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There has been an increasing trend to apply Multi-Task Learning (MTL) in RS to model the multiple
aspects of user satisfaction or engagement simultaneously. And in fact, it has been the mainstream
approach in major industry applications.

However, MTL models often suffer from performance degeneration with negative transfer due to the
complex and competing task correlation in real-world recommender systems.

— Tasks in real-world recommender systems are often loosely correlated or even conflicted, which
may lead to performance deterioration.

It is critical to design a more powerful and efficient model to handle complicated correlations and
eliminate the challenging seesaw phenomenon.

— Existing MTL models often improve some tasks at the sacrifice of the performance of others,
when task correlation is complex and sometimes sample dependent, i.e., multiple tasks could
not be improved simultaneously compared to the corresponding single-task model.
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o MR |AAL: %43 (multi-task learning)
Build a single model that learns multiple goals and tasks simultaneously

o A 4 H: Progressive Layered Extraction (PLE)
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Multi-gate Mixture-of-Experts (MMoE)



Single-Level MTL Models
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Multi-Level MTL Models
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Customized Gate Control (CGC) Model (1/2)
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Customized Gate Control (CGC) Model (2/2)

Shared experts and task-specific experts are
combined through a gating network for
selective fusion

1.e., the outputs of experts. More precisely, the output of task k’s
gating network is formulated as:

g" (x) = wE()s* (). @)
where x is the input representation, and wX (x) is a weighting func-

tion to calculate the weight vector of task k through linear trans-
formation and a SoftMax layer:

w (x) = Softmax(W}, x), (3)

where ng e R(mi+ms)xd g o parameter matrix, mg and mj. are the

number of shared experts and task k’s specific experts respectively,
d is the dimension of input representation. S (x) is a selected matrix
composed of all selected vectors including shared experts and task
k’s specific experts:

k T T
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Finally, the prediction of task k is:
y*(x) = 5(g" (). 5)

where tX denotes the tower network of task k.



Progressive Layered Extraction (PLE) Model

Parameters of different tasks are separated
progressively in upper layers

Parameters of different tasks are NOT fully
separated in the early layer
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FEEKE:
— Explicitly separates shared components and task-specific components to alleviate harmful
parameter interference between common and task-specific knowledge

— Adopts a progressive routing mechanism to extract and separate deeper semantic knowledge
from lower-layer experts and separate task-specific parameters in higher levels gradually

— Introduces multi-level experts and gating networks

F B & ;. With multi-level experts and gating networks, PLE extracts and combines deeper
semantic representations for each task to improve generalization.
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