
Effective Malware Detection based on Behaviour
and Data Features

Zhiwu Xu, Cheng Wen, Shengchao Qin, and Zhong Ming

College of Computer Science and Software Engineering, Shenzhen University, China
{xuzhiwu,sqin,mingz}@szu.edu.cn, 2150230509@email.szu.edu.cn

Abstract. Malware is one of the most serious security threats on the
Internet today. Traditional detection methods become ineffective as mal-
ware continues to evolve. Recently, various machine learning approaches
have been proposed for detecting malware. However, either they focused
on behaviour information, leaving the data information out of consider-
ation, or they did not consider too much about the new malware with
different behaviours or new malware versions obtained by obfuscation
techniques. In this paper, we propose an effective approach for malware
detection using machine learning. Different from most existing work, we
take into account not only the behaviour information but also the data
information, namely, the opcodes, data types and system libraries used in
executables. We employ various machine learning methods in our imple-
mentation. Several experiments are conducted to evaluate our approach.
The results show that (1) the classifier trained by Random Forest per-
forms best with the accuracy 0.9788 and the AUC 0.9959; (2) all the
features (including data types) are effective for malware detection; (3)
our classifier is capable of detecting some fresh malware; (4) our classifier
has a resistance to some obfuscation techniques.

1 Introduction

Malware, or malicious software is a generic term that encompasses viruses, tro-
jans, spywares and other intrusive codes. They are spreading all over the world
through the Internet and are increasing day by day, thus becoming a serious
threat. According to the recent report from McAfee [1], one of the world’s leading
independent cybersecurity companies, there are more than 650 million malware
samples detected in Q1, 2017, in which more than 30 million ones are new. So
the detection of malware is of major concern to both the anti-malware industry
and researchers.

To protect legitimate users from these threats, anti-malware software prod-
ucts from different companies provide the major defence against malware, such
as Comodo, McAfee, Kaspersky, Kingsoft, and Symantec, wherein the signature-
based method is employed. However, this method can be easily evaded by mal-
ware writers through the evasion techniques such as packing, variable-renaming,
and polymorphism [2]. To overcome the limitation of the signature-based method,
heuristic-based approaches are proposed, aiming to identify the malicious be-
haviour patterns, through either static analysis or dynamic analysis. But the



increasing number of malware samples makes this method no longer effective.
Recently, various machine learning approaches like Support Vector Machine, De-
cision Tree and Naive Bayes have been proposed for detecting malware [3]. These
techniques rely on data sets that include several characteristic features for both
malware and benign software to build classification models to detect (unknown)
malware. Although these approaches can get a high accuracy (for the stationary
data sets), it is still not enough for malware detection. On one hand, most of
them focus on the behaviour features such as binary codes [4–6], opcodes [6–8]
and API calls [9–11], leaving the data information out of consideration. While
a few of them do consider the data information, but only simple features like
strings [12, 13] and file relations [14, 15]. On the other hand, as malware continues
to evolve, some new and unseen malware have different behaviours and features.
Even the obfuscation techniques can make malware difficult to detect. Hence,
more datasets and experiments are still needed to keep the detection effective.

In this paper, we propose an effective approach to detecting malware based
on machine learning. Different from most existing work, we take into account
not only the behaviour information but also the data information. Generally,
the behaviour information reflects what the software intends to behave, while
the data information indicates which datas the software intends to perform on
or how data are organised. Our approach tries to learn a classifier from existing
executables with known categories first, and then uses this classifier to detect
new, unseen executables. In detail, we take the opcodes, data types and system
libraries that are used in executables, which are collected through static analy-
sis, as representative features. As far as we know, our approach is the first one
to consider data types as features for malware detection. Moreover, in our im-
plementation, we employ various machine learning methods, such as K-Nearest
Neighbor, Native Bayes, Decision Tree, Random Forest, and Support Vector
Machine to train our classifier.

