF) [26] and our transfer by neighborhood- 

enhanced factorization (TNF) on five real-world datasets. The significantly best results are marked in bold. 

Dataset Method Prec@5 Rec@5 F1@5 NDCG@5 1-call@5 

ML100K UCF 0.3448 ± 0.0020 0.0867 ± 0.0012 0.1197 ± 0.0011 0.3647 ± 0.0049 0.7940 ± 0.0197 

MF 0.3669 ± 0.0086 0.0983 ± 0.0045 0.1348 ± 0.0053 0.3842 ± 0.0078 0.8303 ± 0.0107 

BPR 0.3504 ± 0.0065 0.0915 ± 0.0043 0.1274 ± 0.0041 0.3670 ± 0.0069 0.8082 ± 0.0161 

FISM 0.4011 ± 0.0032 0.1009 ± 0.0011 0.1401 ± 0.0011 0.4161 ± 0.0037 0.8370 ± 0.0059 

NeuMF 0.3648 ± 0.0085 0.0936 ± 0.0048 0.1293 ± 0.0054 0.3789 ± 0.0094 0.8057 ± 0.0176 

TNF 0.4118 ± 0.0080 0.1052 ± 0.0031 0.1452 ± 0.0042 0.4316 ± 0.0084 0.8538 ± 0.0134 

ML1M UCF 0.3705 ± 0.0026 0.0615 ± 0.0011 0.0942 ± 0.0012 0.3855 ± 0.0024 0.8090 ± 0.0 0 04 

MF 0.4174 ± 0.0 0 05 0.0704 ± 0.0 0 07 0.1080 ± 0.0 0 05 0.4306 ± 0.0010 0.8437 ± 0.0045 

BPR 0.4180 ± 0.0039 0.0665 ± 0.0 0 08 0.1030 ± 0.0011 0.4300 ± 0.0040 0.8202 ± 0.0049 

FISM 0.4241 ± 0.0013 0.0727 ± 0.0 0 05 0.1114 ± 0.0 0 05 0.4388 ± 0.0018 0.8478 ± 0.0046 

NeuMF 0.3995 ± 0.0105 0.0658 ± 0.0019 0.1011 ± 0.0026 0.4143 ± 0.0100 0.8176 ± 0.0105 

TNF 0.4602 ± 0.0044 0.0781 ± 0.0011 0.1193 ± 0.0013 0.4781 ± 0.0040 0.8662 ± 0.0019 

UserTag UCF 0.2524 ± 0.0028 0.0400 ± 0.0005 0.0624 ± 0.0013 0.2619 ± 0.0028 0.5757 ± 0.0093 

MF 0.2957 ± 0.0022 0.0456 ± 0.0012 0.0722 ± 0.0015 0.3032 ± 0.0024 0.6146 ± 0.0077 

BPR 0.2883 ± 0.0034 0.0439 ± 0.0012 0.0695 ± 0.0016 0.2959 ± 0.0039 0.5978 ± 0.0 0 09 

FISM 0.2797 ± 0.0089 0.0413 ± 0.0022 0.0658 ± 0.0031 0.2871 ± 0.0064 0.5686 ± 0.0055 

NeuMF 0.2943 ± 0.0076 0.0462 ± 0.0 0 08 0.0731 ± 0.0013 0.3021 ± 0.0086 0.6049 ± 0.0100 

TNF 0.3195 ± 0.0018 0.0513 ± 0.0013 0.0802 ± 0.0013 0.3320 ± 0.0030 0.6367 ± 0.0014 

Netflix5K5K UCF 0.1939 ± 0.0016 0.0657 ± 0.0013 0.0780 ± 0.0 0 08 0.2112 ± 0.0029 0.5221 ± 0.0026 

MF 0.2239 ± 0.0029 0.0935 ± 0.0012 0.1056 ± 0.0014 0.2390 ± 0.0046 0.6125 ± 0.0050 

BPR 0.2488 ± 0.0030 0.0919 ± 0.0013 0.1075 ± 0.0013 0.2650 ± 0.0040 0.6138 ± 0.0034 

FISM 0.2568 ± 0.0048 0.1033 ± 0.0034 0.1178 ± 0.0027 0.2754 ± 0.0057 0.6521 ± 0.0130 

NeuMF 0.2293 ± 0.0078 0.0848 ± 0.0016 0.0987 ± 0.0033 0.2463 ± 0.0077 0.5847 ± 0.0143 

