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Introduction

Motivation

Making Recommendations with Internal Context Only
With the growing awareness of personal privacy, using rating
matrix only to discover more internal context (latent collaborative
pattern) is a more reliable and perpetually efficient strategy.
A recently proposed model called matrix factorization with
multiclass preference context (MF-MPC) [Pan and Ming, 2017] is
a unified method which combines the two major categories of
collaborative filtering — neighborhood-based and model-based.
However, it is lacking consideration on the orientations of the
neighborhood information.
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Introduction

Overall of Our Solution

1 In this paper, we propose two MF models that contain not only
user similarity but also item similarity, and collectively referred to
as matrix factorization with heterogeneous multiclass preference
context (MF-HMPC).

2 More specifically, MF-HMPC consists of matrix factorization with
dual multiclass preference context (MF-DMPC) for concurrent
structure and matrix factorization with pipelined multiclass
preference context (MF-PMPC) for sequential structure.
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Introduction

Advantages of Our Solution

In general, our MF-HMPC that unifies MF-DMPC and MF-PMPC
inherits both high accuracy of model-based recommendation
algorithms and good explainability of neighborhood-based algorithms,
and further strikes a good balance between user-oriented
neighborhood information and item-oriented neighborhood information.
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Introduction

Notations (1/2)

Table: Some notations and explanations (1/2).

n number of users
m number of items
u, u′ user ID
i, i ′ item ID
M multiclass preference set
rui ∈ M rating of user u to item i
R = {(u, i, rui )} rating records of training data
yui ∈ {0, 1} indicator, yui = 1 if (u, i, rui ) ∈ R and yui = 0 otherwise
Iu items rated by user u
Ir

u , r ∈ M items rated by user u with rating r
Ui users who rate item i
U r

i , r ∈ M users who rate item i with rating r
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Introduction

Notations (2/2)

Table: Some notations and explanations (2/2).

µ ∈ R global average rating value
bu ∈ R user bias
bi ∈ R item bias
d ∈ R number of latent dimensions
Uu· ∈ R1×d user-specific latent feature vector
Vi· ∈ R1×d item-specific latent feature vector
N r

u· ∈ R1×d user-specific latent feature vector w.r.t. rating r
M r

i· ∈ R1×d item-specific latent feature vector w.r.t. rating r
ŪMPC

u· aggregated user-specific latent preference vector
V̄ MPC

i· aggregated item-specific latent preference vector
Rte = {(u, i, rui )} rating records of test data
r̂ui the final predicted rating of user u to item i
r̂1ui the first predicted rating (iff in residual based algorithm)
r̂2ui the second predicted rating (ditto)
rRES
ui the residual rating (ditto)

T iteration number
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Related Work

Related Work

Traditional collaborative filtering algorithms
Neighborhood-based methods
User-oriented CF
Item-oriented CF
Model-based methods
SVD [Rendle, 2012]
SVD++ [Koren, 2008]
MF-MPC [Pan and Ming, 2017]

Deep learning based collaborative filtering algorithms
Restricted Boltzmann machines (RBM) [Salakhutdinov et al., 2007]
Neural collaborative filtering (NCF) [He et al., 2017]
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Preliminaries

Problem Definition

Input: An incomplete rating matrix represented by R = {(u, i , rui)}.
Notice that u represents one of the ID numbers of n users (or rows
in the rating matrix), i represents one of the ID numbers of m items
(or columns), and rui ∈M is the recorded rating of user u to item i ,
where M can be {1,2,3,4,5}, {0.5,1,1.5, . . . ,5} or other ranges.
Goal: To predict the vacancies of the rating matrix.

