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Introduction

Problem Definition

Two-partner Cross-Organization Recommendation (COR). We
have a set of rating records R() = {(u, i , rui)|u ∈ U(), i ∈ I()}, where U()

and I() are the user set and item set of partners a and b, and rui is the
rating that user u assigns to item i . For two partners a and b with rating
records Ra and Rb, the goal is to obtain two recommendation models
fa(u, i) and fb(u, i) by solving the following optimization problems,

min
fa()

∑
i∈Ia,u∈U\a

(fa(u, i)− ru,i)
2, (1)

min
fb()

∑
i∈Ib,u∈U\b

(fb(u, i)− ru,i)
2, (2)

where U\a = Ub − Ua denotes the users in partner b but unseen in
partner a, and U\b is similar.
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Introduction

Notations (1/5)

Table: Some notations and explanations.

n the number of all users
m the number of all items
d ∈ Z the number of latent dimensions
Uu ∈ R1×d user latent feature vector
Uu

′∗ ∈ R1×d recovered user latent feature vector
U ∈ Rn×d user embeddings
Vi ∈ R1×d item latent feature vector
Vi

′∗ ∈ R1×d recovered item latent feature vector
V̄i ∈ R1×d item latent feature vector attacked by partner b
V ∈ Rm×d item embeddings
W middle-layer parameters
∇W gradient of the middle-layer parameters
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Introduction

Notations (2/5)

Table: Some notations and explanations (cont.).

Notation Explanation
rui ∈
{1,2, . . . ,5}

rating of user u to item i

r̂ui ∈
{1,2, . . . ,5}

predicted rating of user u to item i

r∗ui
′ ∈

{1,2, . . . ,5}
recovered rating of user u to item i

yui ∈ {0,1} indicator variable
Ua the set of users w.r.t. partner a
U\a = Ub\Ua users in partner b but unseen in partner a
Ub the set of users w.r.t. partner b
U\b = Ua\Ub users in partner a but unseen in partner b
Ucom = Ua∩Ub the set of common users
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Introduction

Notations (3/5)

Table: Some notations and explanations (cont.).

Notation Explanation
U = Ua ∪Ub the whole set of users
Ia the set of items w.r.t. partner a
Ib the set of items w.r.t. partner b
Icom = Ia ∩
Ib

the set of common items

I = Ia ∪ Ib the whole set of items
Ra rating records in training data w.r.t. partner a
Rb rating records in training data w.r.t. partner b
Rk

a a portion of Ra in a certain iteration w.r.t. part-
ner a

Ik
a a portion of Ia in a certain iteration w.r.t. partner

a
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Introduction

Notations (4/5)

Table: Some notations and explanations (cont.).

Notation Explanation
Uk

a a portion of Ua in a certain iteration w.r.t. partner
a

∇Vk
i the set of ∇Vi in a certain iteration trained from

Rk
a w.r.t. partner a

∇Wk the set of ∇W in a certain iteration w.r.t. partner
a, including the locally trained part from Rk

a and
the received part from partner b

∇Uk
u the set of ∇Uu in a certain iteration w.r.t. part-

ner a, including the locally trained part from Rk
a

and the received part from partner b
∇Uu

a the set of ∇Uu w.r.t. partner a and user u
∇Uu

com the set of ∇Uu w.r.t. common user u
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Introduction

Notations (5/5)

Table: Some notations and explanations (cont.).

Notation Explanation
∇Ũu

com the set of privatized ∇Uu w.r.t. a common user u
γ learning rate
α weight of penalty term
T total iteration epoch
K iteration number in each epoch
ϵ the parameter in differential privacy
∆h the ℓ1 sensitivity of a function h
M(X) an algorithm that takes input X
Range(M) the value range of algorithm M
Predict(·) the model prediction function
E [∗]b encryption w.r.t. partner b
D[∗]b decryption w.r.t. partner b
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Challenges of Related Work

An absence of study in a general data setting. The prevailing
setting in previous works acquiescently only aligns users or items,
disregarding the real-world scenarios where both users and items
usually overlap across different organizations.
An absence of study with general recommendation models. Most
previous works predominantly hinge on the utilization of a specific
model, while lacking study on practices under a generic
recommendation framework.
Unsustainable cross-organization cooperation. A noteworthy
shortcoming inherent in almost all previous works lies in the
practice of training models only once, thereby terminating the
collaboration process prematurely, which undermines the
prospects of fostering sustainable commercialization.
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Overall of Our Solution

Overall of Our Solution
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Figure: The overall framework of our FedCORE, including three key
components, namely: collaborative training and inference, studying privacy
leakage concerns, and our privacy protection approach.
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Overall of Our Solution

Overall of Our Solution

We are the first that study the ecosystem problem of
cross-organization federated recommendation, for which we
propose a novel solution called FedCORE.
We analyze the privacy leakage problem in federated
recommendation and design several attack methods to illustrate
the potential risks.
We implement a privacy-preserving method for collaborative
training and design a cryptography-based protocol to protect user
privacy in the inference phase.
We conduct extensive experiments on three real-world datasets
and two seminal recommendation models to study the
effectiveness of cooperation and privacy protection in our
FedCORE.
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Differential Privacy for COR

Differential Privacy

Differential Privacy. For all S ⊂ Range(M), and for all adjacent
datasets X,X′ that differ by one instance, a randomized algorithm
M(X) is considered as (ϵ, δ)-differentially private if the following
equation holds,

