Recommendation with Sequences of Micro Behaviors

Mingkai He (revised by Weike Pan)

College of Computer Science and Software Engineering
Shenzhen University

Sequential Heterogeneous One-Class Collaborative Filtering (SHOCCF)

- **Input:** A historical heterogeneous sequence
 \[S_u = \{(i_{u}^{t-L+1}, f_{u}^{t-L+1}), \ldots, (i_{u}^{\ell}, f_{u}^{\ell}), \ldots, (i_{u}^{t}, f_{u}^{t})\}, \]
 where \((i_{u}^{t}, f_{u}^{t})\) denotes the (item, behavior) pair at timestamp \(t\) w.r.t. user \(u\).

- **Goal:** Predict the next likely-to-purchase item \(i\) of a user \(u\) from \(\mathcal{I}\) at timestamp \(t + 1\).
Main Idea

- Recommendation with sequences of micro behaviors (RIB)
 - An input layer that concatenates item embedding and behavior embedding
 - A GRU layer that obtains the sequential information
 - An attention layer that simulates the effects of different micro-behaviors in the sequence on recommendation
Table: Some notations and explanations.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{U}</td>
<td>the whole set of users</td>
</tr>
<tr>
<td>\mathcal{I}</td>
<td>the whole set of items</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>the whole set of feedback (or behaviors)</td>
</tr>
<tr>
<td>$u \in \mathcal{U}$</td>
<td>user ID</td>
</tr>
<tr>
<td>$i \in \mathcal{I}$</td>
<td>item ID</td>
</tr>
<tr>
<td>$f \in \mathcal{F}$</td>
<td>behavior ID</td>
</tr>
<tr>
<td>\mathcal{S}_u</td>
<td>the sequence of (item, behavior) pairs that user u has interacted with</td>
</tr>
<tr>
<td>$i^t_u \in \mathcal{I}$</td>
<td>the item interacted by user u at timestamp t</td>
</tr>
<tr>
<td>$f^t_u \in \mathcal{F}$</td>
<td>the behavior of user u at timestamp t</td>
</tr>
</tbody>
</table>
Table: Some notations and explanations (cont.).

<table>
<thead>
<tr>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_i \in \mathbb{R}^{d \times 1}$</td>
<td>the embedding of item i</td>
</tr>
<tr>
<td>$F_f \in \mathbb{R}^{d \times 1}$</td>
<td>the embedding of behavior f</td>
</tr>
<tr>
<td>$\hat{r}_{t+1,j}$</td>
<td>the preference score on item j at timestamp $t + 1$</td>
</tr>
</tbody>
</table>
Recommendation with sequences of micro behaviors (RIB)

Figure: The network architecture of RIB. Firstly, we obtain a feature vector with item embedding and behavior embedding by the input layer. Secondly, we use a GRU layer to capture the sequential information. Thirdly, we use an attention layer to simulate the effects of different micro-behaviors on recommendation. Finally, we use an output layer to aggregate the feature of each timestamp to obtain a representation of the heterogeneous sequence.
For each item i_u^t and the corresponding behavior f_u^t of user u in a heterogeneous sequence S_u, we use a concatenate operation to obtain the feature e_t:

$$e_t = concatenate(V_{i_u^t}, F_{f_u^t})$$ \hspace{1cm} (1)

where $V_{i_u^t} \in \mathbb{R}^{d \times 1}$ and $F_{f_u^t} \in \mathbb{R}^{d \times 1}$ denotes the embedding of item i_u^t and behavior f_u^t, respectively.

RIB distinguishes different types of behaviors by adding the behavior information to the input of GRU.
At timestamp t, GRU [Hidasi and Karatzoglou, 2018] takes e_t and the hidden state h_{t-1} of timestamp $t-1$ as input, and output the current hidden state h_t:

$$r_t = \sigma(W_{er}e_t + W_{hr}h_{t-1})$$ \hspace{1cm} (2)
$$z_t = \sigma(W_{ez}e_t + W_{hz}h_{t-1})$$ \hspace{1cm} (3)
$$c_t = \tanh(W_{ec}e_t + W_{hc}(r_th_{t-1}))$$ \hspace{1cm} (4)
$$h_t = (1 - z_t)h_{t-1} + z_tc_t$$ \hspace{1cm} (5)

where $W_{er}, W_{ez}, W_{ec} \in \mathbb{R}^{d \times 2d}$ and $W_{hr}, W_{hz}, W_{hc} \in \mathbb{R}^{d \times d}$ are the trainable parameters of GRU. σ and \tanh denote the sigmoid activation function and the tanh activation function, respectively. $r_t \in \mathbb{R}^{d \times 1}$ is the output of the reset gate, $z_t \in \mathbb{R}^{d \times 1}$ is the output of the update gate, $c_t \in \mathbb{R}^{d \times 1}$ is the output of the memory cell, and $h_t \in \mathbb{R}^{d \times 1}$ is the hidden state of timestamp t.

