
Discrete Federated Multi-behavior
Recommendation for Privacy-Preserving

Heterogeneous One-Class Collaborative Filtering

Enyue Yang1 Weike Pan1∗ Qiang Yang2 Zhong Ming1,3,4

1College of Computer Science and Software Engineering,
Shenzhen University, China

2Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, China

3Shenzhen Technology University, China

4Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), China

Yang et al. (SZU, HKUST) DFMR TOIS 2024 1 / 67

Introduction

Problem Definition

Privacy-Preserving Heterogeneous One-Class Collaborative Filtering
(PHOCCF)

Input:
The server is allowed to own the complete (user, item) purchase
matrix P ∈ {0,1}n×m.
Each client (i.e., user) has a set of purchased items IP

u and a set of
examined items IE

u .

Goal: Predict the purchase preference value of each user u to
each not yet purchased item j ∈ I\IP

u and recommend the top
ranked items in a privacy-preserving, storage-efficient and
computation-efficient manner.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 2 / 67

Introduction

Assumption

We assume that the purchase behaviors can be collected by the
server.
It is often impractical to assume that the organizations do not
collect any raw data and they can still meet the basic business
imperatives.
For example, in an online e-commerce platform, if the platform
does not know what items a specific user has bought, it could not
deliver the items to the user.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 3 / 67

Introduction

Overall of Our Solution

We propose a novel framework named discrete federated
multi-behavior recommendation (DFMR) for PHOCCF. To the best
of our knowledge, DFMR is the first federated learning framework
for PHOCCF.
We use discrete hashing techniques to encode the user and item
vectors via binary codes, which makes it possible to store massive
vectors effectively. We then extend DCF to PHOCCF, and design
a global model updating module and a personal model updating
module to update the parameters.
We design a memorization module called cache updating module
to address the computational bottlenecks. By deriving the update
formulas, we enable some terms to be independent of the items or
users, and then pre-calculate them only once in each training
round.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 4 / 67

Introduction

Related Work (1/4)

Federated learning aims to collaboratively train a global machine
learning model among multiple clients without sharing the raw
data.
Federated recommendation presents a new challenge of storage
overhead for the embeddings.

Traditional recommendation systems often use unique identifiers
(IDs) to represent items and then generate some trainable
embeddings for items.
The size of the embeddings will increase as the number of items
increases, and they account for the majority of storage compared to
other neural network parameters.

Discrete hashing techniques provide a promising alternative for
the embeddings by encoding real-valued embeddings via binary
codes.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 5 / 67

Introduction

Related Work (2/4)

Federated recommendation aims to make accurate
recommendations in a distributed machine learning paradigm in a
privacy-preserving manner.
The most relevant works are DeepRec [Han et al., 2021] and
LightFR [Zhang et al., 2022].

Yang et al. (SZU, HKUST) DFMR TOIS 2024 6 / 67

Introduction

Related Work (3/4)

DeepRec [Han et al., 2021] is an on-device deep learning
framework for privacy-preserving sequential recommendation.
Our DFMR is inspired by DeepRec, in which the authors argue
that collecting the business necessary data does not violate the
privacy-related laws.
There are two significant differences between our DFMR and
DeepRec.

The problem we study is HOCCF while the problem they study is
single-behavior sequential recommendation.
DeepRec is not a federated learning method. Our training process
is the same as that of most traditional federated recommendation
methods.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 7 / 67

Introduction

Related Work (4/4)

LightFR [Zhang et al., 2022] is a federated version of
DCF [Zhang et al., 2016], which encodes the item and user
vectors via binary codes.
We discuss the differences among DCF, LightFR and our DFMR.

In LightFR and DCF, the authors study the item ranking task with
explicit feedback instead of heterogeneous implicit feedback in this
paper.
For implicit feedback, a constraint term which lies in the summation
over the missing data is required in the objection function and will
cause the computational bottleneck. Thus, we need an additional
module to reduce the computational complexity, for which LightFR
and DCF do not need.
Our DFMR is able to exploit the difference between examinations
and purchases to improve the recommendation performance, which
can thus outperform DCF with implicit feedback.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 8 / 67

Methods

DFMR

Client

S
M

P
C

G
lo

b
a

l Ite
m

-sp
e

cific

b
in

a
ry

 m
a

trix

…

 !
"
!

$
!

%

Global model

updating module

Personal model

updating module
Cache memory

Cache memory

G
lo

b
a

l Ite
m

-sp
e

cific

b
in

a
ry

 m
a

trix

Client &

G
lo

b
a

l Ite
m

-sp
e

cific

b
in

a
ry

 m
a

trix

…

Personal model

updating module

Global model

updating module

…

Global model

updating module

Server

User-specific binary

codes ! and " !

Cache memory

User-specific binary

codes #$! and "$!

Distribute1

Train %2

Upload3
Update # !5

Update % and &4

Distribute1

Update #$!5

'$
(
) '$

*
) '$

+

Train %2

Figure: The framework of our discrete federated multi-behavior
recommendation (DFMR).

Yang et al. (SZU, HKUST) DFMR TOIS 2024 9 / 67

Methods

Objective Function

argmin
U,V ,X ,Y

LDCF + LPurc + LExam + LReg

s.t. 1T X = 0,X T X = nI,1T Y = 0,Y T Y = mI

U ∈ {±1}n×d ,V ∈ {±1}m×d ,

(1)

where LDCF =
∑

u∈U
∑

i∈IP
u

wui(rui − r̂ui)
2 + s

∑
u∈U

∑
k∈I\IP

u
r̂2
uk , LPurc =

λ
∑

u∈U
∑

i∈IP
u

ci

[∑
j∈IE

u

(
γ1 −

(
r̂ui − r̂uj

))2
+
∑

k∈I\(IP
u ∪IE

u) (γ2 − (r̂ui − r̂uk))
2
]
,

LExam = (1 − λ)
∑

u∈U
∑

j∈IE
u

cj
∑

k∈I\(IP
u ∪IE

u)

(
γ3 −

(
r̂uj − r̂uk

))2
,

LReg = −2αtr
(
UX T

)
− 2βtr

(
VY T

)
.

Note that X ∈ Rn×d and Y ∈ Rm×d are used to relax the balance and
decorrelation constraints [Zhang et al., 2016].

Yang et al. (SZU, HKUST) DFMR TOIS 2024 10 / 67

Methods

Modules Overview

Global Model Updating Module.
Personal Model Updating Module.
Cache Updating Module.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 11 / 67

Methods

Global Model Updating Module

Those parameters (i.e., V and Y) which are independent of the user
preference are treated as the global parameters and can be
maintained in the server.

