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Deterministic regular expressions are a core part of XML Schema and used
in other applications. But unlike regular expressions, deterministic regular
expressions do not have a simple syntax, instead they are defined in a semantic
manner. Moreover, not every regular expression can be rewritten to an equivalent
deterministic regular expression. These properties of deterministic regular
expressions put a burden on the user to develop XML Schema Definitions and
to use deterministic regular expressions. In this paper, we propose a syntax for
deterministic standard regular expressions (DREGs), and prove that the syntax
of DREGs is context-free. Based on the context-free grammars for DREGs, we
further design a generator for DREGs, which can generate DREGs randomly, and
be used in applications associated with DREGs, e.g., benchmarking a validator
for DTD or XML Schema, and inclusion checking of DTD and XML Schema.
Experimental results demonstrate the efficiency and usefulness of the generator.
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1. INTRODUCTION

Deterministic regular expressions are a mystery to
users. They are a core part of XML Schema [1, 2]
and used in other applications (e.g., [3, 4]). However,
unlike regular expressions, they do not have a simple
syntax. Instead they are defined in a semantic manner,
which means that to check whether a regular expression
r is deterministic, we need to verify that for every
two words w1, w2 in the language L(r) represented by
the regular expression, whether w1 or w2 satisfy some
condition (see Definition 2.1). Moreover, deterministic
regular expressions are strictly less expressive than
regular expressions, i.e., not every regular expression
can be rewritten to an equivalent deterministic regular
expression. These put a burden on the user to develop
XML Schema Definitions (XSDs) and use deterministic
regular expressions. Deterministic regular expressions
have been studied in the literature, also under the
name of one-unambiguous regular expressions, e.g.,
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
Grammars for DREGs and their properties. In
this paper, we propose a syntax for deterministic stan-
dard regular expressions (we call deterministic regu-
lar expressions obtained from standard regular expres-
sions as deterministic standard regular expressions, de-
noted as DREGs) in terms of a set of parameters. We

show that the syntax of DREGs is context-free, i .e.,
the class of DREGs can be characterized by context-
free grammars. Although the syntax of regular expres-
sions is context-free, some proper subsets of regular ex-
pressions may not be context-free. For example, both
{anbncn | n ∈ N} and {abcn | n ∈ N} are proper
subsets of regular expressions, but they are context-
sensitive and regular respectively, where N represents
the set of all positive natural numbers.

Although there has been a lot of work on constructing
DREGs for users from different perspectives, e.g., [6,
9, 10, 12, 19, 20, 21, 22, 23], there does not exist any
simple syntax for DREGs. Such a syntax is important
for the applications using DREGs, e.g., benchmarking
a validator for DTD or XML Schema, and the inclusion
testing of DTD and XML Schema. In this paper, we will
consider how to give a context-free grammar generating
all DREGs over a given alphabet.

The construction of our syntax is achieved by building
inference systems for DREGs, which are then used
for giving grammars for DREGs. In detail, based on
properties given in [9, 10], we first obtain inference
systems for DREGs. Then, starting from the inference
systems, we construct grammars for DREGs in the
following manner: (1) each nonterminal symbol has a
set of parameters (e.g., a set S and a set R), intending to
describe the set of DREGs that satisfy these parameters
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(e.g., the First set is S and the followLast set is R);
and (2) each production satisfies a set of equations of
these parameters from left and right nonterminals. In
this way, we have actually defined a class of grammars,
and the grammars that we construct to characterize
the DREGs over the alphabets of the same size are
isomorphic.

We prove that the grammars exactly define DREGs,
and are context-free, which indicates that the syntax
of DREGs is context-free. Furthermore, by mapping
DREGs to the Dyck languages, we prove that the classes
of DREGs cannot be defined by regular grammars.