Lin et al., (SZU) MF-HMPC Neurocomputing 8 / 41



Preliminaries

Multiclass Preference Context (1/3)

Through investigations about combining neighborhood-based and
factorization-based methods, [Pan and Ming, 2017] proposes a
categorical internal context to encode the neighborhood information in
a matrix factorization framework. Intuitively, the rating of user u to item
i , i.e., rui , can be represented in a probabilistic way as follows,

Prob(rui |(u, i); (u, i ′, rui ′), i ′ ∈ ∪r∈MI r
u\{i}), (1)

which means that rui is dependent on not only the (user, item) pair
(u, i), but also the examined items i ′ ∈ Iu\{i} and the categorical
score rui ′ ∈M assigned to each item by user u. Here, the condition
(u, i ′, rui ′), i ′ ∈ ∪r∈MI r

u\{i} is given a name multiclass preference
context (MPC) in contrast to oneclass preference context (OPC)
without categorical scores.
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Preliminaries

Multiclass Preference Context (2/3)

In order to introduce MPC into an MF method, [Pan and Ming, 2017]
defined a user-specific aggregated latent preference vector ŪMPC

u·
for user u from the multiclass preference context,

ŪMPC
u· =

∑
r∈M

1√
|I r

u\{i}|

∑
i ′∈Ir

u\{i}

M r
i ′·. (2)

Notice that M r
i· ∈ R1×d can be considered as a classified

item-specific latent feature vector w.r.t. rating r , and 1√
|Ir

u\{i}|
plays

as a normalization term for the preference of class r . We believe
that MPC can represent user similarity.
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Preliminaries

Multiclass Preference Context (3/3)

then added the neighborhood information ŪMPC
u· to SVD model so

as to get the MF-MPC prediction rule for the rating of user u to
item i as follows,

r̂ui = Uu·Vi·
T +ŪMPC

u· Vi·
T +bu + bi + µ, (3)

where Uu·, Vi·, bu , bi and µ are exactly the same with that of the
SVD model.

MF-MPC is proved to generate better recommendation performance
than SVD and SVD++, and also embraces them as special cases.
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Method

MF-DMPC

Inspired by the differences between user-oriented and item-oriented
collaborative filtering, we can infer that item similarity (item-oriented
MPC) can also be introduced to improve the performance of matrix
factorization models. Furthermore, thanks to the extendibility of MF
models, we can hopefully join both user-oriented MPC and
item-oriented MPC into the prediction rule so as to obtain a hybrid
model, i.e., matrix factorization with dual multiclass preference context
(MF-DMPC).

Lin et al., (SZU) MF-HMPC Neurocomputing 12 / 41



Method

Item-Oriented Multiclass Preference Context (1/3)

Now we restate ŪMPC
u· as user-oriented multiclass preference

context (user-oriented MPC). Similarly, we have a symmetrical
form of MPC called item-oriented multiclass preference context
(item-oriented MPC) V̄ MPC

i· to represent item similarity, which is
formulated as,

V̄ MPC
i· =

∑
r∈M

1√
|U r

i \{u}|

∑
u′∈U r

i \{u}

N r
u′·, (4)

where N r
u· ∈ R1×d is a user-specific latent preference vector w.r.t.

rating r .
Likewise, we have the prediction rule of item-oriented MF-MPC,

r̂ui = Uu·Vi·
T + V̄ MPC

i· Uu·
T + bu + bi + µ. (5)
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Method

Item-Oriented Multiclass Preference Context (2/3)

The learning process of matrix factorization with user-oriented and
item-oriented MPC respectively are quite similar. With different prediction
rules, they have the same abbreviated optimization function as follows,

arg min
Θ

n∑
u=1

m∑
i=1

yui [
1
2

(rui − r̂ri )
2 + reg(u, i)]. (6)

In particular, the regularization terms reg(u, i) vary for specific cases, i.e., in
user-oriented MF-MPC,
reg(u, i) = αm

2

∑
r∈M

∑
i′∈Ir

u\{i}
||M r

i′·||2F + α
2 ||Uu·||2 + α

2 ||Vi·||2 + α
2 ||bu||2 + α

2 ||bi ||2,

and item-oriented MF-MPC,
reg(u, i) = αn

2

∑
r∈M

∑
u′∈U r

i \{u}
||N r

u′·||2F + α
2 ||Uu·||2 + α

2 ||Vi·||2 + α
2 ||bu||2 + α

2 ||bi ||2.
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Method

Item-Oriented Multiclass Preference Context (3/3)

Table: The gradients of the model parameters Θ = {M r
i·,Uu·,Vi·,bu,bi , µ} in

user-oriented MF-MPC and Θ = {N r
u·,Uu·,Vi·,bu,bi , µ} in item-oriented

MF-MPC, with u = 1,2, . . . ,n, i = 1,2, . . . ,m, r ∈M in common.