We denote Vif as the f -th bit of Vi· and Vi f̄ as the rest binary vector
excluding Vif .

For Vif , we fix U,X ,Y and Vi f̄ to be constant and then the original
objective function can be represented as the objective function of Vif ,
i.e.,

argmin
Vif∈{±1}

− Vif V ∗
if , (2)

Yang et al. (SZU, HKUST) DFMR TOIS 2024 12 / 67

Methods

Global Model Updating Module

V∗
if =

∑
u∈UP

i

[
wui

(
d (2rui − 1) − Uuf̄ V T

i f̄

)
2d2

Uuf +
∑

j∈IE
u

λci

2d2

(
Vjf + 2dγ1Uuf − Uuf Uuf̄

(
V T

i f̄ − V T
j f̄

))

+
∑

k∈I\
(
IP

u ∪IE
u

)
λci

2d2

(
Vkf + 2dγ2Uuf − Uuf Uuf̄

(
V T

i f̄ − V T
kf̄

))]

+
∑

u∈UE
i

[
−

s
(

d + Uuf̄ V T
i f̄

)
2d2

Uuf +
∑

t∈IP
u

λct

2d2

(
Vtf − 2dγ1Uuf + Uuf Uuf̄

(
V T

t f̄ − V T
i f̄

))

+
∑

k∈I\
(
IP

u ∪IE
u

)
(1 − λ) ci

2d2

(
Vkf + 2dγ3Uuf − Uuf Uuf̄

(
V T

i f̄ − V T
kf̄

))]

−
∑

u∈U\
(
UP

i ∪UE
i

)
[

s
(

d + Uuf̄ V T
i f̄

)
2d2

Uuf −
∑

t∈IP
u

λct

2d2

(
Vtf − 2dγ2Uuf + Uuf Uuf̄

(
V T

t f̄ − V T
i f̄

))

−
∑

j∈IE
u

(1 − λ) cj

2d2

(
Vjf − 2dγ3Uuf + Uuf Uuf̄

(
V T

j f̄ − V T
i f̄

))]
+ 2βYif .

(3)

Please refer to Appendix B of our paper for the detailed derivations of V ∗
if .

Yang et al. (SZU, HKUST) DFMR TOIS 2024 13 / 67

Methods

Global Model Updating Module

The update rule of Vif can be derived as

Vif = sgn (K (Vif ,V ∗
if)) , (4)

where K (x , y) is a function that K (x , y) = y if y ̸= 0 and K (x , y) = x
otherwise, and sgn(x) is a function with sgn(x) = 1 if x > 0 and
sgn(x) = −1 otherwise.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 14 / 67

Methods

Global Model Updating Module

The objective function of Y can be represented as follows,

argmax
Y

tr
(

VY T
)
, s.t. 1T Y = 0,Y T Y = mI. (5)

Let V̄if = Vif − 1
m
∑m

i=1 Vif , V̄ T V̄ =
[
PV P̂V

] [∑2
V 0

0 0

] [
PV P̂V

]T
,

where PV ∈ Rm×d ′
are the left singular vectors corresponding to the d ′

positive singular values in the diagonal matrix ΣV and P̂V ∈ Rm×(d−d ′)

are the eigenvectors of the zero eigenvalues.

Let QV = V̄PVΣ
−1
V , we obtain Q̂V ∈ Rm×(d−d ′) by Gram-Schmidt

orthogonalization [Selek et al., 2022] based on [QV 1].

The update rule of Y can be derived as

Y ′T =
√

m
[
PV P̂V

] [
QV Q̂V

]T
. (6)

Yang et al. (SZU, HKUST) DFMR TOIS 2024 15 / 67

Methods

Modules Overview

Global Model Updating Module.
Personal Model Updating Module.
Cache Updating Module.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 16 / 67

Methods

Personal Model Updating Module

Uu· and Xu· are closely related to user u’s preference, thus they are
treated as the personal parameters.

We denote Uuf as the f -th bit of Uu· and Uuf̄ as the rest binary vector
excluding Uuf . The objective function of Uuf can be represented as
follows,

argmin
Uuf∈{±1}

− Uuf U∗
uf , (7)

The update rule of Uuf can be represented as follows,

Uuf = sgn (K (Uuf ,U∗
uf)) . (8)

Yang et al. (SZU, HKUST) DFMR TOIS 2024 17 / 67

Methods

Personal Model Updating Module

U∗
uf =

∑
i∈IP

u

wui

(
d (2rui − 1)− Uuf̄ V

T
i f̄

)
2d2 Vif −

∑
k∈I\IP

u

s
(

d + Uuf̄ V
T
kf̄

)
2d2 Vkf + 2αXuf

+ λ
∑

i∈IP
u

ci

d

∑
j∈IE

u

(
2dγ1 − Uuf̄ V

T
i f̄ + Uuf̄ V

T
j f̄

) (
Vif − Vjf

)
+ λ

∑
i∈IP

u

ci

d

∑
k∈I\(IP

u ∪IE
u)

(
2dγ2 − Uuf̄ V

T
i f̄ + Uuf̄ V

T
kf̄

)
(Vif − Vkf)

+ (1 − λ)
∑
j∈IE

u

cj

d

∑
k∈I\(IP

u ∪IE
u)

(
2dγ3 − Uuf̄ V

T
j f̄ + Uuf̄ V

T
kf̄

) (
Vjf − Vkf

)
.

(9)

Please refer to Appendix D of our paper for the detailed derivations of
U∗

uf .

Yang et al. (SZU, HKUST) DFMR TOIS 2024 18 / 67

Methods

Personal Model Updating Module

The objective function and the update rule of X can be represented as
follows,

argmax
X

tr
(

UX T
)
, s.t. 1T X = 0,X T X = nI, (10)

X ′T =
√

n
[
PU P̂U

] [
QU Q̂U

]T
, (11)

where PU , P̂U and QU are calculated based on the user-specific latent
feature matrix U detailed in Appendix E.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 19 / 67

Methods

Modules Overview

Global Model Updating Module.
Personal Model Updating Module.
Cache Updating Module.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 20 / 67

Methods

Cache Updating Module

For each item i ’s f -th bit Vif , all the clients need to send the
corresponding parameters to the server.

As the number of items increases, the communication overhead on the
clients increases linearly.