Pr(M(X) ∈ S) ≤ eϵ Pr
(
M

(
X′) ∈ S

)
+ δ, (3)

where S denotes a subset of the output of the algorithm M,
Range(M) denotes the set of output of the algorithm M, ϵ denotes
the privacy budget parameter in differential privacy and δ denotes
a small positive number typically close to zero.
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Differential Privacy for COR

Differential Privacy

The Laplace mechanism [Dwork et al., 2014] is a popular
mechanism used to guarantee ϵ-differential privacy. the Laplace
mechanism can be formulated as a function Privatize(X, ϵ,∆h),

Privatize(X, ϵ,∆h) = X + ϵ, ϵ ∼ Laplace(
∆h
ϵ

). (4)

Note that ∆h is defined as the ℓ1 sensitivity of a function h,

∆h = max
X,X′

∥∥h(X)− h
(
X′)∥∥

1 . (5)

The operation privatize(X, ϵ,∆h) provides ϵ-DP protection to the
output X with the sensitivity ∆h. The privacy budget ϵ is inversely
proportional to the noise scale, which means (i) when ϵ = 0, the
output is totally overwhelmed by the noise resulting in no utility
and (ii) when for ϵ = ∞, there is no protection.
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Differential Privacy for COR

DP for our FedCORE.

Similar to the operations in [McMahan et al., 2017]
[Abadi et al., 2016], we are able to bound the sensitivity by
clipping the gradient with a certain scale.
More specifically, we clip the gradients by ℓ1 norm of scale 0.05,
where in most cases the difference between any two gradients is
∆h = 0.1, i.e., in our FedCORE, the privatization process is
implemented as follows,

PrivateCOR(X, ϵ) = Privatize(Clip(X,0.05), ϵ,0.1), (6)

where Clip(a,b) is a function that clips the ℓ1 norm of an input a by
a scale b.
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Methods I: Cooperation in the Training Phase

Privacy Definition

We define four levels of privacy protection in the cross-organization
federated recommendation as follows.

Level 1: The data partner leaks some complete raw data,
features, and IDs corresponding to the features.
Level 2: The data partner leaks some complete features and IDs
corresponding to the features.
Level 3: The data partner leaks some complete features but does
not know the corresponding IDs. Alternatively, the data partner
leaks some features with noise at most, but knows the
corresponding IDs.
Level 4: The data partner leaks at most some features with noise,
and does not know the corresponding IDs.
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Methods I: Cooperation in the Training Phase

Privacy Definition

Table: Four levels of privacy protection.

Raw data Feature ID

Level 1 b b b

Level 2 � b b

Level 3
� � b
� b �

Level 4 � � �

�: Protected, b: Unprotected.
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Methods I: Cooperation in the Training Phase

Privacy Definition

In the case of transmitting plaintext gradients, the protection level
of cross-user federated recommendation is level 2, while the
protection level of cross-organization federated recommendation
is level 3.
With certain protection methods, such as differential privacy,
secret sharing, and homomorphic encryption, the protection level
of cross-user federated recommendation can reach level 3 or level
4, and the protection level of cross-organization federated
recommendation can reach level 4.
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Methods I: Cooperation in the Training Phase

Collaborative Training Framework

In general, the optimization problem of our FedCORE in the training
phase is as follows,

min
Θ

∑
u∈Ua

∑
i∈Ia

yui fui +
∑
u∈Ub

∑
i∈Ib

yui fui , (7)

where yui = 1 if the rating record (u, i , rui) ∈ Ra or Rb and yui = 0
otherwise, Ua ∩ Ub = Ucom, Ia ∩ Ib = Icom. fui depends on a specific
recommendation algorithm, e.g., fui = 1

2(rui − r̂ui)
2 + α

2 ∥Uu∥2 + α
2 ∥Vi∥2

in PMF, where r̂ui denotes the predicted rating of user u to item i , and
α is the weight of the penalty term.
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Methods I: Cooperation in the Training Phase

Algorithm of DFedRec(b) I

Algorithm 1 Collaborative Training of FedCORE.

1: Step 1. Common user ID alignment. Each partner aligns the user set U and does not align
the item set I.

2: Step 2. Common parameters initialization alignment. Each partner keeps the initialization
values of the user embeddings and the middle-layer parameters W consistent.

3: Step 3. Co-training via gradient exchange w.r.t. partner a.
4: for t = 1, 2, . . . ,T do
5: for k = 1, 2, . . . ,K do
6: Sample a portion of rating records Rk

a
7: for rui ∈ Rk

a (parallely ) do
8: Compute the gradients ∇Uu , ∇Vi and ∇W based on a specific model
9: end for

10: Send ∇W to partner b
11: for u ∈ Uk

a ∩ Ucom (parallely ) do
12: Compute privatized ∇Ũu

com via Eq.(12), Eq.(13) or Eq.(14)
13: send ∇Ũu

com to partner b
14: end for
15: Synchronize() /*Wait for all partners to complete the exchange of gradients of the

users’ latent feature vectors.*/
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Methods I: Cooperation in the Training Phase

Algorithm of DFedRec(b) II

16: W = W − λ

∑
∇W′∈∇Wk ∇W′

|∇Wk |
17: for i ∈ Ik

a do

18: Vi = Vi − λ

∑
∇V ′

i ∈∇Vk
i
∇V ′

i

|∇Vk
i |

19: end for
20: for u ∈ Uk

a do

21: Uu = Uu − λ

∑
∇U′

u∈∇Uk
u
∇U′

u

|∇Uk
u |

22: end for
23: end for
24: end for
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Methods I: Cooperation in the Training Phase