Several experiments are conducted to evaluate our approach. Firstly, we con-
ducted 10-fold cross validation experiments to see how well various machine
learning methods perform. We found that the classifier trained by Random For-
est performs best here, with the accuracy 0.9788 and the AUC 0.9959. Secondly,
we conducted experiments to illustrate that all the features are effective for mal-
ware detection. The results also show that in some case using type information is
better than using the other two. Thirdly, to test our approach’s ability to detect
genuinely new malware or new malware versions, we ran a time split experiment:
we used our classifier to detect the malware samples which are newer than the
ones in our data set. Our classifier can detect 81% of the fresh samples, which
indicates that our classifier is capable of detecting some fresh malware. The re-
sults also suggest that malware classifiers should be updated often with new
data or new features in order to maintain the classification accuracy. Finally,
one reason that makes malware detection difficult is that obfuscation techniques
can be used to evade the detection. So for that, we performed experiments to
test our approach’s ability to detect new malware samples that are obtained
by obfuscating the existing ones through some obfuscation tools. All the obfus-



cated malware samples can be detected by our classifier, demonstrating that our
classifier has a resistance to some obfuscation techniques.

The remainder of this paper is organised as follows. Section 2 presents the
related work. Section 3 describes our approach, and followed by the experimental
results in Section 4. Finally, Section 5 concludes.

2 Related Work

There have been lots of work on malware detection. Here we focus on some
recent related work based on machine learning. Interested readers can refer to
the surveys [3, 16] for more details.

Over the past decade, intelligent malware detection systems have been de-
veloped by applying machine learning techniques. Some approaches employ the
N-grams method to train a classifier based on the binary code content[4–6].
Rather surprisingly, a 1-gram model can distinguish malware from benign soft-
ware quite well for some data set. But these approaches can be evaded easily by
control-flow obfuscation. Some approaches [6–8] take the opcodes, which reflect
the behaviours of the software of interest quite well, as features to classify mal-
ware and benign software. Some other approaches consider API calls, intents,
permissions and commands as features [9–11], based on different classifiers. All
these works focus more on the behaviour information, while our current work
considers not only behaviour information but also data information.

There have been some research work that takes data information into ac-
count. Ye et al. [12] propose a malware detection approach based on interpretable
strings using SVM ensemble with bagging. Islam et al. [13] consider malware
classification based on integrated static and dynamic features, which includes
printable strings. Both Karampatziakis et al. [14] and Tamersoy et al. [15] pro-
pose the malware detection approach based on the file-to-file relation graphs.
More precisely, a file’s legitimacy can be inferred by analyzing its relations (co-
occurrences) with other labeled (either benign or malicious) peers. Clearly, both
the string information and the file relation are quite simple and not all malware
share the same information.

Some recent research work employ deep learning to help detect malware. Saxe
and Berlin [17] propose a deep neural network malware classifier that achieves
a usable detection rate at an extremely low false positive rate and scales to real
world training example volumes on commodity hardware. Hardy et al. [18] de-
velop a deep learning framework for intelligent malware detection based on API
calls. Ye et al. [19] propose a heterogeneous deep learning framework composed
of an AutoEncoder stacked up with multilayer restricted Boltzmann machines
and a layer of associative memory to detect new unknown malware. In addition,
concept drift is also borrowed into malware detection. Roberto et al. [20] propose
a fully tuneable classification system Transcend that can be tailored to be re-
silient against concept drift to varying degrees depending on user specifications.
Our approach employ several supervised machine-learning methods.



3 Approach

In this section, we first give a definition of our malware detection problem, then
present our approach.

The malware detection problem can be stated as follows: given a dataset
D = {(e1, c1), . . . , (em, cm)}, where ei ∈ E is an executable file, ci ∈ C =
{benign,malicious} is the corresponding actual category of ei which may be
unknown, and m is the number of executable files, the goal is to find a function
f : E → C such that ∀i ∈ {1, . . . ,m}. f(ei) ≈ ci.