It is expected that the clients’ communication overhead corresponds to
the size of their interaction data, i.e., only the users who have
interacted with item i need to communicate with the server.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 21 / 67

Methods

Cache Updating Module

We rewrite V ∗
if as follows,

V∗
if =

∑
u∈UP

i

CP
uif +

∑
u∈UE

i

CE
uif +

∑
u∈U

Cuif + 2βYif +
λ

2d2

∑
t∈I

∑
u∈UP

t

Uuf Uuf̄ ct V
T
t f̄

+
(1 − λ)

2d2

∑
t∈I

∑
u∈UE

t

Uuf Uuf̄ ct V
T
t f̄ +

λ

2d2

∑
t∈I

ct Vtf

∣∣∣UP
t

∣∣∣ + (1 − λ)

2d2

∑
t∈I

ct Vtf

∣∣∣UE
t

∣∣∣ , (12)

The detailed derivations of CP
uif , CE

uif and Cuif can be found in Appendix
B.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 22 / 67

Methods

Cache Updating Module

We can observe that the terms s
2d

+
λγ2

d

∑
t∈IP

u

ct +
(1 − λ) γ3

d

∑
j∈IE

u

cj

Uuf

and

Uuf Uuf̄

 s
2d2 +

λ

2d2

∑
t∈IP

u

ct +
1 − λ

2d2

∑
j∈IE

u

cj

in Cuif are independent of the item i . Hence, client u can pre-calculate
and send them to the server only once in each training round.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 23 / 67

Methods

Cache Updating Module

Similarly,

λ

2d2

∑
t∈I

∑
u∈UP

t

Uuf Uuf̄ ct V
T
t f̄ +

(1 − λ)

2d2

∑
t∈I

∑
u∈UE

t

Uuf Uuf̄ ct V
T
t f̄ +

λ

2d2

∑
t∈I

ct Vtf

∣∣∣UP
t

∣∣∣ + (1 − λ)

2d2

∑
t∈I

ct Vtf

∣∣∣UE
t

∣∣∣

can also be pre-calculated and sent to the server only once in each
training round.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 24 / 67

Methods

Cache Updating Module

We design a memorization strategy to calculate the terms of the
summation of the parameters related to all items, such as

∑
k∈I Vkf .

For example, we can define qf
1 =

∑
t∈I Vtf and pf

1 =
∑

t∈I V T
t f̄

. By
leveraging the above memorization strategy in those terms, we can
rewrite V ∗

if as

V∗
if =

∑
u∈UP

i

CP
uif +

∑
u∈UE

i

CE
uif + qf

2 + pf
2V T

i f̄ + 2βYif +
λ

2d2
hf

1 +
(1 − λ)

2d2
hf

2 +
λ

2d2
hf

3 +
(1 − λ)

2d2
hf

4, (13)

where CP
uif and CE

uif have been rewritten through the memorization
strategy. Similarly, we can rewrite U∗

uf with the above strategy.

The detailed derivations can be found in Appendix F.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 25 / 67

Algorithm 1 The algorithm of DFMR in the server.

1: Input: The purchase matrix P ∈ {0,1}n×m and the hyperparameters.
2: Initialize and pre-train U, V , X and Y .
3: Distribute Uu·, Xu· and the hyperparameters to client u.
4: Calculate

∣∣UE
i

∣∣, i ∈ 1,2, · · · ,m via secret sharing.
5: // Start training
6: for t = 1 to T do
7: // Global model updating
8: Update the cache qf

1, pf
1, f ∈ 1,2, · · · ,d .

9: Update the cache qf
2, pf

2, hf
1, hf

2, f ∈ 1,2, · · · ,d via secret sharing.
10: Update the cache hf

3 and hf
4, f ∈ 1,2, · · · ,d .

11: for u = 1 to n do
12: Distribute qf

1 and pf
1, f ∈ 1,2, · · · ,d to client u.

13: Distribute V to client u.
14: end for
15: for i = 1 to m do
16: for f = 1 to d do

Yang et al. (SZU, HKUST) DFMR TOIS 2024 26 / 67

17: Receive CP∪E∪F
uif from client u ∈ UP∪E∪F

i .
18: Update Vif = sgn

(
K
(
Vif ,V ∗

if

))
.

19: if Vif changes then
20: Distribute Vif to client u ∈ UP∪E∪F

i .
21: end if
22: end for
23: end for
24: Update Y .
25: // Personal model updating
26: Update the cache qf

5, pf
5, qf

6, pf
6 and pf

7, f ∈ 1,2, · · · ,d .
27: for u = 1 to n do
28: Distribute qf

5, pf
5, qf

6, pf
6 and pf

7, f ∈ 1,2, · · · ,d to client u,
f ∈ 1,2, · · · ,d .

29: end for
30: end for

Yang et al. (SZU, HKUST) DFMR TOIS 2024 27 / 67

Algorithm 2 The algorithm of DFMR on the client u.

1: Input: A set of purchased items IP
u , a set of examined items IE

u , the
sampling parameter ρ.

2: Receive Uu·, Xu· and the hyperparameters from the server.
3: Randomly generated IF

u , where
∣∣IF

u

∣∣ = ρ
(∣∣IP

u

∣∣+ ∣∣IE
u

∣∣).
4: Calculate

∣∣UE
i

∣∣, i ∈ IE
u ∪ IF

u via secret sharing.
5: // Start training
6: for t = 1 to T do
7: // Global model updating
8: Update the cache qf

2, pf
2, pf

3, pf
4, f ∈ 1,2, · · · ,d via secret sharing.

9: Receive qf
1 and pf

1, f ∈ 1,2, · · · ,d from the server.
10: Receive V from the server.
11: for i = 1 to m do
12: for f = 1 to d do
13: if i ∈ IP

u ∪ IE
u ∪ IF

u then

14: CIP
u ∪IE

u ∪IF
u

uif =

CP

uif if i ∈ IP
u

CE
uif if i ∈ IE

u

0 if i ∈ IF
u

Yang et al. (SZU, HKUST) DFMR TOIS 2024 28 / 67

15: Upload CIP
u ∪IE

u ∪IF
u

uif to the server via secret sharing.
16: if Vif changes then
17: Update Vif .
18: Update the cache qf

1 and pf
1 locally.

19: end if
20: end if
21: end for
22: end for
23: // Personal model updating
24: Receive the cache qf

5, pf
5, qf

6, pf
6, and pf

7, f ∈ 1,2, · · · ,d from the
server.

25: Update Uu·.
26: end for

Yang et al. (SZU, HKUST) DFMR TOIS 2024 29 / 67

Algorithmic Analysis

Space Complexity

The server requires d (5d + 3)B bits for storing the cache, 2dm
bits for storing V and Y .
Each client u requires d (4d − 1)B bits for storing the cache, dm
bits for storing the item-specific binary matrix and 2d bits for
storing Uu· and Xu·, where B is the bit-length of the data.
We usually have dB ≪ m, which means that the space complexity
of the server and the clients are O (dm).