Data Attack Methods

In this section, we introduce how to attack the common user
gradients to obtain the complete item embedding, thereby
reducing the protection level of cross-organization collaborative
training with plaintext gradients to level 3.
Subsequently, we propose that the protection level can be further
reduced from level 3 to level 2 to some extent through similarity
calculation. We assume that in a two-partner COR scenario,
partner b is honest but curious, and tries to attack partner a by
recovering some useful information from the shared gradients
∇Uu,u ∈ Ucom.
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Methods I: Cooperation in the Training Phase

Data Attack Methods

Firstly, we introduce how to attack the common user gradients to
obtain the complete item embedding. The general form of the attack
method on the common user gradients for different recommendation
methods is as follows,

Vi
′∗ , r∗ui

′ = Attack(∇W,W,∇Uu,Uu), (8)

where u ∈ Ucom, i ∈ Ia, Vi
′∗ denotes the recovered item latent feature

vector and r∗ui
′ denotes the recovered rating of user u to item i from the

attack method.
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Methods I: Cooperation in the Training Phase

Data Attack Methods

In PMF, the function Attack(·) can solve the following linear equation
system,

∇Uu = −(rui − UuV T
i )Vi + αUu. (9)

When partner a computes a gradient ∇Uu,u ∈ Ucom via Eq.(9) and
sends it to partner b for synchronous update, partner b can completely
restore the value of Vi , i ∈ Ia. This can be done by solving the
following linear equation system,

∇Uu1 = −(rui − UuVi
′∗T

)Vi1
′∗ + αUu1

∇Uu2 = −(rui − UuVi
′∗T

)Vi2
′∗ + αUu2

...

∇Uud = −(rui − UuVi
′∗T

)Vid
′∗ + αUud

(10)

where each equation corresponds to one dimension.
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Methods I: Cooperation in the Training Phase

Data Attack Methods

In NeuCF, the function Attack(·) can be based on the idea of
DLG [Zhu et al., 2019]. However, unlike the original DLG, the data to
be restored in DLG [Zhu et al., 2019] is a matrix-level image, while in
our setup it is vector-level item embeddings. This makes the attack
more likely to succeed. The optimization problem is shown as follows,

Vi
′∗ , r∗ui

′

= argmin
Vi

′,rui
′

∥∥(∇W′,∇U ′
u)− (∇W,∇Uu)

∥∥2

= argmin
Vi

′,rui
′
∥∥(

∂ℓ
(
F
(
Vi

′,W
)
, rui

′)
∂W

,
∂ℓ

(
F
(
Vi

′,W
)
, rui

′)
∂Uu

)

− (∇W,∇Uu)∥∥2

(11)

where Vi
′∗ ∈ R1×d is the recovered item latent feature vector and rui

′∗

is the recovered rating of user u to item i .
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Methods I: Cooperation in the Training Phase

Data Attack Methods

Secondly, we introduce how to reduce the protection level from level 3
to level 2 to some extent by calculating the similarity.

Step 1. Partner b receives the gradient ∇Uu from partner a and
attempts to find V̄i using the attack method described in Eqs.(10)
and (11).
Step 2. Partner b calculates the cosine similarity between V̄i and
the latent feature vectors of all items belonging to partner b in
order to determine the likely ground-truth ID of V̄i . The item with
the highest cosine similarity is considered the most probable
ground-truth ID.
Step 3. Partner b calculates rui for all users u ∈ Ucom and item
i = i

′
using V̄i and Uu, u ∈ Ucom.
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Methods I: Cooperation in the Training Phase

Privacy Protection

To address the issue mentioned above, we propose three strategies to
make it more difficult for an adversary to gain useful information from
the shared gradients.

Differential Privacy (DP). We apply DP (discussed in Section 4)
to privatize the gradients ∇Ucom before transferring them to the
other partner. In Eq.(12), we utilize the privatization function
Privatizetr defined in Eq.(6) to privatize the exposed gradients as
˜∇Uu. As a result, the similarity between V̄i , i ∈ Ia attacked by

partner b and Vi , i ∈ Ib is reduced,

∇Ũu
com = PrivateCOR(∇Ucom, ϵ), u ∈ Ucom. (12)
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Methods I: Cooperation in the Training Phase

Privacy Protection

In the data attack method for PMF, we must have at least as many
equations as unknown variables in order to solve a system of linear
equations like Eq.(10). Therefore, we can make it more difficult to solve
the equation system by increasing the number of unknown variables.