Indeed, the goal is to find a classifier which classifies each executable file
as precise as possible. Our approach tries to learn a classifier from existing ex-
ecutables with known categories first, and then uses this classifier to predict
categories for new, unseen executables. Figure 1 shows the framework of our ap-
proach, which consists of two components, namely the feature extractor and the
malware classifier. The feature extractor extracts the feature information (i.e.,
opcodes, data types and system libraries) from the executables and represents
them as vectors. While the malware classifier is first trained from an available
dataset of executables with known categories by a supervised machine-learning
method, and then can be used to detect new, unseen executables. In the follow-
ing, we describe both components in more detail.

Fig. 1. the framework of our approach

3.1 Feature Extractor

This section presents the processing of the feature extractor, which consists of
the following steps: (1) decompilation, (2) information extraction, and (3) feature
selection and representation.

Decompilation. In this paper, we focus on the executables on Windows,
namely, exe files and dll files. An instruction or a datum in an executable file
can be represented as a series of binary codes, which are clearly not easy to read.
So the first step is to transform the binary codes into a readable intermediate
representation such as assembly codes by a decompilation tool.



Information Extraction. Next, the extractor parses the asm files decom-
piled from executables to extract the information, namely, opcodes, data types
and system libraries. Generally, the opcodes used in an executable represent its
intended behaviours, while the data types indicate the structures of the data it
may perform on. In addition, the imported system libraries, which reflect the
interaction between the executable and the system, are also considered. All such
information describes the possible mission of an executable in some sense, and
similar executables share the similar information.

The opcode information can be extracted either statically or dynamically.
Here we just collect and count the opcodes from an asm file instruction by
instruction, yielding an opcode list lopcode, which records the opcodes appearing
in the asm file and their corresponding times. For data type information, we first
discover the possible variables, including local and global ones, and recover their
types using BITY [21]. Then we do a statistical analysis on the recovered types,
wherein we just consider their data sizes for the composed types for simplicity,
yielding a type list ltype. The extraction of library information is similar to the
one of opcodes, yielding the library list llibrary.

Feature Selection and Representation. There may be too many different
terms in the collected lists from all the executables, and not all of them are of
interest. For example, push and mov are commonly used in both malware and
benign softwares. For that, the extractor creates a dictionary to keep record of
the interesting terms. Only the terms in this dictionary are reserved in the lists.
Take the opcode lists for example. The extractor performs a statistical analysis
on all the opcode lists from an available dataset, using TF-IDF to measure the
statistical dependence. Next the extractor selects the top k weight opcodes to
form an opcode dictionary, and then filters out the terms not in this dictionary
for each lopcode. The same applies to ltype and llibrary.

After that, the extractor builds a profile for each executable file by concate-
nating these three lists collected from its corresponding asm file, namely, the
executable is represented as a profile [lopcode, ltype, llibrary]. Assume that there
is a fixed order for all the features. Then a profile can be simplified as a vector
(x1, x2, ..., xn), where xi is the value of the i-th feature and n is the total number
of the feature. An example vector is shown in Figure 2.

3.2 Malware Classifier

In this section, we present the malware classifier. As mentioned before, we first
train our malware classifier from an available dataset of executables with known
categories by a supervised machine-learning method, and then use it detect new,
unseen executables.

Classifier Training. Now by our feature extractor, an executable e can be
represented as a vector x. Let X denote the feature space for all possible vectors,
D0 represent the available dataset with known categories, and 0 and 1 represent
benign and malicious respectively. Our training problem is to find a classifier
C : X → [0, 1] such that min Σ(x,c)∈D0

d(C(x)− c), where d denotes the distance
function. Clearly, there are many classifier algorithms to solve this problem, such



x =



9
1
5
...
2
3
0
2
...
0
1
...