Yang et al. (SZU, HKUST) DFMR TOIS 2024 30 / 67

Algorithmic Analysis

Communication Complexity

The communication complexity of the server is O (dnmT).
The communication complexity of the client u is O (dmT).

Yang et al. (SZU, HKUST) DFMR TOIS 2024 31 / 67

Algorithmic Analysis

Computational Complexity

The computational complexity of the server is O (dsT).
The computational complexity of each client u is
O
(

d
(∣∣IP

u
∣∣+ ∣∣IE

u
∣∣)2 T

)
.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 32 / 67

Algorithmic Analysis

Privacy analysis

Our DFMR protects a portion of the privacy-sensitive raw data
without affecting the basic business.
The personal parameter Uu·, which is related to the user
preference, is always kept on each client.
All the uploaded intermediate parameters are protected via secret
sharing and fake items techniques [Lin et al., 2022].

Yang et al. (SZU, HKUST) DFMR TOIS 2024 33 / 67

Experiments

Research Questions

RQ1: How does our DFMR perform compared with the baseline
methods?
RQ2: What is the superiority of our proposed cache updating
module?
RQ3: Comparing with real-valued methods, does the space
overhead reduce significantly?

Yang et al. (SZU, HKUST) DFMR TOIS 2024 34 / 67

Experiments

Datasets

We conduct experiments on four public datasets including JD,
Tmall, User Behavior (UB) and MovieLens 10M (ML10M).
For the sake of simplicity, we only preserve two types of
behaviors, i.e., examinations and purchases.
For the simulation, we regard the rating behaviors with scores
greater than or equal to 4 as purchase behaviors and the rest
behaviors as examination behaviors on ML10M.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 35 / 67

Experiments

Datasets

We preprocess the datasets as follows:
For duplicated (user, item, behavior) tuples in a sequence, we only
retain the earliest one;
We discard the cold-start items with fewer than 20 purchase
interactions and the cold-start users with fewer than 5 purchase
interactions;
We remove the records from Tmall on the special sales promotion
day November 11;
We sort all the records according to the timestamp in ascending
order, and then take the data front of the 80% timeline as the
training set, that of 80%-90% as the validation set, and that after
90% as the test set;
We discard the examination records which the same users have
both examined and purchased.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 36 / 67

Experiments

Datasets

Table: Statistics of the processed datasets.

Dataset JD Tmall UB ML10M
#Users 10,690 17,202 20,443 3,625
#Items 13,465 16,177 30,947 3,633
P 60,967 201,424 107,489 152,013
E 217,977 799,352 511,020 932,155
P(val.) 5,892 23,758 13,088 23,124
P(te.) 5,013 15,646 13,131 14,154
P/E 1:3.58 1:3.97 1:4.75 1:6.13
Density 0.19% 0.36% 0.10% 8.23%

Yang et al. (SZU, HKUST) DFMR TOIS 2024 37 / 67

Experiments

Baselines

Four centralized learning-based algorithms:
LogMF [Johnson and C, 2014] is a classic one-class collaborative
filtering (OCCF) algorithm that adopts a pointwise preference
assumption, which learns the user and item vectors via the
stochastic gradient descent (SGD) technique using a logistic loss
function.
eALS [He et al., 2016] is a non-sampling-based OCCF algorithm,
which learns the user and item vectors via the element-wise
alternative least square technique [He et al., 2016] using a root
mean square error (RMSE) loss function.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 38 / 67

Experiments

Baselines

VALS [Ding et al., 2018] is a non-sampling-based heterogeneous
one-class collaborative filtering (HOCCF) algorithm that models
the pairwise relations among the purchase data, the examination
data and the un-interacted data, which learns the user and item
vectors via the element-wise alternative least square technique
using an RMSE loss function.
DCF [Zhang et al., 2016] is a non-sampling-based discrete OCCF
algorithm, which learns the user and item vectors via the discrete
coordinate descent technique [Farsa and Rahnamayan, 2020]
using an RMSE loss function.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 39 / 67

Experiments

Baselines

Two federated learning-based algorithms:
MF FedAVG is a federated version of LogMF, which uses the
FedAVG algorithm [McMahan et al., 2017] to aggregate the items’
gradients in the server.
FedGNN [Wu et al., 2022] is a GNN-based federated OCCF
algorithm, which proposes to use a trusted third-party server to
construct similar user neighborhoods for each client to learn
high-order graph information.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 40 / 67

Experiments

Performance Evaluation (RQ1)

Table: Recommendation performance of MF, eALS, VALS, MF FedAVG,
FedGNN, DCF and our DFMR on JD.
Metrics MF eALS VALS MF FedAVG FedGNN DCF DFMR
NDCG@5 0.0538±0.0044 0.0556±0.0007 0.0581±0.0005 0.0510±0.0013 0.0598±0.0014 0.0512±0.0017 0.0539±0.0008
Pre@5 0.0310±0.0020 0.0308±0.0009 0.0326±0.0003 0.0302±0.0001 0.0304±0.0012 0.0290±0.0021 0.0324±0.0011
Rec@5 0.0651±0.0052 0.0684±0.0004 0.0727±0.0012 0.0601±0.0001 0.0733±0.0034 0.0633±0.0042 0.0701±0.0031
NDCG@10 0.0714±0.0037 0.0768±0.0003 0.0775±0.0005 0.0686±0.0016 0.0802±0.0008 0.0686±0.0024 0.0712±0.0023
Pre@10 0.0272±0.0004 0.0291±0.0001 0.0291±0.0002 0.0274±0.0004 0.0279±0.0010 0.0267±0.0013 0.0283±0.0012
Rec@10 0.1094±0.0036 0.1195±0.0013 0.1210±0.0013 0.1040±0.0023 0.1257±0.0037 0.1039±0.0063 0.1095±0.0048

Table: Recommendation performance of MF, eALS, VALS, MF FedAVG,
FedGNN, DCF and our DFMR on Tmall.
Metrics MF eALS VALS MF FEDAVG FedGNN DCF DFMR
NDCG@5 0.0023±0.0006 0.0024±0.0001 0.0027±0.0000 0.0018±0.0004 0.0024±0.0004 0.0011±0.0003 0.0018±0.0002
Pre@5 0.0013±0.0003 0.0014±0.0001 0.0015±0.0000 0.0011±0.0002 0.0013±0.0002 0.0008±0.0002 0.0011±0.0001
Rec@5 0.0030±0.0006 0.0030±0.0004 0.0032±0.0000 0.0022±0.0006 0.0031±0.0005 0.0017±0.0004 0.0023±0.0004
NDCG@10 0.0032±0.0005 0.0032±0.0002 0.0036±0.0000 0.0024±0.0004 0.0031±0.0003 0.0020±0.0003 0.0026±0.0003
Pre@10 0.0012±0.0001 0.0011±0.0001 0.0013±0.0000 0.0009±0.0001 0.0011±0.0001 0.0009±0.0001 0.0010±0.0001
Rec@10 0.0055±0.0006 0.0049±0.0006 0.0058±0.0001 0.0037±0.0006 0.0050±0.0002 0.0040±0.0005 0.0044±0.0006