Average of Gradients (AG). we can have a simple but effective
defense method by the gradients of the users’ latent feature
vectors locally,

∇Ũu
com =

∑
∇U′

u∈∇Uu
a
∇U ′

u

|∇Uu
a |

,u ∈ Ucom. (13)

It is worth noting that averaging the gradient makes the attack method,
i.e., DLG [Zhu et al., 2019], more difficult to succeed, which also has a
protective effect on the deep learning-based recommendation
methods.
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Methods I: Cooperation in the Training Phase

Privacy Protection

The aforementioned two defense strategies can be integrated to
provide stronger privacy protection. We propose to combine two
methods as follows,

Mixture of DP and AG (DP+AG). We propose to combine two
methods as follows,

∇Ũu
com = PrivateCOR(

∑
∇U′

u∈∇Uu
a
∇U ′

u

|∇Uu
a |

, ϵ), u ∈ Ucom. (14)

In order to choose the strategy of AG, a mini-batch update is used
during gradient descent. And DP will also affect the recommendation
performance.
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Method II: Cooperation in the Inference Phase

Privacy Definition

For a business organization, it is often more important to attract
new users than to expand the item pool. Therefore, a reasonable
approach is for partners a and b to use their local data to solve the
cold-start user problem by collaboratively recommending
reasonable items to users u ∈ Ub using the model prediction
function Predict(·), e.g., the dot product UuV T

i for i ∈ Ia in PMF.
As mentioned above, partner a can recommend reasonable items
to users u,u ∈ Ub with the help of Uu,u ∈ Ub. However, if
Uu,u ∈ Ub are sent directly to partner a, the privacy of partner b is
compromised, which undermines the goal of sustainable
commercialization. This process is shown in the upper right
corner of Figure 1. Therefore, in the inference phase, it is
important to protect the user latent feature vectors Uu for u ∈ Ub.
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Method II: Cooperation in the Inference Phase

Collaborative Inference Framework

Algorithm 2 Collaborative inference of FedCORE w.r.t. partner a.

1: Step 1. Send the ID of user u to whom partner a wants to recom-
mend items.

2: Step 2. In order to protect Uu,u ∈ Ub, partner b returns the en-
crypted user latent feature vector E [Uu + ϵ]b.

3: Step 3. Partner a sends Predict(E [Uu + ϵ],Vi ,W) to partner b.
4: Step 4. Partner b computes D[Predict(E [Uu + ϵ],Vi ,W)]b and re-

turns Predict(Uu,Vi ,W) to partner a.
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Method II: Cooperation in the Inference Phase

Data Attack Methods

Although the above approach avoids directly transmitting the user
feature vectors, there is still a risk of leakage. We propose two
types of attack methods that aim to ‘steal’ the users’ latent vectors
from the other partner.
It is worth noting that one of the attack methods, the accuracy
reference (AR) attack, is specific to matrix factorization-based
models such as PMF and some deep learning-based models in
which the final rating is calculated using the dot product between
the user and item latent vectors
[Luo et al., 2022, Yuan et al., 2022, Wu et al., 2022].
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Method II: Cooperation in the Inference Phase

Data Attack Methods

Training (TR) attack. In the inference phase, partner a only lacks
knowledge of the user latent feature vectors Uu for u ∈ Ub.
Therefore, partner a can attempt to ‘steal’ these unknown vectors
by directly training them on the historical requested ratings Rb
from partner b for each user u in the inference phase.
The optimization problem is as follows.

U ′∗
u = argmin

U′
u

∑
rui∈Rb

∥∥rui − Predict(U ′
u,Vi ,W)

∥∥2
, (15)

where u ∈ Ub and the function Predict(·) depends on the specific
recommendation algorithm.
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Method II: Cooperation in the Inference Phase

Data Attack Methods

Accuracy reference (AR) attack. In PMF, assuming that the
dimension of Uu is d , partner a can inquire ratings of d different
items w.r.t. user u. The user latent feature vector Uu can be
obtained by solving the following system of linear equations.

ru1 = U ′∗
u V T

1

ru2 = U ′∗
u V T

2
...

rud = U ′∗
u V T

d

(16)

where each equation corresponds to an item and its rating w.r.t.
user u.
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Method II: Cooperation in the Inference Phase

Privacy Protection

In the inference phase, the acquisition of an individual user’s
anticipated item rating is imperative for the execution of specific
business operations by the collaborating entity. Consequently, privacy
preservation strategies that rely on the amalgamation of numerous
ratings prove infeasible in this context.

Add noise to user embeddings. If we apply differential privacy
to the user embeddings in step 2 of the collaborative inference
framework, the final inferred ratings will also be noisy. This makes
the attack results biased. The formula is as follows,

U ′
u = PrivateCOR(Uu, ϵ), u ∈ Ub. (17)

Li et al. (CSSE, SZU) FedCORE TKDE 2024 33 / 68



Communication Cost Analysis

Collaborative Training Framework

In the training phase, the total communication count is
T × K × |Uk

a ∩ Ucom| via Eq.(12), and T × K × |{rui}| via Eq.(13)
and Eq.(14), where rui ∈ Rk

a and u ∈ Ucom. The size of |{rui}| is
smaller than |Uk

a ∩ Ucom| due to the utilization of averaging the
user latent feature vector gradients in Eq.(13) and Eq.(14).
In the inference phase, every request for a user rating undergoes
four distinct stages, including two transmissions and two
receptions. Therefore, for each instance of inference, the
communication count stands at 2.
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Experiments

Research Questions

RQ1) What is the influence of the unaligned items?
RQ2) What is the protective efficacy of our FedCORE in the
training phase?
RQ3) How does our FedCORE perform in the inference phase?
RQ4) How does our FedCORE perform with different proportions
of overlapping users?
The source code and scripts to reproduce all the results are
publicly available at https://github.com/seek-up-well/FedCORE-
code.
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Experiments

Datasets

MovieLens 100K (ML100K)
MovieLens 1M (ML1M)
A randomly constructed subset of Netflix with 5,000 users and
5,000 items1 (NF5K5K)

1http://www.netflix.com/
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Experiments