User-oriented MF-MPC Item-oriented MF-MPC

∇Uu· = −eui Vi· + αUu· ∇Uu· = −eui (Vi· + V̄MPC
i· ) + αUu·

∇Vi· = −eui (Uu· + ŪMPC
u· ) + αVi· ∇Vi· = −eui Uu· + αVi·

∇Mr
i′· =

−eui Vi·√
|Ir

u\{i}|
+ αmMr

i′·, i′ ∈ Ir
u\{i} ∇Nr

u′· =
−eui Uu·√
|U r

i \{u}|
+ αnNr

u′·, u′ ∈ U r
i \{u}

∇bu = −eui + αbu
∇bi = −eui + αbi
∇µ = −eui

Hence, with eui = (rui − r̂ui ), the model parameters to be learned and the
corresponding gradients are also different. With the gradients, we can update
the model parameters Θ via the update rule,

θ = θ − γ∇θ, (7)

where γ is the learning rate, and θ ∈ Θ is a model parameter to be learned.
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Method

Dual Multiclass Preference Context (1/2)

We can handle both user-oriented and item-oriented
neighborhood information by joining both ŪMPC

u· and V̄ MPC
i·

simultaneously in the model, which is thus named as dual
multiclass preference context (DMPC). To combine them together,
we acquire ŪMPC

u· Vi·
T + V̄ MPC

i· Uu·
T as the DMPC term.

In this way, we obtain our new model, i.e., matrix factorization with
dual multiclass preference context (MF-DMPC). The prediction
rule of our MF-DMPC for the rating of user u to item i is finally
defined as follows,

r̂DMPC
ui = Uu·Vi·

T + ŪMPC
u· Vi·

T + V̄ MPC
i· Uu·

T + bu + bi + µ, (8)

with all notations described ahead.
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Method

Dual Multiclass Preference Context (2/2)

Figure: Illustration of SVD (in black), MF-MPCuser (in green), MF-MPCitem (in
red) and our MF-DMPC (in blue). The stars mark the results of each method.
Solid lines express value pass, and dashed line points from the true rating to
the predicted one.
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Method

Learning Algorithm of MF-DMPC (1/2)

With the MF-DMPC prediction rule in Eq.(8), we can learn the
model parameters in the following minimization problem,

arg min
Θ

n∑
u=1

m∑
i=1

yui [
1
2

(rui − r̂DMPC
ri )2 + regDMPC(u, i)], (9)

where regDMPC(u, i) =
αm
2
∑

r∈M
∑

i ′∈Ir
u\{i} ||M

r
i ′·||

2
F + αn

2
∑

r∈M
∑

u′∈U r
i \{u}

||N r
u′·||2F +

α
2 ||Uu·||2 + α

2 ||Vi·||2 + α
2 ||bu||2 + α

2 ||bi ||2 is the regularization term
used to avoid overfitting, and Θ = {Uu·,Vi·,bu,bi , µ,M r

i·,N
r
u·} with

u = 1,2, . . . ,n, i = 1,2, . . . ,m, r ∈M are model parameters to be
learned.
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Method

Learning Algorithm of MF-DMPC (2/2)

Using the stochastic gradient descent (SGD) algorithm, the
algorithm of MF-DMPC consists of three major steps.