Yang et al. (SZU, HKUST) DFMR TOIS 2024 41 / 67

Experiments

Performance Evaluation (RQ1)

Table: Recommendation performance of MF, eALS, VALS, MF FedAVG,
FedGNN, DCF and our DFMR on UB.
Metrics MF eALS VALS MF FEDAVG FedGNN DCF DFMR
NDCG@5 0.0040±0.0003 0.0040±0.0002 0.0055±0.0001 0.0029±0.0002 0.0041±0.0005 0.0017±0.0003 0.0025±0.0007
Pre@5 0.0019±0.0002 0.0021±0.0001 0.0030±0.0000 0.0015±0.0001 0.0020±0.0003 0.0009±0.0001 0.0014±0.0004
Rec@5 0.0056±0.0005 0.0055±0.0004 0.0072±0.0001 0.0039±0.0002 0.0058±0.0006 0.0026±0.0006 0.0035±0.0013
NDCG@10 0.0054±0.0001 0.0058±0.0002 0.0072±0.0001 0.0040±0.0002 0.0053±0.0006 0.0026±0.0003 0.0035±0.0008
Pre@10 0.0016±0.0001 0.0019±0.0001 0.0024±0.0000 0.0014±0.0001 0.0016±0.0001 0.0009±0.0001 0.0012±0.0002
Rec@10 0.0096±0.0003 0.0104±0.0007 0.0123±0.0001 0.0071±0.0006 0.0090±0.0007 0.0048±0.0005 0.0062±0.0014

Table: Recommendation performance of MF, eALS, VALS, MF FedAVG,
FedGNN, DCF and our DFMR on ML10M.
Metrics MF eALS VALS MF FEDAVG FedGNN DCF DFMR
NDCG@5 0.0809±0.0021 0.0355±0.0010 0.0536±0.0003 0.0491±0.0007 0.0889±0.0030 0.0542±0.0027 0.0566±0.0029
Pre@5 0.0696±0.0023 0.0476±0.0024 0.0447±0.0004 0.0429±0.0006 0.0750±0.0017 0.0787±0.0071 0.0825±0.0051
Rec@5 0.0455±0.0016 0.0358±0.0017 0.0339±0.0011 0.0272±0.0012 0.0510±0.0014 0.0503±0.0028 0.0520±0.0020
NDCG@10 0.0876±0.0005 0.0485±0.0008 0.0578±0.0006 0.0522±0.0013 0.0950±0.0027 0.0763±0.0016 0.0770±0.0026
Pre@10 0.0635±0.0003 0.0407±0.0010 0.0391±0.0007 0.0385±0.0009 0.0676±0.0041 0.0743±0.0023 0.0744±0.0029
Rec@10 0.0827±0.0009 0.0609±0.0006 0.0568±0.0008 0.0470±0.0006 0.0871±0.0024 0.0878±0.0002 0.0847±0.0026

Yang et al. (SZU, HKUST) DFMR TOIS 2024 42 / 67

Experiments

Performance Evaluation (RQ1)

5 10 15 20 25 30 35 40 45 50
K

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

ND
CG

5 10 15 20 25 30 35 40 45 50
K

0.010

0.015

0.020

0.025

0.030

Pr
ec

5 10 15 20 25 30 35 40 45 50
K

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

Re
c

MF eALS VALS MF_FEDAVG FedGNN DCF DFMR

Figure: Recommendation performance (i.e., NDCG, Precision and Recall)
with different values of K on JD.

5 10 15 20 25 30 35 40 45 50
K

0.001
0.002
0.003
0.004
0.005
0.006
0.007

ND
CG

5 10 15 20 25 30 35 40 45 50
K

0.0008

0.0010

0.0012

0.0014

Pr
ec

5 10 15 20 25 30 35 40 45 50
K

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

Re
c

MF eALS VALS MF_FEDAVG FedGNN DCF DFMR

Figure: Recommendation performance (i.e., NDCG, Precision and Recall)
with different values of K on Tmall.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 43 / 67

Experiments

Performance Evaluation (RQ1)

5 10 15 20 25 30 35 40 45 50
K

0.002
0.004
0.006
0.008
0.010
0.012

ND
CG

5 10 15 20 25 30 35 40 45 50
K

0.0010

0.0015

0.0020

0.0025

0.0030

Pr
ec

5 10 15 20 25 30 35 40 45 50
K

0.005
0.010
0.015
0.020
0.025
0.030
0.035

Re
c

MF eALS VALS MF_FEDAVG FedGNN DCF DFMR

Figure: Recommendation performance (i.e., NDCG, Precision and Recall)
with different values of K on UB.

5 10 15 20 25 30 35 40 45 50
K

0.04

0.06

0.08

0.10

0.12

0.14

ND
CG

5 10 15 20 25 30 35 40 45 50
K

0.03
0.04
0.05
0.06
0.07
0.08

Pr
ec

5 10 15 20 25 30 35 40 45 50
K

0.05

0.10

0.15

0.20

0.25

Re
c

MF eALS VALS MF_FEDAVG FedGNN DCF DFMR

Figure: Recommendation performance (i.e., NDCG, Precision and Recall)
with different values of K on ML10M.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 44 / 67

Experiments

Performance Evaluation (RQ1)

We have the following observations:

For the three baselines exploiting homogeneous one-class feedback
(i.e., MF, eALS and DCF), we can observe that DCF does not perform
well compared with the two real valued-based baselines, i.e., MF and
eALS, in most cases. It indicates that there is a performance gap
between real valued-based models and binary-based models. Indeed, it
is acceptable to sacrifice some accuracy for efficiency, but the hope is
that the performance will not drop significantly.

Moreover, our DFMR achieves the better performance than DCF on all
the four datasets, which clearly shows the advantage of our generic
solution by modeling different preference levels for the users’ purchase,
examination and un-interacted behaviors.

Additionally, our DFMR can approach or even outperform MF and eALS
on both JD and ML10M, which demonstrates the effectiveness of our
DFMR.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 45 / 67

Experiments

Performance Evaluation (RQ1)

For the baseline VALS exploiting heterogeneous one-class feedback, it
outperforms all OCCF-based centralized baselines in most cases, which
clearly indicates that the use of the examination behaviors can improve
the recommendation performance. Moreover, it outperforms our DFMR
on Tmall and UB. Instead, our DFMR can approach or even outperform
VALS on JD and ML10M. It clearly indicates that in the case of binarizing
the user and item vectors our DFMR does not sacrifice much in terms of
recommendation performance.