To effectively use the grammars, we further figure
out some necessary and sufficient conditions for valid
productions (see Section 2 for its definition), which can
significantly reduce the number of valid productions in
the grammars. For example, by using these conditions,
the number of productions for the alphabet size 3 drops
from 43698 to 14904, which indicates that optimizations
are quite useful for the context-free grammars for
DREGs.
The automatic generation of DREGs. Next,
we consider how to facilitate the use of DREGs with
the help of the context-free grammars for DREGs.
Here we consider the automatic generation of DREGs.
Automatic generation of DREGs can be used in
many applications such as the testing, experiments
of programs having input of DREG types, data
experiments needed plenty of DREG sentences, and
synthetic benchmark for programs that work with
DTDs or XML Schema. For example, suppose that
we want to benchmark a validator for DTD or XML
Schema. To this end, we can generate a set of schemas,
and then automatically generate XML documents in the
languages of these schemas using the work from [24].
Using these schemas and documents, we can test the
scalability of the validator by increasing the sizes of the
schemas and XML documents. Because of lacking of a
simple syntax for DREGs before, one possible way to
generate test cases is as follows: first use a sentence
generator for regular expressions, then decide whether
the generated expressions are deterministic. Due to the
fact that the ratio of DREGs in regular expressions
is quite small (e.g., the ratio of DREGs is less than
1% for regular expressions of size 50 with alphabet
size 40 [9]), within a certain period of time the user
may not be able to obtain enough DREG sentences as
needed. Furthermore, if the user also has requirements
on the structure of DREGs, such as sizes of DREGs,
the generation will be more difficult.

Based on the context-free grammars for DREGs,
we design a generator to generate DREGs efficiently.
Due to that the grammars are too large to fully
construct (see Section 3.2 and Table 5), most of the
existing methods are not suitable here. Thanks to
the parameters in the nonterminal symbols of the
grammars for DREGs, we can take full advantage of
this information to efficiently generate DREGs. Our

solution consists of the following ideas: (1) construct
the valid productions only when they are needed, to
avoid the construction of the whole grammar; (2) select
the productions of a nonterminal uniformly; (3) impose
a conservative size condition to make the generation
efficient; (4) employ a size control mechanism to
improve the efficiency of the generation.
Experiments of the generator. Finally, we
implemented a prototype of the generator in Java
and performed several experiments to evaluate our
generator. The results demonstrate the efficiency and
usefulness of our random generator.
Contributions. The contributions of the paper are
listed as follows.

• We propose a syntax for DREGs (Section 3), and
prove that the syntax of DREGs is context-free.
Meanwhile, we also show that the class of DREGs
cannot be defined by regular grammars.

• We give necessary and sufficient conditions for valid
productions (Section 4). The experiments show
that these conditions are quite useful for reducing
the size of the context-free grammars for DREGs.

• Based on the grammars, we further design and
implement a random generation algorithm for
DREGs (Section 5), in which productions are
selected uniformly and only constructed when they
are needed. It further imposes a conservative size
condition and a size control mechanism to ensure
efficiency.

• We experimentally evaluate the generator (Sec-
tion 6). The results show that although the gram-
mars can be exponentially large, by constructing
the grammar in an on-the-fly manner, our random
generator can generate DREGs efficiently. More-
over, we show that repeatedly generating arbitrary
regular expressions until we obtain a DREG is not
a feasible option to generate DREGs.

Related work. The related work can be categorized
as follows.
Deterministic regular expressions. To decide whether
a standard expression is deterministic, Brüggemann-
Klein [5] gave an algorithm with time complexity
O(|ΣE ||E|), which is based on the Glushkov automaton
of the expression. For expressions with counting,
Kilpeläinen [25] presented an O(|ΣE ||E|) algorithm
by examining the marked expression. Based on [9]
and [25], Chen and Lu also gave an O(|ΣE ||E|)
algorithm for checking determinism of expressions with
counting [10]. Groz and Maneth [13] gave the first
O(|E|) algorithm for checking determinism of standard
regular expressions and expressions with counting.
Peng et al. [18] gave an O(|ΣE ||E|) algorithm for
checking determinism of expressions with interleaving.