1: Initialize model parameters Θ = {Uu·,Vi·, bu , bi , µ,M r
i·,N

r
u·}, with u =

1, 2, ..., n, i = 1, 2, ...,m, r ∈ M
2: for t = 1, . . . ,T do
3: for t2 = 1, . . . , |R| do
4: Randomly pick up a rating from R
5: Calculate the gradients
6: Update the parameters via Eq.(7)
7: end for
8: Decrease the learning rate γ ← γ × 0.9
9: end for

Figure: The algorithm of MF-DMPC.
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Method

MF-PMPC

Inspired by the residual training strategy, we can obtain the predicted
ratings through a pipelined process, which executes independent
user-oriented MPC and item-oriented MPC methods one after another.
For this reason, we name these kinds of methods as matrix
factorization with pipelined multiclass preference context (MF-PMPC).
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Method

Residual Training

In residual training [Jahrer et al., 2010], the prediction rule for rating r̂ui is
divided into two parts, i.e., r̂1ui and r̂2ui , as follows,

r̂ui = r̂1ui + r̂2ui . (10)

There are two steps in series in an integrated residual training process of
MF-PMPC as follows,

Step 1: Train a user-oriented or item-oriented MF-MPC model to obtain
r̂1ui , making it as close to the training data rui as possible, and get the
residual rating,

r RES
ui = rui − r̂1ui . (11)

Step 2: Train another MF-MPC model to obtain the prediction value r̂2ui ,
of which the target value is the residual data r RES

ui instead of the original
training data rui .
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Method

Pipelined Multiclass Preference Context (1/3)

As to assemble user-oriented MPC and item-oriented MPC into a
pipelined process, we now arrange the <user-oriented MPC, item>
interaction ŪMPC

u· Vi·
T and the <item-oriented MPC, user> interaction

V̄ MPC
i· Uu·

T in two steps. When introducing ŪMPC
u· Vi·

T in the first step and
V̄ MPC

i· Uu·
T in the residual step, this pipelined algorithm is denoted as

MF-PMPCuser→item. On the contrary, we denote a residual MF method
which starts with item-oriented MPC as MF-PMPCitem→user.
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Method

Pipelined Multiclass Preference Context (2/3)

Figure: Illustration of MF-PMPCuser→item. The left side shows possible
components of one step’s results, and the right side depicts the integration of
two steps’ results. The difference is that the two coarse lines denote two
options for the residual result.
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Method

Pipelined Multiclass Preference Context (3/3)

Our preliminary studies show that it is more steady and effective to
retrain the SVD parameters in the residual step, probably to ensure the
coordination of different parameters. So we determine the prediction
rules of MF-PMPCuser→item as follows,

Step 1: r̂1ui = Uu·Vi·
T + ŪMPC

u· Vi·
T + bu + bi + µ, (12)

Step 2: r̂2ui = U2

u·V
2

i·
T

+ V̄ MPC
i· U2

u·
T

+ b2u + b2i + µ2. (13)

Meanwhile, we have MF-PMPCitem→user in a symmetrical way as follows,

Step 1: r̂1ui = Uu·Vi·
T + V̄ MPC

i· Uu·
T + bu + bi + µ, (14)

Step 2: r̂2ui = U2

u·V
2

i·
T

+ ŪMPC
u· V2

i·
T

+ b2u + b2i + µ2. (15)
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Method

Learning Algorithm of MF-PMPC (1/2)

Continuing with the MF-PMPCuser→item example, the optimization
function, gradients calculation and update rule of Eq.(12) and Eq.(13)
are similar to that of single user-oriented MF-MPC and single
item-oriented MF-MPC, respectively. Only the target rating rui changes
as,

Step 1: r1ui = rui (the same as the original rating), (16)
Step 2: r2ui = r RES

ui = rui − r̂1ui (change to the residual rating).(17)
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Method

Learning Algorithm of MF-PMPC (2/2)
1: // the first user-oriented MPC step
2: Initialize model parameters Θ1 = {Mr

i·,Uu·, Vi·, bu , bi , µ}, with u = 1, 2, ..., n, i = 1, 2, ...,m, r ∈ M.