Compared with the two federated learning-based baselines (i.e.,
MF FedAVG and FedGNN), we can observe that DFMR achieves better
performance than MF FedAVG on four datasets. And at the same time, it
can approach and even outperform FedGNN. It clearly indicates that
although our DFMR sacrifices some accuracy for efficiency, it is still a
state-of-the-art federated learning-based recommendation method due
to the exploitation for examination behaviors.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 46 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

Table: Time cost of the server and each client of one round with different
numbers of dimensions on JD.

Model 2 4 8 16 32

Server

eALS 1.84e−2 1.92e−2 2.13e−2 2.86e−2 4.33e−2

VALS 1.34e−1 2.89e−1 8.09e−1 2.64 9.60
DCF 3.52e−2 3.67e−2 4.12e−2 5.28e−2 8.44e−2

DFMR (w/ cache) 2.20e−1 2.66e−1 5.17e−1 1.61 6.28
DFMR (w/o cache) 2.72e1 5.45e2 3.39e3 2.82e4 2.11e5

Client

eALS 9.74e−8 1.63e−7 3.49e−7 8.73e−7 2.83e−6

VALS 2.91e−4 3.03e−4 3.41e−4 4.77e−4 9.86e−4

DCF 1.74e−6 1.91e−6 2.31e−6 3.32e−6 6.20e−6

DFMR (w/ cache) 3.33e−5 9.32e−5 3.02e−4 1.07e−3 4.33e−3

DFMR (w/o cache) 3.48e−3 9.34e−3 2.87e−2 2.17e−1 8.40e−1

Yang et al. (SZU, HKUST) DFMR TOIS 2024 47 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

Table: Time cost of the server and each client of one round with different
numbers of dimensions on Tmall.

Model 2 4 8 16 32

Server

eALS 2.39e−2 2.59e−2 3.10e−2 5.09e−2 1.18e−1

VALS 3.32e−1 6.12e−1 1.42 3.99 1.31e1

DCF 4.40e−2 4.85e−2 5.91e−2 8.47e−2 1.55e−1

DFMR (w/ cache) 1.15 1.28 1.66 3.48 10.1
DFMR (w/o cache) 4.42e2 3.02e3 1.56e4 1.17e5 8.73e5

Client

eALS 4.37e−7 5.34e−7 8.33e−7 1.99e−6 5.87e−6

VALS 1.20e−3 1.21e−3 1.25e−3 1.40e−3 1.92e−3

DCF 1.70e−6 1.93e−6 2.61e−6 4.18e−6 8.29e−6

DFMR (w/ cache) 1.01e−4 2.64e−4 8.49e−4 2.99e−3 1.21e−2

DFMR (w/o cache) 1.04e−2 2.84e−2 9.47e−2 6.95e−1 3.33

Yang et al. (SZU, HKUST) DFMR TOIS 2024 48 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

Table: Time cost of the server and each client of one round with different
numbers of dimensions on UB.

Model 2 4 8 16 32

Server

eALS 2.30e−2 2.45e−2 2.95e−2 4.86e−2 1.26e−1

VALS 3.11e−1 6.75e−1 1.85 6.03 2.19e1

DCF 4.23e−2 4.60e−2 5.53e−2 8.09e−2 1.56e−1

DFMR (w/ cache) 4.96e−1 6.62e−1 1.35 4.00 14.5
DFMR (w/o cache) 8.84e2 3.66e3 2.87e4 1.94e5 1.43e6

Client

eALS 1.64e−7 2.34e−7 5.37e−7 1.64e−6 3.00e−6

VALS 1.78e−4 1.90e−4 2.31e−4 3.71e−4 9.01e−4

DCF 1.21e−6 1.37e−6 1.82e−6 2.90e−6 5.76e−6

DFMR (w/ cache) 3.72e−5 9.48e−5 2.68e−4 1.04e−3 3.88e−3

DFMR (w/o cache) 1.13e−2 3.12e−2 1.72e−1 6.88e−1 3.56

Yang et al. (SZU, HKUST) DFMR TOIS 2024 49 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

Table: Time cost of the server and each client of one round with different
numbers of dimensions on ML10M.

Model 2 4 8 16 32

Server

eALS 9.26e−3 9.45e−3 1.23e−2 1.91e−2 3.42e−2

VALS 9.63e−2 1.47e−1 3.40e−1 9.49e−1 3.06
DCF 111e−6 111e−6 111e−6 111e−6 111e−6

DFMR (w/ cache) 1.36 1.17 1.58 2.87 7.78
DFMR (w/o cache) 2.00e2 1.34e3 1.07e4 7.96e4 6.76e5

Client

eALS 1.22e−6 1.44e−6 2.32e−6 4.14e−6 9.04e−6

VALS 1.41e−3 1.43e−3 1.48e−3 1.64e−3 2.20e−3

DCF 3.21e−6 3.96e−6 5.79e−6 9.80e−6 1.95e−5

DFMR (w/ cache) 2.91e−3 8.94e−3 3.054e−2 1.11e−1 4.23e−1

DFMR (w/o cache) 1.74e−2 4.52e−2 1.34e−1 4.40e−1 1.54

Yang et al. (SZU, HKUST) DFMR TOIS 2024 50 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

We have the following observations:
Our DFMR with cache is significantly faster than that without
cache on four datasets. It indicates that our designed cache
updating module can effectively reduce the computational
overhead by pre-calculating the summation over the parameters of
all the items or users independently for a corresponding specific
item or user.
For the OCCF-based methods, eALS and DCF, their
computational time is of the same order of magnitude
approximately, while the computational time of VALS and our
DFMR with cache is also of the same order. It indicates that the
discrete-based methods can be comparable to the real
value-based methods in terms of the computational time.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 51 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

When the dimension number increases, the computational time of
our DFMR with cache increases linearly while that of our DFMR
without cache increases exponentially. This result indicates that if
the dimension number is large, our designed cache updating
module can play a more important role in reducing the
computational overhead.
Even if we set a small dimension number in our DFMR without
cache (e.g., d = 2), the computational time of the server is still
larger than that of a large dimension number in our DFMR with
cache (e.g., d = 32), which again shows the superiority of our
designed cache updating module.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 52 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

Table: Communication cost (MB) of each client of one round with different
numbers of dimensions on four datasets.