One may think the automata, e.g., the Glushkov
automata, defined for DREGs can be seen as a syntactic
definition for DREGs. But we think they are more likely
to be used for checking the determinism of a regular
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expression, rather than defining the set of DREGs.
Therefore, we do not wish to automatically generate
DREGs by generating Glushkov automata.

There has been a lot of work on constructing DREGs
for users, e.g., [6, 19, 12, 9, 10]. In [6], Brüggemann-
Klein and Wood provided an exponential time
algorithm to decide whether a regular language, given
by an arbitrary regular expression, is deterministic
(i.e., definable by a DREG). An algorithm was
further given there to construct equivalent DREGs
for nondeterministic expressions when possible, while
the resulting expression could be double-exponentially
large. Bex et al. [12] had optimized this construction
algorithm. For nondeterministic regular languages,
Ahonen [19] proposed an algorithm to construct
approximate DREGs. Bex et al. [12] had also
developed algorithms to construct approximate regular
expressions. But here the languages are approximated,
and solutions are needed to represent the same
language. Chen and Lu [9] had preliminarily explored
the diagnosing problem of checking determinism of
standard regular expressions. In [10], they improved
the method for regular expressions with counting.

Another way to help users is to infer DREGs from
sample strings. Bex et al. [20] gave algorithms to
learn SOREs and CHAREs from example words. Here
SOREs stand for single occurrence regular expressions,
and CHAREs stand for chain regular expressions. Both
of these expressions are subclasses of DREGs. Later,
they gave methods to infer XML Schema from XML
documents [21]. In a later paper [22], they provided
algorithms to learn deterministic k-occurrence regular
expressions, which are based on the Hidden Markov
Model. Recently, Freydenberger and Kötzing [23] gave
a linear time algorithm to infer SOREs and CHAREs
from samples. Moreover, their algorithm generates the
optimal SOREs and CHAREs [23].

The definability problem of DREGs is to express
a given regular expression by an equivalent DREG,
which was proved to be PSPACE-complete [12, 17, 15].
Latte and Niewerth [16] showed that one can decide in
2EXPSPACE whether a standard regular expression is
equivalent to any deterministic regular expression with
counting, whereas the exact complexity is still open. Lu
et al. [14] proved that whether a given standard regular
expression on a unary alphabet has an equivalent
DREG is coNP-complete. Losemann et al. [11] studied
the descriptional complexity of DREGs and showed
that exponential blow-ups cannot be avoided. Gelade
et al. [26] examined the descriptional complexity of
intersection for DREGs and proved that the exponential
bound on intersection is tight for DREGs.
Sentence Generation. Hanford [27] presented the
first algorithm for generating sentences randomly
from context-free grammars. Arnold and Sleep [28]
considered the uniformity of random sentences of
length n, where uniformity means that all strings
of length n are generated by the grammar equally,

and presented a linear algorithm to generate balanced
parenthesis strings uniformly. Hickey and Cohen [29]
presented two algorithms to generate sentences of
length n uniformly at random from a general context-
free grammar. Follow-up research proposed several
uniform random generation algorithms to improve
either the time and space bounds [30, 31] or the
pre-processing [32]. According to the frequencies of
letters, Denise et al. [33] proposed two other uniform
random generation algorithms. Some researchers
considered other types of grammars, such as Bertoni et
al. [34] took the ambiguity into account, while Ponty
et al. [35, 36] considered the weighted context-free
grammars. Besides, Héam and Masson [37] presented a
uniform random generation algorithm using pushdown
automata. Dong’s enumeration algorithm [38] can be
used as a random generation algorithm as well [39].
However, to make the generation efficient and/or to
ensure the uniformity, all these algorithms require
some pre-processing on the whole grammar, which are
inefficient and hard for our grammars. By taking full
advantage of the information that the symbols in the
DREG grammars take, our algorithm needs no pre-
processing. Moreover, our random generation consider
a weak size condition (no larger than a given size) and
the uniformity on productions of a same nonterminal
symbol, so it may lose the uniformity on sentences of
size n.