3: Set the learning rate γ = 0.01.
4: for t = 1, . . . , T do
5: for t2 = 1, . . . , |R| do
6: Randomly pick up a rating record (u, i, rui ) fromR
7: Calculate the gradients∇Mr

i·,∇Uu·,∇Vi·,∇bu ,∇bi ,∇µ
8: Update parameters in Θ1 to make r̂1ui approximate to rui

9: end for
10: Decrease the learning rate γ ← γ × 0.9
11: end for
12: Obtain target residual rating rRES

ui of each user to each item

13: // the residual item-oriented MPC step
14: Initialize model parameters Θ2 = {Nr

u·,U2u·, V2i· , b2u , b2i , µ
2}, with u = 1, 2, ..., n, i = 1, 2, ...,m, r ∈ M

15: Reset the learning rate γ = 0.01
16: for t = 1, . . . , T do
17: for t2 = 1, . . . , |R| do
18: Randomly pick up a rating record (u, i, rui ) fromR
19: Calculate the gradients∇Nr

u·,∇U2u·,∇V2i· ,∇b2u ,∇b2i ,∇µ
2

20: Update parameters in Θ2 to make r̂2ui approximate to rRES
ui = rui − r̂1ui

21: end for
22: Decrease the learning rate γ ← γ × 0.9
23: end for

Figure: The algorithm of MF-PMPC via user→item configuration.
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Method

MF-HMPC

Finally, we unify MF-DMPC and MF-PMPC into a generic factorization-based
framework, i.e., matrix factorization with heterogeneous multiclass preference
context (MF-HMPC). In this framework, the two specific variants of MF
models with two types of MPC are of different structures, i.e, MF-DMPC for
concurrent structure and MF-PMPC for sequential structure.
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Experiments

Datasets

Table: Statistics of the datasets used in the experiments, including the
number of users (n), the number of items (m), the number of rating records in
the whole dataset (|R|+ |Rte|), the ratio of the number of users to the number
of items (n/m), and the density of training data (|R|/nm).

Dataset n m |R|+ |Rte| n/m |R|/nm
ML100K 943 1,682 100,000 0.56 5.04%
ML1M 6,040 3,952 1,000,209 1.53 3.35%
ML10M 71,567 10,681 10,000,054 6.70 1.05%
NF10M 50,000 17,770 10,442,504 2.81 0.94%
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Experiments

Evaluation Metrics

Mean absolute error:

MAE =
∑

(u,i,rui )∈Rte

|rui − r̂ui |/|Rte|, (18)

Root mean square error:

RMSE =

√ ∑
(u,i,rui )∈Rte

(rui − r̂ui)2/|Rte|. (19)
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Experiments

Baselines

To find out the effect of single type of MPC, we have the foremost baselines:

SVD is the basic MF model for recommendations without MPC.
MF-MPCuser is an MF model with only a user-oriented MPC term.
MF-MPCitem is an MF model with only an item-oriented MPC term.

We also include two deep learning CF models:

RBM utilizes a class of two-layer undirected graphical models
called restricted Boltzmann machines to make rating prediction.
NCF utilizes neural networks with multi-layer perceptron layers to
model implicit feedback in a non-linear way.
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Experiments

Our Methods

MF-DMPC is an MF model which is combined with dual MPC.
Structurally, DMPC is a parallel combination form.
MF-PMPCuser→item is a model which is divided into two MF steps
– a user-oriented MF-MPC followed by an item-oriented MF-MPC.
PMPC can be considered as a sequential modeling technique.
MF-PMPCitem→user is a reverse process of MF-PMPCuser→item.
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Experiments

Parameter Configurations (1/3)

We configure the parameters of the MF based methods as follows.
For the learning rate γ, we set its initial value to a common default
value, i.e., γ = 0.01. For the number of latent dimensions d , it is
sufficient to show the advantages of each methods when d = 20
[Pan and Ming, 2017]. For the iteration number, we fix it as
T = 50, where the results have reached a steady state. And for
each baseline on each dataset, the tradeoff parameters
α ∈ {0.001,0.01,0.1} are selected to be different values through
parameter tuning experiments using the RMSE metric.
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Experiments

Parameter Configurations (2/3)

For RBM, we use the hidden layer of 20 units, mini-batches of size
16, CD learning with 1 step Gibbs sampling, and the learning rate
of 0.05. Taking consideration of efficiency and effectiveness, we
adopt a momentum of 0.9 and search the optimal weight decay
value from {0.0005,0.001,0.005,0.01} according to the RMSE
results. We also apply early stop strategy to avoid overfitting, i.e.,
model training stops when the RMSE no longer decrease within
20 epoches or the number of training iterations reach to a ceiling
value of 200.