Attention Layer

In order to assign appropriate weight to the hidden state at each timestamp, we use an attention layer to simulate the different effects of different micro-behaviors in the sequence on recommendation:

\[M_t = \tanh(W_m h_t + b_m) \] \hspace{1cm} (6)

\[\alpha_t = \text{softmax}(W_\alpha M_t + b_\alpha) \] \hspace{1cm} (7)

where \(W_m \in \mathbb{R}^{d \times d} \), \(b_m \in \mathbb{R}^{d \times 1} \), \(M_t \in \mathbb{R}^{d \times 1} \), \(W_\alpha \in \mathbb{R}^{d \times d} \) and \(b_\alpha \in \mathbb{R}^{d \times 1} \) are the trainable parameters of the attention layer.

There are two aspects of the importance of the attention layer. Firstly, it simulates the different effects of different micro-behaviors in the sequence on recommendation. Secondly, the attention-based algorithm has better interpretability.
Output Layer

- We use a weighted summation to aggregate the feature of each timestamp, and then get the output vector h_{RIB}:

$$h_{RIB} = \frac{1}{|S_u|} \sum_{t=1}^{|S_u|} \alpha_t h_t$$ \hspace{1cm} (8)

- Finally, we can use a fully connected layer to get the prediction score for each item:

$$\hat{r} = \text{softmax}(W_{RIB}h_{RIB} + b_{RIB})$$ \hspace{1cm} (9)

where $W_{RIB} \in \mathbb{R}^{|I| \times d}$ and $b_{RIB} \in \mathbb{R}^{|I| \times 1}$ are trainable parameters.
Loss Function

The objective function of RIB with the commonly used cross-entropy loss function is as follows:

$$\mathcal{L} = - \sum_{s \in S} \sum_{j \in I} y_{sj} \log(\hat{r}_{t+1,j}) + (1 - y_{sj}) \log(1 - \hat{r}_{t+1,j})$$ \hspace{1cm} (10)

where $y_{sj} = 1$ only if item j is the real interacted item of the sequence s at timestamp $t + 1$, and $y_{sj} = 0$ otherwise.
Methods

Dataset

We preprocess the ML1M dataset as follows: 1) we keep the (user, item) pairs with a rating value equal to 5 as the purchase behaviors, and the rest as the examination behaviors; 2) we discard later duplicated (user, item, behavior) triples in a sequence; 3) we discard unpopular items that are purchased fewer than 5 times; 4) we remove a sequence in which the number of purchases is smaller than 5; and 5) for each interaction sequence, we take the last two purchases as the validation data and the test data, and the remaining as the training data.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Users</th>
<th># Items</th>
<th># Examinations</th>
<th># Purchases</th>
<th>Avg. Length</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML1M</td>
<td>5,645</td>
<td>2,357</td>
<td>628,892</td>
<td>223,305</td>
<td>150.96</td>
<td>6.41%</td>
</tr>
</tbody>
</table>

Table: Statistics of the processed dataset used in the experiments.
We evaluate the top-k recommendation performance via two commonly used ranking-oriented metrics, i.e., hit ratio (HR@10) and normalized discounted cumulative gain (NDCG@10). HR@k represents the hit ratio of a user’s target item in the recommended top-k items, which is used to measure the accuracy of the recommendation algorithm, while NDCG@k is more concerned about the ranking position of the user’s preferred target item in the top-k recommendation list.
For RIB, we set the embedding size as 64, the sequence length L as 50, the batch size as 128, the learning rate as 0.001 and the dropout rate as 0.2.
Extension of RIB: RIB++

Figure: The network architecture of RIB++ [Zhuoxin Zhan and Ming,]. We use $\text{trans}(f^t_u, f^{t+1}_u) \in \mathbb{R}^{d \times 1}$ to represent the transition between the current behavior f^t_u and the next behavior f^{t+1}_u, and then add it to the $F^t_{f_u}$. There are four types of transitions in our experiments, i.e., e2e, e2p, p2e and p2p.
Table: Recommendation performance of RIB and RIB++ on ML1M.

<table>
<thead>
<tr>
<th>Method</th>
<th>ML1M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@10</td>
</tr>
<tr>
<td>RIB</td>
<td>0.1302</td>
</tr>
<tr>
<td>RIB++</td>
<td>0.1461</td>
</tr>
</tbody>
</table>
By adding the behavior embedding to the input of the RNN-based method, it can be applied to SHOCCF with different types of behaviors.
Recurrent neural networks with top-k gains for session-based recommendations.

Micro behaviors: A new perspective in e-commerce recommender systems.

Zhuoxin Zhan, Mingkai He, W. P. and Ming, Z.
Transrec++: Translation-based sequential recommendation with heterogeneous feedback.
In *Frontiers of Computer Science, accepted on October 18, 2021.*