⇐=

mov : 9
add : 1
lea : 5
...

 lopcode

bool : 2
int : 3
double : 0
16-bytes : 2
...

 ltype

USER32.dll : 0
KERNEL32.dll : 1
...

}
llibrary



profile

Fig. 2. Example for Vector Representation

as K-Nearest Neighbor, Native Bayes, Decision Tree, Random Forest, Support
Vector Machine, and SGD Classifier. In our implementation we have made all
these methods available, so users can select any one they like. Moreover, we have
also conducted some experiments with these algorithms and found out that the
classifier trained by Random Forest performs best here (more details will be
given in Section 4).

Malware Detection. Once it is trained, the classifier C can be used to
detect malware: returns the category as close as the classifier returns. Formally,
given an executable e and its feature vector x, the goal of the detection is to find
c ∈ C such that min d(C(x)− c).

4 Experiments

In this section, we conduct a series of experiments to evaluate our approach.
Firstly, we conduct a set of cross-validation experiments to evaluate how well
each classifier method performs based on the behaviour and data features. Mean-
while, we also measure the runtime for each classifier method. The runtime of
the feature extractor is measured as well. Secondly, based on each kind of fea-
ture we also conduct experiments to see their effectiveness. Thirdly, to test our
approach’s ability to detect genuinely new malware or new malware versions,
we also run a time split experiment. Finally, we conduct some experiments to
test our approach’s ability to detect new malware samples that are obtained by
obfuscating the existing ones. In addition, the first two experiments also give a
comparison of our method and most of existing methods, since most of existing
methods adopt various classifier methods, which are considered here, with only
behaviour features.

Our dataset consists of a malware dataset and a benign software dataset.
The malware dataset consists of the samples of the BIG 2015 Challenge [22] and
the samples before 2017 in theZoo aka Malware DB [23], with 11376 samples in
total; while the benign software dataset are collected from QIHU 360 software



company, which is the biggest Internet security company in China, with 8003
samples in total.

To quantitatively validate the experimental results, we use the performance
measures shown in Table 1. All our experiments are conducted in the environ-
ment: 64 Bit Windows 10 on an Intel (R) Core i5-4590 Processor (3.30GHz) with
8GB of RAM.

Table 1. Performance Measures in Malware Detection

Measure Description

True Positive (TP) Number of files correctly classified as malicious
True Negative (TN) Number of files correctly classified as benign
False Positive (FP) Number of files mistakenly classified as malicious
False Negative (FN) Number of files mistakenly classified as benign

Precision (PPV) TP / (TP+FP)
TP Rate (TPR) TP / (TP+FN)
FP Rate (FPR) FP / (TP+FN)
Accuracy (ACY) (TP+TN) / (TP+TN+FP+FN)

Cross Validation Experiments. To evaluate the performance of our ap-
proach, we conduct 10-fold cross validation experiments: in each experiment, we
randomly split our dataset into 10 equal folds; then for each fold, we train the
classifier model based on the data from the other folds (i.e., the training set),
and test the model on this fold (i.e., the testing set). The learning methods we
use in our experiments are listed as follows:

– K-Nearest Neighbour (KNN): experiments are performed under the range
k = 1, k = 3, k = 5, and k = 7.

– Native Bayes (NB): several structural learning algorithms, that is, Gaussian
Naive Bayes (GNB), Multinomial Naive Bayes (MNB), and Bernoulli Naive
Bayes (BNB) are used in our experiments.

– Decision Trees (DT): we use decision tree with two criteria, namely, “gini” for
the Gini impurity and “entropy” for the information gain. Random Forest
(RF) with 10 trees are used as well.

– Support Vector Machines (SVM): linear kernel, sigmoid kernel, and Radial
Basis Function based kernel (RBF) are used in our experiments, as well as
the linear models with stochastic gradient descent (SGD).