Lin et al., (SZU) MF-HMPC Neurocomputing 33 / 41



Experiments

Parameter Configurations (3/3)

For NCF, we use mean-square-loss and linear function for the
prediction layer. We use mini-batch Adam for optimization.
Specifically, we fix the MLP hidden layers as 64→ 32→ 16→ 8,
which corresponds to the best performance from the paper, and
search the best value of the learning rate from
{0.0001,0.0005,0.001,0.005} and the batch size from
{128,256,512,1024}.
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Experiments

Main Results (1/4)

Table: Recommendation performance of SVD, MF-MPC, MF-DMPC,
MF-PMPC and two deep learning methods RBM and NCF on ML100K and
ML1M. The best result of each dataset is highlighted in bold and the
suboptimal result is marked with “4”.

Data Method MAE RMSE (α, αm, αn)

ML100K

SVD 0.7446±0.0033 0.9445±0.0035 (0.01,N/A,N/A)
MF-MPCuser 0.7129±0.0032 0.9098±0.0028 (0.01, 0.01,N/A)
MF-MPCitem 0.7025±0.0025 0.8980±0.0020 (0.01,N/A, 0.01)
MF-DMPC 0.7008±0.0027 0.8972±0.0029 (0.01, 0.01, 0.01)

MF-PMPCuser→item 0.7002± 0.00254 0.8959± 0.00324 (0.01, 0.01,N/A)
MF-PMPCitem→user 0.6991±0.0029 0.8941±0.0025 (0.01,N/A, 0.01)
RBM 0.7734±0.0028 0.9693±0.0022 αw = 0.01
NCF 0.7189±0.0042 0.9169±0.0041 γNCF = 0.0001, sbatch = 128

ML1M

SVD 0.7017±0.0016 0.8899±0.0023 (0.01,N/A,N/A)
MF-MPCuser 0.6605± 0.0013 0.8442±0.0017 (0.01, 0.01,N/A)
MF-MPCitem 0.6568±0.0013 0.8411±0.0016 (0.01,N/A, 0.01)

MF-DMPC 0.6552± 0.00134 0.8409± 0.00174 (0.01, 0.01, 0.01)
MF-PMPCuser→item 0.6572±0.0014 0.8410±0.0018 (0.01, 0.01,N/A)
MF-PMPCitem→user 0.6549±0.0012 0.8396±0.0052 (0.01,N/A, 0.01)
RBM 0.7071±0.0009 0.8979±0.0008 αw = 0.001
NCF 0.6746±0.0034 0.8634±0.0034 γNCF = 0.0001, sbatch = 256
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Experiments

Main Results (2/4)

Table: Recommendation performance of SVD, MF-MPC, MF-DMPC,
MF-PMPC and two deep learning methods RBM and NCF on ML10M and
NF10M. The best result of each dataset is highlighted in bold and the
suboptimal result is marked with “4”.

Data Method MAE RMSE (α, αm, αn)

ML10M

SVD 0.6067±0.0007 0.7913±0.0009 (0.01,N/A,N/A)
MF-MPCuser 0.5950±0.0005 0.7782±0.0006 (0.01, 0.01,N/A)
MF-MPCitem 0.5983±0.0005 0.7833±0.0005 (0.01,N/A, 0.01)

MF-DMPC 0.5941± 0.00054 0.7782± 0.00074 (0.01, 0.001, 0.1)
MF-PMPCuser→item 0.5933±0.0006 0.7766±0.0006 (0.01, 0.01,N/A)
MF-PMPCitem→user 0.5952±0.0007 0.7796±0.0006 (0.01,N/A, 0.01)
RBM 0.6550±0.0008 0.8500±0.0005 αw = 0.0005
NCF 0.6108±0.0006 0.7994±0.0009 γNCF = 0.0005, sbatch = 512