Besides random generation, some studies adopted
other strategies, like coverage criteria [40, 41], length
control [42], and sentence enumeration [38, 43].

For random generation of XSD, Antonopoulos et
al. [24] initiated the work of uniform XSD generation
by developing an algorithm for random generation of
k-occurrence automata (k-OAs) for content models.
However they did not manage to do random sampling
of DREGs. Since content models of XSDs are DREGs,
and languages accept by k-OAs do not equal to the ones
for DREGs, our grammars for DREGs and automatic
generation of DREGs fills a gap in [24].

2. DEFINITIONS

Let Σ be an alphabet of symbols. The set of all finite
words over Σ is denoted by Σ∗. A (standard) regular
expression over Σ is ε, or a ∈ Σ, or the union r1 | r2,
the concatenation r1 · r2, the plus r+

1 , or the question
mark r1? for regular expressions r1 and r2, where ε
represents the empty word. Notice that r∗ (the Kleene
star) is an abbreviation of ε | r+, and we will not
consider regular expressions like r∗ in the following. To
avoid unnecessary parentheses it is assumed that the
plus and the question mark have the highest priority,
concatenation follows, and union has the lowest priority.
If there is no ambiguity, then parentheses may be
omitted. For example, (a?) | (b(c+)) can be written
as a? | bc+. We write r1 | r2 | . . . | rn short for
(. . . (r1 | r2) . . . | rn), where n ≥ 2. The size of r is the
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number of symbols in Σ occurring in r, also called the
alphabetic width of r, denoted by |r|. The set of symbols
occurring in r is denoted by sym(r). For example, |(a |
b)+ab(a | b)| = 6 and sym((a | b)+ab(a | b)) = {a, b}.
Since in this paper we only consider standard regular
expressions, in the following we will directly use regular
expressions to represent standard regular expressions.

For a regular expression r, the language specified by
r is denoted by L(r). Let λ(r) = true if ε ∈ L(r); or
λ(r) = false otherwise. The computation of λ is listed
as follows [5]:

λ(ε) = true;
λ(a) = false, for a ∈ Σ;
λ(r | s) = λ(r) ∨ λ(s);
λ(r · s) = λ(r) ∧ λ(s);
λ(r?) = true;
λ(r+) = λ(r).

Next we define deterministic regular expressions
(DREGs for short). To this end, we need some
notations. For a regular expression we can mark
symbols with subscripts so that in the marked
expression each marked symbol occurs only once.
Without loss of generality, we use the positions as the
marked subscripts. For example, a marking of the
expression (a | b)+ab(a | b) is (a1 | b2)+a3b4(a5 | b6).
The marking of an expression r is denoted by r].
Accordingly the result of dropping the subscripts from
a marked expression r is denoted by r\. Then we have
(r])\ = r. We extend the notation for words in an
obvious way. By using these notations, we can define
DREGs as follows.

Definition 2.1 ([6]). An expression r is determin-
istic if it satisfies the following condition: for any two
words uxv, uyw ∈ L(r]) with |x| = |y| = 1, if x 6= y,
then x\ 6= y\ holds. A regular language is deterministic
if it can be denoted by some deterministic expression.

For example, the expression (a | ε)((c | d)+ | ε)(a | ε)
is not deterministic, since two words a1, a4 ∈ L((a1 |
ε)((c2 | d3)+ | ε)(a4 | ε)), and a1 6= a4, but (a1)\ =
(a4)\. For this example, all words u, v, and w are ε.
It is known that the class of DREGs cannot define all
regular languages [6].