Table 2 shows the detailed results of the experiments and Figure 3 shows
some selected Receiver Operating Characteristic (ROC) curve. All the KNN clas-
sifiers and DT classifiers perform quite well, with an accuracy greater than 97%,
among which Random Forest with 10 entropy trees have produced the best re-
sult. Rather surprisingly, 1-KNN performs better than the other KNNs. While
all the NB classifiers perform a bit worse, with the accuracy from 66.38% to
82.79%. For SVN classifiers, most of them get an accuracy greater than 95%,
except for the one with sigmoid kernel whose accuracy is 85.80%. Concerning



ROC curve, most classifiers can produce much better classification results than
random classification results, except for Gaussian Naive Bayes with the Area Un-
der the ROC (AUC) 0.5931, which is just a little bit bigger than 0.5. Random
Forest with 10 entropy trees perform the best as well (with the AUC 0.9959).
One of the main reasons for Random Forest to outperform others is that it is an
ensemble learning method which may correct the Decision Trees’ habit of over-
fitting to the training set. In the future, some other ensemble learning methods
will be also considered.

Table 2. Results of Different Methods

Classifier PPV TPR FPR ACY Classifier PPV TPR FPR ACY

KNN K=1 0.9609 0.9830 0.0281 0.9764 KNN K=3 0.9572 0.9798 0.0307 0.9736
KNN K=5 0.9556 0.9763 0.0319 0.9715 KNN K=7 0.9556 0.9763 0.0319 0.9715
DT gini 0.9658 0.9797 0.0243 0.9773 DT entropy 0.9685 0.9787 0.0223 0.9781
RF gini 0.9678 0.9787 0.0228 0.9778 RF entropy 0.9692 0.9800 0.0218 0.9788
GNB 0.9381 0.1990 0.0092 0.6638 MNB 0.9494 0.6590 0.0247 0.8446
BNB 0.8726 0.6831 0.0701 0.8279 SVM linear 0.9581 0.9896 0.0304 0.9778
SVM rbf 0.9686 0.9119 0.0207 0.9514 SVM sigmoid 0.9671 0.7308 0.0232 0.8580
SGD 0.9582 0.9862 0.0302 0.9765

Runtime Performance. Meanwhile, we count the training times (the run-
time costed by building the classifier based on the training set) and the testing
time (the time needed by evaluating the testing set) in seconds for each cross
validation experiment. The results are shown in Table 3. In term of the training
time, SVM has been the worst for our data set (with time ranging from 150.022s
to 1303.607s), while Naive Bayes has been the best (with time ranging from
1.535s to 3.093s). Random Forest has also performed well on training, with time
between 3.791s and 4.115s. Concerning the testing time, KNN has been the worst
(due to its lazy learning), while Random Forest, Naive Bayes and SGD classifier
have performed quite well, with time small than 1s. Considering the accuracy,
ROC and the runtime, we suggest users to use the Random Forest classifier.

Table 3. Runtime for Various Classifiers

Classifier Training(s) Testing(s) Classifier Training(s) Testing(s)

KNN K=1 16.477 178.789 KNN K=3 16.369 199.474
KNN K=5 16.517 207.052 KNN K=7 16.238 210.557
DT gini 23.442 0.067 DT entropy 13.485 0.066
RF gini 4.115 0.086 RF entropy 3.791 0.077
GNB 3.093 0.480 MNB 1.535 0.035
BNB 1.826 0.828 SVM linear 150.022 14.494
SVM rbf 799.310 50.196 SVM sigmoid 1303.607 130.178
SGD 22.569 0.048



Fig. 3. ROC Curve of Different Methods

We have also evaluated how the feature extractor performs. For that we first
measure the total time needed by the decompilation tool IDA Pro to decompile
the executables. Our data set contains 19379 executables, with the total size of
250GB. It takes 15.6 hours to decompile all the files, with an average 0.22s/MB.
IDA Pro is a heavy-weight tool, so using a lightweight one might have improved
the time. Secondly, we measure the total time needed by extracting features from
the decompiled asm files. The sizes of asm files range from 142KB to 144.84MB,
with the total size of 182GB. It takes 10.5 hours to extract the features for all
the asm files, with an average 0.20s/MB. Both the decompilation time and the
extracting time are considered to be acceptable.

