
Self-Attentive Sequential Recommendation

Jing Lin (revised by Weike Pan)

College of Computer Science and Software Engineering
Shenzhen University

Reference: Self-Attentive Sequential Recommendation (ICDM 2018)
by Wang-Cheng Kang and Julian J. McAuley

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 1 / 20

Introduction

Problem Definition

1

5

7

4

2

3

6

8

9

B

A

C

(a) general recommendation

1 5 74 23

A

6

B

89

C

(b) sequential recommendation

Sequential Recommendation (Next-Item Recommendation)

Input: (u,Su), i.e., a sequence of items for each user u, where u ∈ U
and Su = {su

1 , s
u
2 , . . . , s

u
|Su |}, s

u
· ∈ I.

Goal: 1) Predict the preference of user u to item i at the (` + 1)th time
step, i.e., r̂u

`+1,i , where i ∈ I\Su and ` ∈ {1, . . . , |Su|}. 2) Provide a top-N
recommendation list for each user u, in which we expect the real next
interacted item su

|Su |+1 to appear and be ranked as high as possible.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 2 / 20

Introduction

Notations (1/2)

Table: Some notations.

U the whole set of users
I the whole set of items
u ∈ U user ID
i ∈ I item ID
Su ⊆ I a set/sequence of items that have been interacted by user u
su
` ∈ Su the `th item interacted by user u

r̂u
`+1,i predicted preference of user u to item i at the (`+ 1)th time step

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 3 / 20

Introduction

Notations (2/2)

Table: Some notations (cont.).

L ∈ N maximum sequence length
d ∈ N latent vector dimensionality
B ∈ N number of self-attention blocks
M ∈ R|I|×d learnable item embedding matrix
P ∈ RL×d learnable position embedding matrix
F (0) ∈ RL×d input embedding matrix for the first self-attention block (SAB)
F (b) ∈ RL×d output embedding matrix of the bth SAB, b ≥ 1

Note that we use capital letters in bold to denote matrices and their lowercase
form to denote the corresponding row vectors.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 4 / 20

Method

Illustration

s1
u

s2
u

s3
u

s4
u

FFN

SAL

FFN

FFN

F
 (0) F

 (B)

Item Sequence Next Items

Input

Embedding

Layer

Self-Attention

Layer

Point-Wise

Feed-Forward

Network

Prediction

Layer

Self-Attention Block

(can stack more)

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 5 / 20

Method

Input Embedding Layer

We fix the input sequence of each user u by extracting his/her latest
L behaviors, which is abbreviated as Su = {su

1 , s
u
2 , . . . , s

u
L}. Note

that padding items are appended at the beginning of the sequences
if they are too short.
The input embedding matrix F (0) ∈ RL×d of Su to be fed into the
self-attention network, i.e., the first self-attention block (SAB), is as
follows,

F (0) =


msu

1
+ p1

msu
2
+ p2

. . .
msu

L
+ pL

 , (1)

where msu
`
∈ R1×d , ` ∈ {1,2, . . . ,L} is the learnable item embed-

ding of item su
` at the `th step of the sequence Su, and p` ∈ R1×d

is the learnable position embedding at the `th step shared by all
sequences.
J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 6 / 20

Method

Self-Attention Layer (1/2)

With an input embedding matrix denoted as X ∈ RL×d , a self-
attention layer (SAL) is defined as follows,

SAL(X) = softmax(
QK T
√

d
)∆ · V , (2)

where Q = XW Q, K = XW K and V = XW V with W Q,W K ,W V ∈
Rd×d are the projected query, key and value matrices, respectively,
to improve the flexibility, and ∆ is a unit lower triangular matrix
of size L × L, which represents the causality mask to prevent the
transitions from the future.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 7 / 20

Method

Self-Attention Layer (2/2)

For better propagating the low-layer features and stabilizing, we
adopt the residual connection and layer normalization after each
sub-layer in an SAB. Specifically, for a self-attention layer, we have

X ′ = SALcon(X) = LayerNorm(X + Dropout(SAL(X))), (3)

where for each row vector x ∈ R1×d in the matrix X ∈ RL×d

LayerNorm(x) = α⊗ x − µ√
σ2 + ε

+ β, (4)

where ⊗ denotes the element-wise product operation, µ ∈ R and
σ ∈ R are the mean and variance of x , α ∈ R1×d and β ∈ R1×d

are the scaling factors and biases to be learned [Ba et al., 2016].