Datasets

We process each dataset with the following steps:
We randomly divide each dataset into 60% training data, 20%
validation data, and 20% test data.
We randomly split the users in each part (i.e., training, validation,
and test data) into two groups, i.e., 25% of the users assigned to
group a and 25% assigned to group b, and the remaining 50% of
the users serve as common users for both groups. We use a
similar process for dividing the items into two groups.
To simulate the same user preferences across different platforms,
we assign 20% of the data from common users and common
items to both group a and group b.
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Experiments

Datasets

1 2 3

4 5 6

7 8 9

25%

50%

25%

25% 50% 25%

5 6

8 9

1 2

4 5

7

3

Figure: Illustration of data processing for two partners.
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Experiments

Datasets

To better explain how we divide the data for simulation, we use a
schematic diagram shown in Figure 2.
The blue squares represent the original dataset, and the yellow
and green squares represent the two simulated data after
separation. In each square, the rows represent users and the
columns represent items.
The original data, represented by the blue squares, is divided into
9 parts, each identified by a number.
After separation, parts 1, 2, and 4 are unique to partner a, and
parts 6, 8, and 9 are unique to partner b.
For part 5, each partner receives 40% at random and also shares
20% of the data from common users and common items with the
other partner, as mentioned above.
Parts 3 and 7 are used to study the recommendation performance
in the inference phase but are not involved in the training phase.
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Experiments

Datasets

In RQ1, different ratios (e.g., 0.1, 0.2) of common items are not
aligned, meaning they are mapped to a new set of item IDs.
In RQ2 and RQ3, all common items are not aligned, meaning they
are all mapped to a new set of item IDs.

Li et al. (CSSE, SZU) FedCORE TKDE 2024 40 / 68



Experiments

Parameters setting

For all experiments, we set the total number of iterations T to 50,
and the batch size is set to 256.
In order to directly compare the effects of the two algorithms when
under attack, we use the same optimizer SGD.
We search for the best value of the learning rate
γ ∈ {0.1,0.2,0.3,0.4,0.5,0.6} for PMF and NeuCF using the
validation data of each dataset.
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Experiments

Evaluation Metrics

For performance evaluation of each algorithm, we use two
commonly used metrics, i.e., mean absolute error (MAE) and root
mean square error (RMSE), and report the average performance
on the five copies of each dataset.
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Experiments

Influence of Entirely Unaligned Items

(a) ML100K (PMF) (b) ML100K (NeuCF) (c) ML1M (PMF)

(d) ML1M (NeuCF) (e) NF5K5K (PMF) (f) NF5K5K (NeuCF)

Figure: Recommendation performance w.r.t. different amounts of unaligned items between partners a and b, where a solid
line denotes the performance of the corresponding entirely aligned items, and a dashed line denotes the performance of the
unaligned items with different ratios.
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Experiments

Influence of Entirely Unaligned Items

From a modeling perspective, NeuCF performs better than PMF in
terms of the average performance gap on all three datasets. This
indicates that the influence of unaligned items is related to the
complexity of the model, and NeuCF has more parameters, which
makes it more robust and able to perform better.
From the perspective of the dataset, the experimental results are
better for ML1M than for ML100K. It is reasonable to conclude that
as the quantity of data (i.e., the number of users and items, and
their interactions) increases, the influence of entirely unaligned
items on the recommendation performance becomes weaker.
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Experiments

Protective Efficacy in the Training Phase

Because the latent feature vectors of the same item ID tend to be
similar, even if they are associated with different and unaligned
IDs, partner b may still know the ID i corresponds to in the real
world. Therefore, the rating records of partner a are likely to be
leaked.
To demonstrate this risk of privacy disclosure, for every latent
vector of a common item in partner a, we calculate its cosine
similarity with all the latent feature vectors of the items in partner b
at various iterations of the training process, e.g., t = 0, k = 1,
t = 0, k = 5, etc.
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Experiments

Protective Efficacy in the Training Phase

Table: Number of items with top 1% and 5% cosine similarity values in PMF w.r.t. a same item ID. Note that there are 842,
1976 and 2500 common and unaligned items in these three datasets, respectively.

Dataset t k Top 1% Top 5%

ML100K

0 0 4.80 ±0.40 22.40 ±1.20
0 5 4.80 ±0.40 22.00 ±1.26
0 20 5.00 ±0.63 22.40 ±1.62
1 0 4.60 ±1.50 21.40 ±1.20
5 0 13.20 ±2.56 56.00 ±6.84
20 0 25.40 ±3.72 89.60 ±12.18
49 0 71.80 ±7.98 154.8 ±5.42

ML1M

0 0 11.00 ±0.00 76.00 ±0.00
0 5 11.00 ±0.00 75.60 ±0.49
0 20 11.20 ±0.40 75.80 ±0.75
1 0 19.00 ±1.41 114.0 ±2.61
5 0 44.40 ±7.23 169.8 ±11.41
20 0 185.4 ±10.52 473.0 ±20.68
49 0 455.0 ±13.08 783.8 ±14.30

NF5K5K

0 0 18.00 ±0.00 98.40 ±0.80
0 5 18.00 ±0.00 98.40 ±1.20
0 20 18.40 ±0.80 97.00 ±0.63
1 0 20.40 ±2.06 98.40 ±3.20
5 0 44.80 ±5.04 187.6 ±12.22
20 0 117.0 ±8.32 326.6 ±9.89
49 0 265.6 ±6.15 505.8 ±13.93
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Experiments

Protective Efficacy in the Training Phase

Table: Number of items with top 1% and 5% cosine similarity values in NeuCF w.r.t. a same item ID. Note that there are 842,
1976 and 2500 common and unaligned items in these three datasets, respectively.