Feature Experiments. We have also conducted experiments based on each
kind of feature to see their effectiveness. For that, we conduct the same experi-
ments as above for each kind of feature. Table 4 gives the experimental results
and Figure 4 shows the corresponding ROC curves, where only the results of one
classifier are selected to present here for each kind of learning method.

From the results we can see that all the features are effective to help detect
malware, and using all of the features together has produced the best results,
with the average accuracy 0.9431 and the average AUC 0.9869. The opcode fea-
ture has performed better, with the accuracy 0.9339 and the AUC 0.9790 on
average, than the other two. The reason for this is that opcodes help describe
the intended behaviours of the software quite well. This also explains why most



Table 4. Results of Different Features

Feature Classifier PPV TPR FPR ACY AUC

Opcode

Naive Bayes 0.9492 0.6128 0.0230 0.8266 0.9455
KNN 0.9521 0.9777 0.0345 0.9705 0.9842

Random Forest 0.9595 0.9775 0.0290 0.9736 0.9947
SGD Classifier 0.9462 0.9701 0.0387 0.9649 0.9914

Average 0.9518 0.8840 0.0313 0.9339 0.9790

Library

Naive Bayes 0.8508 0.7705 0.0950 0.8494 0.9311
KNN 0.7439 0.9892 0.2395 0.8549 0.8878

Random Forest 0.9439 0.8328 0.0348 0.9105 0.9736
SGD Classifier 0.9401 0.8014 0.0358 0.8969 0.9661

Average 0.8711 0.8485 0.1004 0.8785 0.9397

Type

Naive Bayes 0.8346 0.1829 0.0254 0.6476 0.9020
KNN 0.8570 0.9735 0.1142 0.9219 0.9493

Random Forest 0.8751 0.9790 0.0982 0.9336 0.9741
SGD Classifier 0.8208 0.9427 0.1447 0.8913 0.9452

Average 0.8483 0.7701 0.0945 0.8496 0.9427

All

Naive Bayes 0.9494 0.6590 0.0247 0.8446 0.9710
KNN 0.9572 0.9798 0.0307 0.9736 0.9859

Random Forest 0.9678 0.9787 0.0228 0.9778 0.9959
SGD Classifier 0.9581 0.9858 0.0303 0.9763 0.9948

Average 0.9582 0.9008 0.0272 0.9431 0.9869

Fig. 4. ROC Curve of Different Features



existing work on malware detection employs the opcode feature. Using the op-
code feature alone seems to be enough for malware detection in most cases, but
the detection may evade easily by obfuscation techniques like adding unreach-
able codes. In some cases it is better to use the other two features and adding
them will improve the detection. So it is useful to also take the type and library
features into account. On average, the type feature has performed better than
the library feature in term of AUC, although the library feature has produced
slightly better results than the type feature with respect to accuracy. The results
also show that Random Forest has performed the best for each feature, which
is consistent with the above experiments. Note that, when Random Forest is
employed, using type feature can get the best TPR. The opcode and library
features have been used by lots of work in practice, so we believe that the type
feature, which is not considered by most of existing work, can benefit malware
detection as well in practice.

Time-Split Experiments. As Saxe and Berlin [17] point out, a shortcoming
of the standard cross validation experiments is that they do not separate the
ability to detect slightly modified malware from the ability to detect new malware
samples and new versions of existing malware samples. In this section, to test
our approach’s ability to detect genuinely new malware or new malware versions,
we ran a time split experiment. We first download the malware samples, which
were collected dated from January 2017 to July 2017, from the DAS MALWERK
website [24]. That is, all the malware samples are newer than the ones in our
data set. We then train a classifier based on our data set using Random Forest.
Finally, we use our classifier to detect these fresh malware samples.