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 8 / 20

Method

Point-Wise Feed-Forward Network

With an input embedding matrix denoted as X ′ ∈ RL×d , a point-
wise feed-forward network (FNN) is defined as follows,

FFN(X ′) = ReLU(X ′W 1 + 1T b1)W 2 + 1T b2, (5)

where W 1,W 2 ∈ Rd×d and b1,b2 ∈ R1×d are weights and biases
to be learned, and 1 is a row vector of ones of size 1× L.
Note that unlike in the SAL, the correlations among different time
steps is no longer considered. And the FNN can also be viewed
as two convolutions with kernel size 1 applied on each of the row
vectors.
Similarly, we append a connection layer at the end of a feed-forward
network as follows,

FFNcon(X ′) = LayerNorm(X ′ + Dropout(FFN(X ′))). (6)

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 9 / 20

Method

Stacking Self-Attention Blocks (1/2)

Note that in our implementation, we use a connection layer as that
in [Vaswani et al., 2017], i.e.,

gcon(X) = LayerNorm(X + Dropout(g(X))), (7)

where g(·) can be SAL(·) or FNN(·) in the previous pages.
Actually, a dropout and normalization layer is also appended at the
end of the input embedding layer, (i.e., before it is fed into the sefl-
attention network),

F (0) ← LayerNorm(Dropout(F (0))). (8)

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 10 / 20

Method

Stacking Self-Attention Blocks (2/2)

We obtain the output embedding matrix F (b) ∈ RL×d of the bth
self-attention block as follows,

F (b) = SAB(b)(F (b−1)) (9)

= FFN(b)
con(SAL(b)

con(F
(b−1))), b ∈ {1,2, . . . ,B}. (10)

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 11 / 20

Method

Prediction Layer

We predict the preference of user u to item i at the (` + 1)th time
step based on the output vector f (B)

` ∈ R1×d from the self-attention
network as follows,

r̂u
`+1,i = f (B)

` mi
T . (11)

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 12 / 20

Method

Network Training

We train SASRec by minimizing the binary cross-entropy loss with
the Adam optimizer. The loss function is as follows:

L = −
∑
u∈U

L−1∑
`=1

δ(su
`+1)[log(σ(ru

`+1,su
`+1

)) + log(1− σ(ru
`+1,j))], (12)

where j ∈ I\Su is a negative item randomly sampled for each pre-
diction. The indicator function δ(su

`+1) = 1 only if su
`+1 is not a

padding item, otherwise 0.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 13 / 20

Experiments

Datasets
We follow [Kang and McAuley, 2018] and use Steam in the experiments. We
preprocess the dataset as follows:

1 We treat the presence of the review behaviors as positive feedback and
order them by the timestamps.

2 We discard later duplicated user-item pairs in order to predict new items.

3 We successively discard items and users with fewer than 5 records to main-
tain sequentiality.

4 We adopt the leave-one-out evaluation by splitting the dataset into three
parts, i.e., the last interaction of each user for test, the penultimate one
for validation and the rest for training. Note that during testing, the input
sequences contain training actions and the validation action. Note that cold-
start items in the test and validation data are also removed.

Dataset # Users # Items # Interactions Avg. Length Density
Steam 281,428 13,044 3,488,899 12.40 0.10%

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 14 / 20

Experiments

Evaluation Metrics

Rec@10
NDCG@10
To reduce computation, we follow [Kang and McAuley, 2018] and
prearrange a candidate list with 100 randomly sampled un-interacted
items for each user according to item popularity.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 15 / 20

Experiments

Baselines

Four matrix factorization (MF) based methods:
BPRMF [Rendle et al., 2009].
FISM [Kabbur et al., 2013].
FPMC [Rendle et al., 2010].
Fossil [He and McAuley, 2016].