8 16 32 64 128 256

JD

MF FEDAVG 0.0329 0.0657 0.1315 0.2630 0.5260 1.0520
FedGNN 0.0329 0.0657 0.1315 0.2630 0.5260 1.0520
DFMR (w/ cache) 0.0138 0.0525 0.2047 0.8076 3.2083 12.789
DFMR (w/o cache) 0.0166 0.0331 0.0663 0.1325 0.2650 0.5301

Tmall

MF FEDAVG 0.0395 0.0790 0.1580 0.3160 0.6319 1.2638
FedGNN 0.0395 0.0790 0.1580 0.3160 0.6319 1.2638
DFMR (w/ cache) 0.0288 0.1092 0.4245 1.6734 6.6445 26.480
DFMR (w/o cache) 0.0199 0.0398 0.0796 0.1592 0.3184 0.6369

UB

MF FEDAVG 0.0756 0.1511 0.3022 0.6044 1.2089 2.4177
FedGNN 0.0756 0.1511 0.3022 0.6044 1.2089 2.4177
DFMR (w/ cache) 0.0171 0.0646 0.2510 0.9889 3.9255 15.642
DFMR (w/o cache) 0.0381 0.0761 0.1523 0.3046 0.6092 1.2183

ML10M

MF FEDAVG 0.0089 0.0177 0.0355 0.0710 0.1419 0.2838
FedGNN 0.0089 0.0177 0.0355 0.0710 0.1419 0.2838
DFMR (w/ cache) 0.1658 0.6267 2.4339 9.5902 38.070 151.70
DFMR (w/o cache) 0.0045 0.0089 0.0179 0.0358 0.0715 0.1430

Yang et al. (SZU, HKUST) DFMR TOIS 2024 53 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

We have the following observations:
We can see that the communication cost of our DFMR with cache
is higher than that without cache, which indicates that the use of
the cache updating module will increase the communication
overhead.
As the dimension number increases, the communication cost of
our DFMR without cache increases linearly while that with cache
increases sharply.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 54 / 67

Experiments

Superiority of the Cache Updating Module (RQ2)

For our DFMR with cache, its communication cost is higher than
MF FedAVG and FedGNN when the size of the dimension is
large. The reason is that the clients in the latter need to spend
some additional cost to receive the cache which is proportional to
the square of the dimension number.
The dimension number is often fixed and it is thus unnecessary to
set an especially large value. For example, we can learn a good
recommendation model when d = 32 in the experiments. In this
case, the communication costs sacrificed for the cache are
acceptable.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 55 / 67

Experiments

Comparing of the Space Overhead (RQ3)

Table: Space overhead (MB) of one round with different numbers of
dimensions on JD.

8 16 32 64 128 256

Server

MF 0.8218 1.6437 3.2874 6.5747 13.149 26.299
eALS 0.8223 1.6456 3.2952 6.6060 13.274 26.800
VALS 0.8240 1.6520 3.3196 6.7017 13.653 28.307
FedGNN 0.8218 1.6437 3.2874 6.5747 13.149 26.299
DCF 0.0262 0.0534 0.1108 0.2372 0.5369 1.3238
DFMR (w/ cache) 0.0283 0.0615 0.1425 0.3632 1.0388 3.3277
DFMR (w/o cache) 0.0257 0.0514 0.1027 0.2055 0.4109 0.8218

Client

MF 0.8219 1.6438 3.2876 6.5752 13.150 26.301
eALS 0.8224 1.6458 3.2954 6.6064 13.275 26.801
VALS 0.8230 1.6479 3.3035 6.6382 13.401 27.303
FedGNN 0.8219 1.6438 3.2876 6.5752 13.150 26.301
DCF 0.0134 0.0278 0.0594 0.1345 0.3315 0.9129
DFMR (w/ cache) 0.0147 0.0333 0.0824 0.2273 0.7045 2.4090
DFMR (w/o cache) 0.0128 0.0257 0.0514 0.1027 0.2055 0.4110

Yang et al. (SZU, HKUST) DFMR TOIS 2024 56 / 67

Experiments

Comparing of the Space Overhead (RQ3)

Table: Space overhead (MB) of one round with different numbers of
dimensions on Tmall.

8 16 32 64 128 256

Server

MF 0.9874 1.9747 3.9495 7.8989 15.798 31.596
eALS 0.9879 1.9767 3.9573 7.9302 15.923 32.096
VALS 0.9896 1.9830 3.9817 8.0259 16.302 33.604
FedGNN 0.9874 1.9747 3.9495 7.8989 15.798 31.596
DCF 0.0314 0.0638 0.1315 0.2786 0.6197 1.4893
DFMR (w/ cache) 0.0335 0.0718 0.1632 0.4046 1.1216 3.4932
DFMR (w/o cache) 0.0309 0.0617 0.1234 0.2468 0.4937 0.9874

Client

MF 0.9874 1.9749 3.9497 7.8994 15.799 31.598
eALS 0.9879 1.9768 3.9575 7.9307 15.924 32.098
VALS 0.9885 1.9789 3.9656 7.9624 16.050 32.600
FedGNN 0.9874 1.9749 3.9497 7.8994 15.799 31.598
DCF 0.0160 0.0329 0.0698 0.1552 0.3728 0.9957
DFMR (w/ cache) 0.0173 0.0385 0.0927 0.2479 0.7459 2.4918
DFMR (w/o cache) 0.0154 0.0309 0.0617 0.1234 0.2469 0.4937

Yang et al. (SZU, HKUST) DFMR TOIS 2024 57 / 67

Experiments

Comparing of the Space Overhead (RQ3)

Table: Space overhead (MB) of one round with different numbers of
dimensions on UB.

8 16 32 64 128 256

Server

MF 1.8889 3.7777 7.5554 15.111 30.222 60.443
eALS 1.8893 3.7797 7.5632 15.142 30.347 60.943
VALS 1.8911 3.7860 7.5876 15.238 30.726 62.451
FedGNN 1.8889 3.7777 7.5554 15.111 30.222 60.443
DCF 0.0596 0.1201 0.2442 0.5040 1.0704 2.3908
DFMR (w/ cache) 0.0617 0.1282 0.2759 0.6299 1.5724 4.3947
DFMR (w/o cache) 0.0590 0.1181 0.2362 0.4722 0.9444 1.8889

Client

MF 1.8899 3.7778 7.5557 15.111 30.223 60.445
eALS 1.8894 3.7798 7.5635 15.143 30.348 60.945
VALS 1.8900 3.7819 7.5716 15.174 30.474 62.447
FedGNN 1.8899 3.7778 7.5557 15.111 30.223 60.445
DCF 0.0301 0.0611 0.1261 0.2679 0.5982 1.4464
DFMR (w/ cache) 0.0314 0.0667 0.1491 0.3606 0.9713 2.9425
DFMR (w/o cache) 0.0295 0.0590 0.1181 0.2361 0.4722 0.9445

Yang et al. (SZU, HKUST) DFMR TOIS 2024 58 / 67

Experiments

Comparing of the Space Overhead (RQ3)

Table: Space overhead (MB) of one round with different numbers of
dimensions on ML10M.