Table 5. Results of Fresh Samples

Date Num RF Classifier Accuracy

July, 2017 12 6 0.500
June, 2017 61 29 0.475
May, 2017 87 76 0.874
April, 2017 31 28 0.903
March, 2017 48 42 0.875

February, 2017 69 61 0.884
January, 2017 56 53 0.946

Total 364 295 0.810

The experimental results are shown in Table 5. About 81% of the samples
can be detected by our classifier, which signifies that our approach can detect
some malware samples and new versions of existing malware samples. However,
the results also indicate that the classifier becomes ineffective as time passes. For
example, the results detected by our approach for the samples collected in June
and July are worse than random classification (the accuracies are not greater
than 0.5). This is due to the high degree of freedom for malware writer to pro-
duce new malware samples continuously. Consequently, most malware classifiers



become unsustainable in the long run, becoming rapidly antiquated as malware
continues to evolve. This suggests that malware classifiers should be updated
often with new data or new features in order to maintain the classification ac-
curacy.

Obfuscation Experiments. One thing that makes malware detection even
more difficult is that malware writers may use obfuscation techniques, such as
inserting NOP instructions, changing what registers to use, changing flow con-
trol with jumps, changing machine instructions to equivalent ones or reordering
independent instructions, to evade the detection. In this section, we report some
experiments to test our approach’s ability to detect new malware samples that
are obtained by obfuscating the existing ones.

The obfuscated malware samples are obtained as follows. Firstly, we use the
free version of the commercial tool Obfuscator [25], which only supports chang-
ing code execution flow, to obfuscate 50 malware samples, which are randomly
selected from our data set, yielding 50 new malware samples. Secondly, we use
the open source tool Unest to obfuscate 15 obj files, which are compiled from
malware samples in C source codes through VS 20101, by the following four
techniques, that is, (a) rewriting digital changes equivalently, (b) confusing the
output string, (c) pushing the target code segment into the stack and jumping
to it to confuse the target code, and (d) obfuscating the static libraries, yielding
60 new malware samples.

Table 6. Results of Obfuscated Malware Samples

Tools Number RF Classifier Accuracy

Obfuscator 50 50 100%

Unest 60 60 100%

We used our classifier trained by Random Forest to detect the newly gener-
ated malware samples. The results are presented in Table 6. The results show
that all the obfuscated malware samples have been detected by our classifier. This
indicates that our classifier has some resistance to some obfuscation techniques.
To change code execution flow, Obfuscator inserts lots of jump instructions. It
seems that the jump instructions may change the opcode feature, while the data
feature and the library feature are still the same. Indeed, jump is commonly used
in both malware and benign software. Therefore, this technique does not change
the features we use and thus cannot evade our detection. Similar to Obfuscator,
the techniques used in Unset make little changes on the features, thus cannot
evade our detection either. Nevertheless, the techniques used here is rather sim-
ple. The integration of more (sophisticated) techniques will be considered in the
future.

1 We are able to obfuscate only the obj files compiled from C codes through VS 2010.



5 Conclusion

In this work, we have proposed a malware detection approach using various ma-
chine learning methods based on the opcodes, data types and system libraries.
To evaluate the proposed approach, we have carried out some interesting ex-
periments. Through experiments, we have found that the classifier trained by
Random Forest outperforms others for our data set and all the features we have
adopted are effective for malware detection. The experimental results have also
demonstrated that our classifier is capable of detecting some fresh malware, and
has a resistance to some obfuscation techniques.

As for future work, we may consider some other meaningful features, includ-
ing static features and dynamic features, to improve the approach. We can em-
ploy the unsupervised machine learning methods or the deep learning methods
to train the classifiers. More experiments on malware anti-detecting techniques
are under consideration.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments. This work was partially supported by the National Natural Science Foun-
dation of China under Grants No. 61502308, 61373033 and 61672358, Science and
Technology Foundation of Shenzhen City under Grant No. JCYJ20170302153712968.