Then we introduce some necessary components that
will be used in our grammars. For an expression r over
Σ, we define the following sets:

First(r) = {a | aw ∈ L(r), a ∈ Σ, w ∈ Σ∗}
followLast(r) = {b|v ∈ L(r), vbw ∈ L(r), v 6= ε, b ∈ Σ, w ∈ Σ∗}

Intuitively, First(r) contains all the first symbols of
words in L(r), while followLast(r) contains all the
symbols b which can be appended to a nonempty word
v in L(r) to form another word vbw in L(r). The
computations for First and followLast can be found
in [5, 25, 10]. But for the completeness of the paper, we
list them here.

The computation of First can be done as follows [5] :

First(ε) = ∅,
First(a) = {a}, for a ∈ Σ;
First(r | s) = First(r) ∪ First(s);

First(r · s) =

{
First(r) ∪ First(s) if λ(r),
First(r) otherwise;

First(r+) = First(r)
First(r?) = First(r).

The computation of followLast on marked regular
expressions and DREGs is listed as follows [25, 10]:

followLast(ε) = ∅
followLast(a) = ∅, a ∈ Σ;
followLast(r | s) = followLast(r) ∪ followLast(s);

followLast(r · s) =


followLast(r) ∪ First(s)
∪ followLast(s) if λ(s),

followLast(s) otherwise;
followLast(r+) = followLast(r) ∪ First(r);
followLast(r?) = followLast(r).

Note that the computation of followLast above cannot
be applied on general regular expressions [10]. One
reason is due to the union case r + s: for a word v
belonging to one subexpression r, an appended word
vbw may belong to the other subexpression s. Take
the expression a | aa for example. Following the
computation above, we have followLast(a | aa) = ∅,
while it should be {a} according to the definition.

A context-free grammar (CFG) G is a quadruple
(V, T, P, S) [44], where V is a finite set of nonterminal
symbols, T is a finite set of terminal symbols, P is a
finite set of productions of the form V → (V ∪T )∗, and
S ∈ V is the start symbol. The language accepted by
the grammar G is the set of words w from T ∗ satisfying
S
∗

=⇒
G
w, where S

∗
=⇒
G
w means that w is derivable from S

(refer to [44] for more details), and the subscript G can
be dropped if it is clear from the context. We say that
a nonterminal X is useful if there exists a word w from
T ∗ such that X

∗
=⇒
G

w. When all the nonterminals in a

production are useful, we say the production is valid.

3. SYNTAX FOR DREGS

In this section, we will first provide sound and complete
inference systems for DREGs in Section 3.1, and then
show that DREGs can be defined by context-free
grammars in Section 3.2.

3.1. Inference System for DREGs

Our inference systems for DREGs are inspired by the
determinism checking of regular expressions in [6, 25, 9],
which is formalized as the following lemma.

Lemma 3.1 ([6, 25, 9]). A regular expression r is
deterministic if and only if

(1) r = ε, or r = a ∈ Σ : tautology.
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(2) r = r1 | r2 : r1 and r2 are deterministic and
First(r1) ∩ First(r2) = ∅.

(3) r = r1r2 : r1 and r2 are deterministic,
followLast(r1)∩First(r2) = ∅, and if ε ∈ L(r1) then
First(r1) ∩ First(r2) = ∅.

(4) r = r+
1 : r1 is deterministic and ∀x ∈

followLast(r]1),∀y ∈ First(r]1), if x\ = y\ then x = y.
(5) r = r1? : r1 is deterministic.

This lemma gives a characterization of DREGs as
well as an algorithm to decide whether a given regular
expression is deterministic. Furthermore, we can also
use it as a method to construct DREGs as shown in the
following.

Note that the condition in case (4) is characterized
by marked expressions, while here we need original
expressions. So we first revise the characterization
above such that the condition is on unmarked
expressions as well. For that, we adopt a Boolean
function P on unmarked expressions defined in [9].