8 16 32 64 128 256

Server

MF 0.2217 0.4435 0.8870 1.7739 3.5479 7.0957
eALS 0.2222 0.4454 0.8948 1.8052 3.6729 7.5957
VALS 0.2239 0.4518 0.9192 1.9009 4.0518 9.1035
FedGNN 0.2217 0.4435 0.8870 1.7739 3.5479 7.0957
DCF 0.0075 0.0159 0.0358 0.0872 0.2368 0.7237
DFMR (w/ cache) 0.0096 0.0240 0.0675 0.2132 0.7388 2.7276
DFMR (w/o cache) 0.0069 0.0139 0.0277 0.0554 0.1109 0.2217

Client

MF 0.2218 0.4436 0.8872 1.7744 3.5488 7.0977
eALS 0.2223 0.4456 0.8950 1.8057 3.6738 7.5977
VALS 0.2229 0.4477 0.9031 1.8374 3.7998 8.0996
FedGNN 0.2218 0.4436 0.8872 1.7744 3.5488 7.0977
DCF 0.0040 0.0090 0.0219 0.0595 0.1814 0.6129
DFMR (w/ cache) 0.0054 0.0146 0.0449 0.1522 0.5545 2.1090
DFMR (w/o cache) 0.0035 0.0069 0.0139 0.0277 0.0555 0.1109

Yang et al. (SZU, HKUST) DFMR TOIS 2024 59 / 67

Experiments

Comparing of the Space Overhead (RQ3)

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(a) Server

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(b) Client

Figure: Space overhead (MB) of the server and each client of one round with
different numbers of items on JD.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 60 / 67

Experiments

Comparing of the Space Overhead (RQ3)

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(a) Server

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(b) Client

Figure: Space overhead (MB) of the server and each client of one round with
different numbers of items on Tmall.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 61 / 67

Experiments

Comparing of the Space Overhead (RQ3)

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(a) Server

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(b) Client

Figure: Space overhead (MB) of the server and each client of one round with
different numbers of items on UB.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 62 / 67

Experiments

Comparing of the Space Overhead (RQ3)

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(a) Server

0 1 2 3 4 5 6 7
log2(n/1000)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ac

e
co

st
 (M

B)

DFMR_cache
DFMR

(b) Client

Figure: Space overhead (MB) of the server and each client of one round with
different numbers of items on ML10M.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 63 / 67

Experiments

Comparing of the Space Overhead (RQ3)

We have the following observations:
Taking MF and DFMR (w/o cache) as an example, we can see
that the discrete hashing techniques can compress the storage
space to 1.56% of the real-valued parameters when B = 64.
Similar to the experimental results for the communication cost, the
cache will bring some additional storage overhead.
Both lines gradually approach as the number of items increases.
Hence, the additional storage overhead can be ignored when the
number of items is large.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 64 / 67

Conclusions and Future Work

Conclusions

To ensure the basic business imperatives, we assume that the
purchase behaviors can be collected, and then propose a novel
framework called discrete federated multi-behavior
recommendation (DFMR).
We use discrete hashing techniques to binarize the user and item
vectors, which reduces the storage overhead significantly.
We design a global model updating module and a personal model
updating module to update the parameters.
We design a cache updating module to break through the
computational bottlenecks.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 65 / 67

Conclusions and Future Work

Future Work

We are interested in studying how to improve the accuracy of the
discrete hashing methods in federated recommendation.
We are also interested in extending our method to
privacy-preserving sequential recommendation with different
types of behaviors.
We are also interested in studying how to forget the private data
from the recommendation systems, which lies in the fields of
machine unlearning and federated unlearning.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 66 / 67

Conclusions and Future Work

Thank you!

We thank the handling editors and reviewers for their effort and
constructive expert comments, and the support of National Natural
Science Foundation of China (Nos. 62172283 and 62272315),
Guangdong Basic and Applied Basic Research Foundation (Grant
No. 2024A1515010122) and National Key Research and
Development Program of China (Grant No. 2023YFF0725100).
We thank Ms. Qianzhen Rao and Mr. Yang Liu for their data
preprocessing scripts and Dr. Dugang Liu for his helpful
discussions.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 67 / 67

Reference

Ding, J., Yu, G., He, X., Quan, Y., Li, Y., Chua, T., Jin, D., and Yu, J. (2018).
Improving implicit recommender systems with view data.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages 3343–3349.

Farsa, D. Z. and Rahnamayan, S. (2020).
Discrete coordinate descent (DCD).
In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics, pages 184–190.

Han, J., Ma, Y., Mei, Q., and Liu, X. (2021).
DeepRec: On-device deep learning for privacy-preserving sequential recommendation in mobile commerce.
In Proceedings of the Web Conference 2021, pages 900–911.

He, X., Zhang, H., Kan, M., and Chua, T. (2016).
Fast matrix factorization for online recommendation with implicit feedback.
In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval,
pages 549–558. ACM.

Johnson and C, C. (2014).
Logistic matrix factorization for implicit feedback data.
Advances in Neural Information Processing Systems, 27(78):1–9.

Lin, Z., Pan, W., Yang, Q., and Ming, Z. (2022).
A generic federated recommendation framework via fake marks and secret sharing.
ACM Transactions on Information Systems, 41(2):1–37.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54, pages 1273–1282.

Selek, I., Vasara, J., and Ikonen, E. (2022).
Generalized orthogonalization: A unified framework for gram-schmidt orthogonalization, SVD and PCA.
In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics, pages 1754–1759.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 67 / 67

Reference

Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., and Xie, X. (2022).
A federated graph neural network framework for privacy-preserving personalization.
Nature Communications, 13(1):3091.

Zhang, H., Luo, F., Wu, J., He, X., and Li, Y. (2022).
LightFR: Lightweight federated recommendation with privacy-preserving matrix factorization.
ACM Transactions on Information Systems.

Zhang, H., Shen, F., Liu, W., He, X., Luan, H., and Chua, T. (2016).
Discrete collaborative filtering.
In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval,
pages 325–334.

Yang et al. (SZU, HKUST) DFMR TOIS 2024 67 / 67

	Introduction
	Methods
	
	Algorithmic Analysis
	Experiments
	Conclusions and Future Work
	Reference