TNF 0.2775 ± 0.0 0 08 0.1075 ± 0.0022 0.1235 ± 0.0013 0.3012 ± 0.0023 0.6579 ± 0.0019 

XING5K5K UCF 0.0741 ± 0.0012 0.0370 ± 0.0017 0.0386 ± 0.0012 0.0828 ± 0.0014 0.2343 ± 0.0033 

MF 0.0720 ± 0.0026 0.0301 ± 0.0013 0.0346 ± 0.0018 0.0773 ± 0.0026 0.2247 ± 0.0086 

BPR 0.0674 ± 0.0022 0.0256 ± 0.0017 0.0306 ± 0.0017 0.0714 ± 0.0030 0.2025 ± 0.0060 

FISM 0.0835 ± 0.0022 0.0379 ± 0.0 0 09 0.0427 ± 0.0013 0.0898 ± 0.0022 0.2648 ± 0.0095 

NeuMF 0.0481 ± 0.0024 0.0166 ± 0.0 0 06 0.0195 ± 0.0 0 09 0.0507 ± 0.0033 0.1347 ± 0.0042 

TNF 0.0869 ± 0.0017 0.0407 ± 0.0012 0.0447 ± 0.0 0 08 0.0960 ± 0.0027 0.2689 ± 0.0070 

Fig. 2. Recommendation performance of user-oriented collaborative filtering (UCF) [8] and our transfer by neighborhood-enhanced factorization (TNF) on five real-world 

datasets using different neighborhood sizes. 
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For UCF, we set the size of neighborhood as 20. For BPR, FISM

and our TNF, we adopt the commonly used stochastic gradient

descent (SGD) method with the same sampling strategy for fair

comparison. We fix the dimension as d = 20 and learning rate

γ = 0 . 01 . For FISM and TNF, we set ρ = 3 [11] and randomly sam-

ple A = 3 |P| (user, item) pairs not included in the observed data

P . For the deep model NeuMF, we implement the method using

TensorFlow 

5 and keep the structure with the best performance

as reported in [26] , which contains four layers, and validate the
5 https://www.tensorflow.org/ . 
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erformance under the instructions in the original paper. For each

actorization-based algorithm on each dataset, we search the trade-

ff parameters from {0.1, 0.01, 0.001} and find an optimal iteration

umber from { 10 , 20 , 30 , . . . , 990 , 10 0 0 } by checking the perfor-

ance of NDCG@5 on the validation data in every ten iterations.

otice that we report the averaged results on three copies of data.

.3. Results 

We report the main results in Table 3 . We can have the follow-

ng observations: 
od-enhanced transfer learning for one-class collaborative filtering, 

https://www.tensorflow.org/
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• TNF performs significantly better than all the five baselines on

all the five evaluation metrics across the five datasets, which

clearly shows the effectiveness of our transfer learning solution.

• TNF performs much better than the neighborhood-based

method, i.e., UCF, in all cases, which showcases the effective-

ness of the second task of global preference learning in our TNF.

• TNF is considerably better than the typical globalized

factorization-based methods, i.e., MF and BPR, in terms of

all evaluation metrics, indicating that it is more effective to

learn global preferences via leveraging the local knowledge

transferred from the first task of neighborhood construction. 

• TNF beats the four very strong baseline methods, i.e., MF, BPR,

FISM and NeuMF, in all cases, which showcases the merit of

our proposed solution in exploiting the complementarity of

the neighborhood-based method and the factorization-based

method in a unified framework. In particular, TNF performs sig-

nificantly better than FISM, which shows the usefulness of the

local knowledge as exploited in the second task in TNF. 

We further study the impact of the neighborhood sizes in or-

er to compare UCF and our proposed TNF more thoroughly. The

esults of these two methods using 10, 20 and 30 neighbors are

hown in Fig. 2 . According to the overall change displayed on five

atasets, we can see that the results are relatively stable regardless

f different numbers of neighbors, and configuring it as 20 in TNF

sually produces the best performance. 

. Conclusions and future work 

In this paper, we study an important collaborative filtering

roblem with users’ one-class feedback, and design a novel trans-

er learning solution called transfer by neighborhood-enhanced fac-

orization (TNF). In our TNF, the local knowledge of neighborhood

mong users are extracted from the users’ behaviors, which are

hen transferred to a factorization-based global preference learn-

ng task in order to capture the latent representation of users

nd items better. In this way, our TNF unifies the main idea of

eighborhood-based methods and factorization-based methods in

 principled way. Experimental results on five real-world datasets

how that our TNF can recommend items more accurately than the

tate-of-the-art methods with regards to various ranking-oriented

valuation metrics. 

For future works, we are interested in studying the complemen-

arity of the knowledge of neighborhood and that of the histori-

ally observed items, and in incorporating the mined knowledge

nto deep learning frameworks such as stacked denoising auto-

ncoder and multi-layer neural networks. 
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