References

1. McAfee Labs Threats Report. June 2017.
2. Philippe Beaucamps and Eric Filiol. On the possibility of practically obfuscating

programs towards a unified perspective of code protection. Journal in Computer
Virology, 3(1):3–21, 2007.

3. Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. A survey on mal-
ware detection using data mining techniques. Acm Computing Surveys, 50(3):41,
2017.

4. Yuval Elovici, Asaf Shabtai, and Moskovitch. Applying machine learning tech-
niques for detection of malicious code in network traffic. In German Conference
on Advances in Artificial Intelligence, pages 44–50, 2007.

5. Mohammad M Masud, Latifur Khan, and Bhavani Thuraisingham. A scalable
multi-level feature extraction technique to detect malicious executables. Informa-
tion Systems Frontiers, 10(1):33–45, 2008.

6. Blake Anderson, Curtis Storlie, and Terran Lane. Improving malware classifica-
tion:bridging the static/dynamic gap. In ACM Workshop on Security and Artificial
Intelligence, pages 3–14, 2012.

7. Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. Automatic malware cate-
gorization using cluster ensemble. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2010.

8. Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Opcode se-
quences as representation of executables for data-mining-based unknown malware
detection. Information Sciences, 231(9):64–82, 2013.



9. Tzu Yen Wang, Shi Jinn Horng, Ming Yang Su, and Chin Hsiung Wu. A surveil-
lance spyware detection system based on data mining methods. In IEEE Interna-
tional Conference on Evolutionary Computation, pages 3236–3241, 2006.

10. Yanfang Ye, Dingding Wang, Tao Li, and Dongyi Ye. Imds: intelligent malware
detection system. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 1043–1047, 2007.

11. Yanfang Ye, Tao Li, Kai Huang, Qingshan Jiang, and Yong Chen. Hierarchical
associative classifier (hac) for malware detection from the large and imbalanced
gray list. Journal of Intelligent Information Systems, 35(1):1–20, 2009.

12. Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao.
Sbmds: an interpretable string based malware detection system using svm ensemble
with bagging. Journal in Computer Virology, 5(4):283, 2009.

13. Rafiqul Islam, Ronghua Tian, Steve Versteeg, and Steve Versteeg. Classification
of malware based on integrated static and dynamic features. Journal of Network
and Computer Applications, 36(2):646–656, 2013.

14. Nikos Karampatziakis, Jack W. Stokes, Anil Thomas, and Mady Marinescu. Using
File Relationships in Malware Classification. Springer Berlin Heidelberg, 2013.

15. Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. Guilt by association:
large scale malware detection by mining file-relation graphs. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2014.

16. Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin. Survey on representation
techniques for malware detection system. American Journal of Applied Sciences,
2017.

17. Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection
using two dimensional binary program features. In 2015 10th International Con-
ference on Malicious and Unwanted Software (MALWARE), pages 11–20, 2015.

18. William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. Dl4md: A
deep learning framework for intelligent malware detection. In Proceedings of the
International Conference on Data Mining, 2016.

19. Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, and Xin Li. Deepam: a het-
erogeneous deep learning framework for intelligent malware detection. Knowledge
and Information Systems, pages 1–21, 2017.

20. Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting concept drift in
malware classification models. In 26th USENIX Security Symposium (USENIX
Security 17), pages 625–642, 2017.

21. Zhiwu Xu, Cheng Wen, and Shengchao Qin. Learning Types for Binaries. In 19th
International Conference on Formal Engineering Methods, 2017.

22. Microsoft Malware Classification Challenge. https://www.kaggle.com/c/

malware-classification.
23. theZoo aka Malware DB. http://ytisf.github.io/theZoo/.
24. DAS MALWERK. http://dasmalwerk.eu/.
25. Obfuscator. https://www.pelock.com/products/obfuscator.