Dataset t k Top 1% Top 5%

NCF GMF NCF GMF

ML100K

0 0 4.80 ±0.40 2.20 ±0.40 33.00 ±4.00 28.20 ±0.40
0 5 4.40 ±1.20 2.20 ±1.20 32.80 ±3.76 28.60 ±0.49
0 20 6.60 ±1.74 2.20 ±1.74 33.00 ±2.90 28.20 ±0.40
1 0 12.80 ±2.04 3.00 ±2.04 63.80 ±6.31 29.00 ±0.89
5 0 15.80 ±4.96 3.80 ±4.96 73.60 ±6.15 29.80 ±1.17
20 0 20.20 ±3.82 4.60 ±3.82 79.20 ±11.2 30.40 ±3.20
49 0 19.60 ±5.04 5.20 ±5.04 81.20 ±10.8 31.20 ±2.99

ML1M

0 0 14.00 ±0.00 20.00 ±0.00 72.00 ±0.00 70.00 ±0.00
0 5 14.60 ±1.20 19.20 ±1.20 71.80 ±4.62 69.60 ±0.49
0 20 13.60 ±1.74 20.00 ±1.74 75.60 ±2.65 69.40 ±0.49
1 0 53.40 ±4.96 20.60 ±4.96 198.2 ±6.62 66.80 ±1.72
5 0 102.4 ±14.6 20.60 ±14.6 314.6 ±30.0 69.00 ±4.15
20 0 185.0 ±15.4 21.40 ±15.4 484.8 ±19.1 80.20 ±2.48
49 0 205.4 ±18.8 23.40 ±18.8 503.4 ±15.2 82.20 ±3.43

NF5K5K

0 0 15.40 ±1.20 15.40 ±1.20 82.00 ±8.0 73.00 ±0.00
0 5 16.40 ±2.33 15.40 ±2.33 84.40 ±6.89 73.20 ±0.40
0 20 19.00 ±3.10 15.40 ±3.10 89.80 ±6.97 73.00 ±0.00
1 0 46.80 ±4.31 15.00 ±4.31 177.2 ±11.8 73.00 ±0.63
5 0 47.00 ±6.23 14.40 ±6.23 191.2 ±8.61 73.00 ±1.41
20 0 47.80 ±4.26 13.80 ±4.26 204.2 ±6.14 72.20 ±1.33
49 0 49.80 ±4.49 13.60 ±4.49 206.2 ±6.79 72.60 ±1.36
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Experiments

Protective Efficacy in the Training Phase

We report the number of items with top 1% and 5% cosine
similarity with respect to a same but not aligned item ID in
Tables 7 and 8.
We can see that the numbers increase as the training progresses,
which means thateven if the item IDs are not aligned, the latent
vectors of the same item ID are close, posing a threat to privacy
protection.
Additionally, from the perspective of different models, NeuCF is
much less similar than PMF. We believe this is due to the
intermediate layer parameters taking on some modeling
capability, so that the input features become less important.
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Experiments

Protective Efficacy in the Training Phase

We then study the influence of different amounts of privacy budget
in the training phase and report the results in Figure 4. As the
privacy budget ϵ1 increases, the recommendation performance
becomes better. The choice of ϵ1 = 15 is a good trade-off
between recommendation performance and privacy protection.
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Experiments

Protective Efficacy in the Training Phase

(a) ML100K (PMF) (b) ML100K (NeuCF) (c) ML1M (PMF)

(d) ML1M (NeuCF) (e) NF5K5K (PMF) (f) NF5K5K (NeuCF)

Figure: Recommendation performance with different values of the privacy budget ϵ1 between partners a and b w.r.t different
datasets and models.
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Experiments

Protective Efficacy in the Training Phase

To study the defense effect of our method, we randomly select 100
common users who rate at least five different items. All metrics are
described as follows:

Sim(1) is computed between the items’ latent feature vectors from
Vi , i ∈ Ia stored in partner a and Vi

′∗ , i ∈ Ia attacked by partner b.
Sim(2) is computed between the items’ latent feature vectors from
Vi , i ∈ Ia stored in partner a and Vi , i ∈ Ib with the same items’
IDs.
Sim(3) is computed between Vi

′∗ , i ∈ Ia attacked by partner b and
the items’ latent feature vectors from Vi , i ∈ Ib with the same item
IDs.
RMSE is computed from the train data w.r.t. partner a and
common users.
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Experiments

Protective Efficacy in the Training Phase

Table: Cosine similarity and recommendation performance of different methods for uploading gradient. The baseline refers to
that of uploading a single gradient w.r.t. PMF.