NF10M

SVD 0.6506±0.0003 0.8402±0.0004 (0.01,N/A,N/A)
MF-MPCuser 0.6415±0.0004 0.8314±0.0005 (0.01, 0.01,N/A)
MF-MPCitem 0.6435±0.0005 0.8342±0.0003 (0.01,N/A, 0.01)

MF-DMPC 0.6390± 0.00054 0.8303±0.0004 (0.01, 0.001, 0.01)
MF-PMPCuser→item 0.6392±0.0003 0.8298±0.0005 (0.01, 0.01,N/A)

MF-PMPCitem→user 0.6389±0.0004 0.8300± 0.00054 (0.01,N/A, 0.01)
RBM 0.7000±0.0007 0.8948±0.0005 αw = 0.0005
NCF 0.6526±0.0021 0.8477±0.0004 γNCF = 0.001, sbatch = 128
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Experiments

Main Results (3/4)

Observations:
The recommendation performance improves with richer preference
context, i.e., from void preference context in SVD to simple and complex
preference context in MF-MPC, MF-DMPC and MF-PMPC.
For modeling user-oriented preference context and item-oriented
preference context, the performance depends on the ratio of user group
size to item group size, i.e., n/m. Specifically, item-oriented MF-MPC
performs better when n/m is of a suitable size (as on ML100K and
ML1M). And as n/m becomes larger (as on ML10M and NF10M),
user-oriented MPC behaves more reliable because of the increasing
probability to find similar users.
For modeling dual preference context, MF-DMPC outperforms SVD and
MF-MPC in all cases. However, the performance of MF-DMPC is in a
way restrained by the better result of user-oriented MF-MPC and
item-oriented MF-MPC. Gratifyingly, this improvement reveals that
MF-DMPC strikes a good balance between user-oriented MPC and
item-oriented MPC ...
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Experiments

Main Results (4/4)

Observations:
For modeling sequential preference context, MF-PMPC is the best
approach in all cases, which showcases the effectiveness of our
residual-based sequential modeling approach. The relative performance
between the two types of MF-PMPC is similar to that of MF-MPCuser and
MF-MPCitem, which shows the importance of the first step in MF-PMPC.
There is one exception that it is hard to tell whether MF-MPCuser or
MF-MPCitem is better on NF10M, where n/m is small and the records
number is large.
...
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Conclusions and Future Works

Conclusions

We study a classical recommendation problem, i.e., rating
prediction in a user-item matrix, and develop a generic
factorization-based framework, i.e., matrix factorization with
heterogeneous multiclass preference context (MF-HMPC).
We design two specific variants with different structures, including
MF with dual MPC (MF-DMPC) for concurrent structure and MF
with pipelined MPC (MF-PMPC) for sequential structure.
Empirical studies on four public datasets clearly showcase the
advantages of our methods over the very state-of-the-art methods.
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Conclusions and Future Works

Future Works

For future works, we are interested in studying the issues of
robustness of factorization-based algorithms with internal preference
context. We also plan to study some advanced strategies such as
adversarial sampling, denoising and multilayer perception in our
proposed factorization framework.
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Jahrer, M., Töscher, A., and Legenstein, R. (2010).
Combining predictions for accurate recommender systems.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10,
pages 693–702.

Koren, Y. (2008).
Factorization meets the neighborhood: A multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
426–434.

Pan, W. and Ming, Z. (2017).
Collaborative recommendation with multiclass preference context.
IEEE Intelligent Systems, 32(2):45–51.

Rendle, S. (2012).
Factorization machines with libfm.
ACM Trans. Intell. Syst. Technol., 3(3):57:1–57:22.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007).
Restricted boltzmann machines for collaborative filtering.
In Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 791–798.

Lin et al., (SZU) MF-HMPC Neurocomputing 41 / 41


	Introduction
	Related Work
	Preliminaries
	Method
	Experiments
	Conclusions and Future Works
	Thank you
	References