Definition 3.1 ([9]). Let r be a regular expression.
The Boolean function P(r) is inductively defined as
follows:
P(ε) = true
P(a) = true for a ∈ Σ
P(r1 | r2) = P(r1) ∧ P(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)

∧ (followLast(r1) ∩ First(r2) = ∅)
P(r1r2) = (¬λ(r1) ∧ ¬λ(r2) ∧ (followLast(r2) ∩ First(r1) = ∅))
∨ (λ(r1) ∧ ¬λ(r2) ∧ (followLast(r2) ∩ First(r1) = ∅) ∧ P(r2))
∨ (¬λ(r1) ∧ λ(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)

∧ (First(r1) ∩ First(r2) = ∅) ∧ P(r1))
∨ (λ(r1) ∧ λ(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)

∧ P(r1) ∧ P(r2))

P(r+
1 ) = P(r1)

P(r1?) = P(r1)

Intuitively, the function P(r) checks whether there
exists a symbol b and two distinct indexes i and j
such that bi ∈ followLast(r]) and bj ∈ First(r]). More
specifically, P(r) ensures the condition in case (4) of
Lemma 3.1: ∀x ∈ followLast(r]) and ∀y ∈ First(r]), if
x\ = y\ then x = y. This is formalized in the following
proposition.

Proposition 3.1 ([9]). Given a DREG r, P(r) =
true if and only if the following condition holds: ∀x ∈
followLast(r]),∀y ∈ First(r]), if x\ = y\ then x = y.

Based on this property, we can restate case (4) of
Lemma 3.1 as follows:

Proposition 3.2. A regular expression r+ is
deterministic if and only if r is deterministic and
P(r) = true.

Using the properties above, we provide an inference
system D for DREGs over an alphabet Σ, which consists
of the following rules (here ` r means r is a DREG):

(Empty) ` ε (Const)
a ∈ Σ

` a

(Union)
` r ` s First(r) ∩ First(s) = ∅

` r | s

(ConcatA)
` r ` s ¬λ(r) followLast(r) ∩ First(s) = ∅

` r · s

(ConcatB)

` r ` s λ(r) followLast(r) ∩ First(s) = ∅
First(r) ∩ First(s) = ∅

` r · s

(Plus)
` r P(r)

` r+
(Que)

` r
` r?

Each rule in D corresponds to one case in Lemma 3.1.
Take the rule (ConcatA) as an example. If r and s are
deterministic, λ(r) = false and followLast(r)∩First(s) =
∅, then r·s is deterministic by the case (3) in Lemma 3.1.
We say r is derivable if there is a derivation tree in D
whose root is r. If r is derivable in D, r is clearly
deterministic by Lemma 3.1. On the other hand, given
a DREG r, we can construct a derivation tree for r,
which is isomorphic to the structure of r. Thus r is
derivable in D. That is to say, the inference system D
is sound and complete.

Theorem 3.1. A regular expression r is determinis-
tic if and only if r is derivable from D.

The inference system D can help users understand
how to construct DREGs incrementally.

3.2. Context-free Grammars for DREGs

In this section, we will present grammars for DREGs,
which are constructed by simulating the computations
in the inference system D.

Suppose that r is a DREG and r1 is a sub-expression
of r. Clearly r1 is also deterministic. According to the
inference system D, if we replace r1 in r by any DREG
with the same values of First, followLast, λ and P as
r1, then the resulting expression is still a DREG. This
is the key property that enables us to construct the
context-free grammars for DREGs.

Lemma 3.2. Given a DREG r, if r1 is a subexpres-
sion of r, and r2 is a DREG with the same values of
First, followLast, λ and P as r1, then replacing r1 by r2

in r results in another DREG.