Dataset Method Sim(1) Sim(2) Sim(3) RMSE

ML100K

baseline 1.000 ±0.000 0.992 ±0.046 0.992±0.046 0.950
AG 0.300 ±0.924 0.297 ±0.918 0.994±0.007 2.364
DP 0.311 ±0.237 0.309 ±0.236 0.992±0.046 1.962

DP+AG 0.070 ±0.339 0.068 ±0.338 0.994±0.007 2.401

ML1M

baseline 1.000 ±0.000 0.990 ±0.014 0.990±0.014 0.868
AG 0.261 ±0.850 0.254 ±0.852 0.991±0.012 2.435
DP 0.425 ±0.205 0.422 ±0.204 0.990±0.014 2.728

DP+AG 0.115 ±0.416 0.112 ±0.413 0.991±0.012 2.801

NF5K5K

baseline 1.000 ±0.000 0.985 ±0.076 0.985±0.076 0.991
AG 0.267 ±0.945 0.264 ±0.938 0.992±0.013 2.440
DP 0.267 ±0.258 0.264 ±0.256 0.985±0.076 1.810

DP+AG 0.057 ±0.274 0.057 ±0.275 0.992±0.013 2.334
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Experiments

Protective Efficacy in the Training Phase

Table: Cosine similarity and recommendation performance of different methods for uploading gradient. The baseline refers to
that of uploading a single gradient w.r.t. NeuCF.

Dataset Method Sim(1) Sim(2) Sim(3) RMSE

NCF NCF NCF

ML100K

baseline 0.724 ±0.443 0.320 ±0.373 0.432±0.331 1.415
AG 0.036 ±0.300 0.025 ±0.271 0.432±0.331 2.106
DP 0.453 ±0.444 0.222 ±0.398 0.432±0.331 1.868
DP+AG 0.034 ±0.273 0.035 ±0.259 0.432±0.331 2.135

ML1M

baseline 0.158 ±0.477 0.088 ±0.411 0.595±0.349 1.914
AG 0.005 ±0.313 -0.006 ±0.310 0.668±0.285 2.113
DP 0.123 ±0.415 0.088 ±0.385 0.668±0.285 2.014
DP+AG 0.024 ±0.318 0.014 ±0.305 0.668±0.285 2.122

NF5K5K

baseline 0.673 ±0.488 0.230 ±0.397 0.372±0.375 1.252
AG -0.013 ±0.308 -0.009 ±0.281 0.372±0.375 1.713
DP 0.312 ±0.423 0.127 ±0.337 0.372±0.375 1.557
DP+AG 0.005 ±0.302 0.000 ±0.295 0.372±0.375 1.70
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Experiments

Protective Efficacy in the Training Phase

Sim(1), which represents the highest similarity score between the
original and reconstructed item vectors, consistently registers the
highest value in both PMF and NeuCF when gradients are
unprotected.
With the implementation of differential privacy (DP), adversarial
gradient (AG), and the combined DP+AG strategies, there is a
notable reduction in Sim(1), thereby impeding the attacker’s ability
to accurately deduce the IDs of the genuine items.
Among these, the DP+AG strategy emerges as the most potent in
shielding the training process against gradient-based intrusions.
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Experiments

Performance in the Inference Phase

We investigate both the defense performance and recommendation
performance in the inference phase. All baselines are described as
follows:

AvgFilling: uses the global average rating to perform
recommendations for new users.
FedCORE: protects inference performance by adding noise to
user embeddings.
FedCORE AR: conducts an attack via the accuracy reference
(AR) attack, adds noise to user embeddings, and uses the attack
users’ vector for the recommendation.
FedCORE AR2: conducts an attack via the accuracy reference
(AR) attack, adds noise to inferred ratings, and uses the attacked
users’ vector for the recommendation.
FedCORE TR: conducts an attack via the training (TR) attack,
adds noise to user embeddings, and uses the attack users’ vector
for the recommendation.
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Experiments

(a) The training attack performance
of FedCORE TR.

(b) The training attack performance
of FedCORE TR and defense per-
formance of FedCORE.
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Experiments

(c) The accuracy attack perfor-
mance of FedCORE AR and de-
fense performance of FedCORE.

(d) The accuracy attack perfor-
mance of FedCORE AR2 and de-
fense performance of FedCORE.

Figure: Recommendation performance and defense performance of our
FedCORE with PMF w.r.t. different amounts of privacy budget and different
ratios of inference data on ML100K.
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Experiments

(a) The training attack performance
of FedCORE TR.

(b) The training attack performance
of FedCORE TR and defense per-
formance of FedCORE.

Figure: Recommendation performance and defense performance of our
FedCORE with NeuCF w.r.t. different amounts of privacy budget and different
ratios of inference data on ML100K.
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Experiments

Performance in the Inference Phase

In Figures 5(b) and 6(b), we assess the inference efficacy of
FedCORE against FedCORE TR. Our observations confirm that
the integrity of the original user embeddings can be maintained
through the strategic introduction of noise.
Figure 5(c) demonstrates that the performance of FedCORE AR
in the PMF setting aligns with that of FedCORE.
The outcomes illustrated in Figure 5(d) suggest that the
introduction of minimal noise into the ratings can thoroughly thwart
an attack, resulting in an inference performance markedly inferior
to that of FedCORE.
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Experiments

Performance in the Inference Phase

Table: Recommendation performance of our FedCORE w.r.t. PMF and partner a.
Algorithm MAE RMSE

ML100K
AvgFilling 0.9654±0.0075 1.1637±0.0067

FedCORE 0.752±0.0141 0.9594±0.0142

PMF 0.7328±0.0068 0.9488±0.0125

ML1M
AvgFilling 0.9374±0.0019 1.1173±0.0029

FedCORE 0.7082±0.002 0.9072±0.0019

PMF 0.6925±0.0019 0.874±0.0028

NF5K5K
AvgFilling 0.9125±0.0081 1.0866±0.0068

FedCORE 0.7791±0.011 1.0115±0.0114

PMF 0.7479±0.0049 0.9925±0.0128
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Experiments