Two deep learning (DL) based methods:
GRU4Rec+ [Hidasi and Karatzoglou, 2018]. An RNN-based model.
Caser [Tang and Wang, 2018]. A CNN-based model.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 16 / 20

Experiments

Implementation Details (1/2)

We implement the MF-based models with the codes provided by
[He and McAuley, 2016] for the research of Fossil1, and run the DL-
based methods GRU4Rec+2 and Caser3 with the codes released
by the authors of the original papers.
We implement SASRec with the code for FISSA4 [Lin et al., 2020],
which is based on python 3.5+ and TensorFlow 1.2.1+.

1https://cseweb.ucsd.edu/˜jmcauley/
2https://github.com/hidasib/GRU4Rec
3https://github.com/graytowne/caser_pytorch
4http://csse.szu.edu.cn/staff/panwk/publications/FISSA/

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 17 / 20

https://cseweb.ucsd.edu/~jmcauley/
https://github.com/hidasib/GRU4Rec
https://github.com/graytowne/caser_pytorch
http://csse.szu.edu.cn/staff/panwk/publications/FISSA/

Experiments

Implementation Details (2/2)

For fair comparison, we fix the item embedding dimensionality d =
50 in all models. Other key parameters such as the MC orders
(∈ {1,2, . . . ,9} for Fossil and Caser), negative sampling numbers
(2048 for GRU4Rec+), filter sizes (4 and 16 for the vertical and hor-
izontal filters, respectively in Caser) and so on are all tuned on the
validation data according to the suggestions in the corresponding
papers.
For SASRec, we set the sequence length L to 50, the batch size
to 128, the learning rate to 0.001 and the dropout rate to 0.5, and
use single-head self-attention layers. The number of blocks B is
searched from {1,2,3}.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 18 / 20

Experiments

Results

Table: Recommendation performance of SASRec and six baselines on Steam.

Metric
MF-based DL-based

BPRMF FISM FPMC Fossil GRU4Rec+ Caser SASRec
Rec@10 0.1023 0.3183 0.1735 0.2926 0.3177 0.2686 0.3886
NDCG@10 0.0468 0.1703 0.0849 0.1546 0.1707 0.1342 0.2144

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 19 / 20

Conclusions

Conclusions

The self-attention based sequential model is effective.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 20 / 20

References

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016).
Layer normalization.

He, R. and McAuley, J. (2016).
Fusing similarity models with Markov chains for sparse sequential recommendation.
In Proceedings of the 16th IEEE International Conference on Data Mining, ICDM ’16, pages 191–200.

Hidasi, B. and Karatzoglou, A. (2018).
Recurrent neural networks with top-k gains for session-based recommendations.
In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pages
843–852.

Kabbur, S., Ning, X., and Karypis, G. (2013).
FISM: Factored item similarity models for top-N recommender systems.
In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13,
pages 659–667.

Kang, W. and McAuley, J. J. (2018).
Self-attentive sequential recommendation.
In Proceedings of the 18th IEEE International Conference on Data Mining, ICDM ’18, pages 197–206.

Lin, J., Pan, W., and Ming, Z. (2020).
FISSA: Fusing item similarity models with self-attention networks for sequential recommendation.
In Proceedings of the 14th ACM Conference on Recommender Systems, RecSys ’20, pages 130–139.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009).
BPR: Bayesian personalized ranking from implicit feedback.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452–461.

Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010).
Factorizing personalized Markov chains for next-basket recommendation.
In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pages 811–820.

Tang, J. and Wang, K. (2018).

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 20 / 20

References

Personalized top-N sequential recommendation via convolutional sequence embedding.
In Proceedings of the 11th ACM International Conference on Web Search and Data Mining, WSDM ’18, pages 565–573.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS ’17, pages 6000–
6010.

J. Lin (CSSE, SZU) SASRec [Kang and McAuley, 2018] 20 / 20

	Introduction
	Method
	Experiments
	Conclusions
	References