Performance in the Inference Phase

Table: Recommendation performance of our FedCORE w.r.t. NeuCF and partner a.
Algorithm MAE RMSE

ML100K
AvgFilling 0.9654±0.0075 1.1637±0.0067

FedCORE 0.7432±0.0151 0.9459±0.015

NeuCF 0.7396±0.0069 0.9444±0.0156

ML1M
AvgFilling 0.9374±0.0019 1.1173±0.0029

FedCORE 0.6991±0.0045 0.8923±0.0057

NeuCF 0.6985±0.0027 0.8796±0.0026

NF5K5K
AvgFilling 0.9125±0.0081 1.0866±0.0068

FedCORE 0.7393±0.0039 0.9464±0.007

NeuCF 0.7225±0.0032 0.9421±0.0081
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Experiments

Performance in the Inference Phase

The resultant training on a single machine outcomes serve as an
upper bound for the federated methods in terms of
recommendation performance, augmenting the established
baseline, e.g., PMF and NeuCF.
Our FedCORE is only slightly worse than the single
machine-trained methods, e.g., PMF and NeuCF. These methods
surpass our FedCORE, primarily attributed to learning from the
centralized data.
Our FedCORE achieves significantly better recommendation
performance than AvgFilling.
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Experiments

Performance of Different Proportions of Overlapping
Users

In this section, we examine the performance of our FedCORE on
data with different alignment ratios. We include new experimental
results using different data partitions. Specifically, we change the
co-user ratio to 35% and 15%.
Since different data partitions mainly affect the training phase, we
focus on the performance in the training phase under different
data proportions.
The results are shown in Table 13, Figure 7 and Table 14. These
results clearly demonstrate that the different proportions of data
have, in essence, negligible effects on the experimental results.
Note that the results are similar on ML1M and NF5K5K, as well as
that using NeuCF.
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Experiments

Performance of Different Proportions of Overlapping
Users

Table: Number of items with top 1% and 5% cosine similarity values w.r.t. a same item ID from ML100K. Note that the
numbers of common and unaligned items are 842 and 1178 in different data alignment ratios, respectively.

Ratio t k Top 1% Top 5%

15%

0 0 4.80 ±0.40 11.00 ±0.00
5 0 3.80 ±1.60 15.20 ±2.14

20 0 5.00 ±2.53 19.00 ±2.28
49 0 15.60 ±1.62 44.60 ±4.45

25%

0 0 4.80 ±0.40 22.40 ±1.20
5 0 13.20 ±2.56 56.00 ±6.84

20 0 25.40 ±3.72 89.60 ±12.18
49 0 71.80 ±7.98 154.80 ±5.42

35%

0 0 3.80 ±0.40 36.00 ±0.00
5 0 40.20 ±4.17 149.00 ±14.09

20 0 154.80 ±6.11 326.00 ±10.90
49 0 192.40 ±9.41 331.20 ±15.66
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Experiments

Performance of Different Proportions of Overlapping
Users

(a) Ratio 15%. (b) Ratio 35%.

Figure: Recommendation performance on ML100K w.r.t. different values of
the privacy budget ϵ1 between partners a and b with different data alignment
ratios.

Li et al. (CSSE, SZU) FedCORE TKDE 2024 65 / 68



Experiments

Performance of Different Proportions of Overlapping
Users

Table: Cosine similarity values and recommendation performance of different methods and data alignment ratios in uploading
the gradients. The baseline refers to that of uploading a single gradient w.r.t. PMF.

Ratio Method Sim(1) Sim(2) Sim(3) RMSE

15%

baseline 1.000 ±0.000 0.950 ±0.083 0.950±0.083 0.956
AG 0.291 ±0.920 0.275 ±0.877 0.946±0.094 2.383
DP 0.311 ±0.238 0.297 ±0.233 0.950±0.083 2.002

DP+AG 0.105 ±0.323 0.094 ±0.310 0.946±0.094 2.372

25%

baseline 1.000 ±0.000 0.992 ±0.046 0.992±0.046 0.950
AG 0.300 ±0.924 0.297 ±0.918 0.994±0.007 2.364
DP 0.311 ±0.237 0.309 ±0.236 0.992±0.046 1.962

DP+AG 0.070 ±0.339 0.068 ±0.338 0.994±0.007 2.401

35%

baseline 1.000 ±5.566 0.993 ±8.000 0.993±0.080 0.984
AG 0.265 ±0.924 0.267 ±0.922 0.994±0.066 2.385
DP 0.307 ±0.233 0.305 ±0.233 0.993±0.080 1.970

DP+AG 0.075 ±0.330 0.075 ±0.331 0.994±0.066 2.331
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Conclusions and Future Work

Conclusions and Future Work

We address a new and important problem, i.e., cross-organization
federated recommendation, and propose a novel and
privacy-aware solution called federated cross-organization
recommendation ecosystem (FedCORE).
Our FedCORE allows different organizations to collaboratively
train on cross-silo data and infer the preferences of their cold-start
users.
We conduct extensive experiments on three real-world datasets
and two seminal recommendation models to study the
effectiveness of cooperation and privacy protection in our
proposed ecosystem.
For future works, we plan to generalize our FedCORE to
recommendation problems involving users’ sequential and
multi-behavior data.
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