Proof. Actually, we prove a stronger statement:
replacing r1 by r2 in r results in a DREG r′ with the
same values of First, followLast, λ and P as r. If this
statement holds, then the lemma follows immediately.
We prove the statement by induction on the structure
of r.

r = a, for a ∈ Σ: Then r1 is r and the resulting
expression r′ is r2. From the premise, namely, r2 is
a DREG with the same values of First, followLast, λ
and P as r1, the result follows.

r = r3 | r4: Here we only show the case where r1 is
a subexpression of r3; the other case can be proved
similarly. As r1 is a subexpression of r3, by induction
on r3, we know that replacing r1 by r2 in r3 results in
a DREG, denoted by r′3, which has the same values
of First, followLast, λ and P as r3. According to
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Lemma 3.1, and the computations of First, followLast,
λ and P (see Section 2 and Section 3.1), we know that
r′3 | r4 is also deterministic, and both r′3 | r4 and r3 | r4

share the same values of First, followLast, λ and P. Then
the result follows.

The other cases can be proved similarly.

Assume the alphabet of DREGs is Σ = {a1, . . . , an}.
To construct the grammar for DREGs on Σ, we
first define a finite set X of nonterminal symbols of
the form XS,R,α,β , where S,R ⊆ Σ and α, β ∈
{true, false}. Intuitively, the nonterminal symbol
XS,R,α,β is intended to describe the set of DREGs,
denoted by L(XS,R,α,β), whose First, followLast, λ and
P values are S,R, α and β, respectively. Note that for
any regular expression r, any value of First, followLast, λ
or P cannot be determined by the other values. For
example, (a1|a2)+ and a1 · a+

1 |a
+
2 share the same

First, followLast, λ, but have different P values.
Having this property, we can construct a context-

free grammar for DREGs (given in Figure 1). By
Lemma 3.2, we can replace any subexpression r1

in a DREG r by any DREG with the same First,
followLast, λ and P values. Actually, the set
of all these possible replacers are exactly the set
L(XFirst(r1),followLast(r1),λ(r1),P(r1)). Accordingly, if we
replace subexpressions by nonterminals, then we can
obtain “productions” for DREGs. This suggests us to
construct the productions from the rules in the inference
system D as follows: replace DREGs by nonterminals.
Moreover, from the definition of XS,R,α,β , we need
to consider the computations of First, followLast, λ
and P when constructing grammars. We also need
to ensure that the conditions in the rules in D must
hold. In detail, we construct the grammar in the
following manner: (1) there is a class of productions
corresponding to each kind of rules in D; (2) each class
of productions should conform to the computations of
First, followLast, λ and P; (3) nonterminals are selected
carefully such that the related conditions in the rules of
D hold.

Figure 1 shows the details of the grammar (denoted
by Gd) we construct, where

⋃
denotes a set of rules

with the same left hand nonterminal, the subscript
equations of

⋃
are called as the side conditions of the

corresponding rules, and the symbols (, ), |, ·, + and ?,
the alphabet symbols ai ∈ Σ, and the empty symbol ε
are all the terminals of the grammars. Any nonterminal
symbol can be the start symbol. For a fixed alphabet,
the number of nonterminal symbols is finite, so is the
number of productions in Gd.

To illustrate the construction of Gd, let us consider
the case (G-Union). The productions for this case
can be constructed in two steps: (1) compute the
possible values of First, followLast, λ and P that the
two operands of the union | can have; and (2) check the
conditions to ensure determinism in D.

Assume that the DREG r we want to generate

satisfies: First(r) = S, followLast(r) = R, λ(r) = α

and P(r) = β, that is, XS,R,α,β ∗
==⇒
Gd

r. Because r

is generated by the case (G-Union), clearly r should
be of the form r1 | r2. First, consider the possible
values Si, Ri, αi, βi for these two subexpressions ri such
that XSi,Ri,αi,βi

∗
==⇒
Gd

ri, where i = 1, 2. According

to the computations of First, followLast, λ, and P, the
following conditions must hold:
(1) S = First(r) = First(r1) ∪ First(r2) = S1 ∪ S2;
(2) R = followLast(r) = followLast(r1)∪followLast(r2) =
R1 ∪R2;
(3) α = λ(r) = λ(r1) ∨ λ(r2) = α1 ∨ α2;
(4) β = P(r) = P(r1) ∧ P(r2) ∧ (followLast(r2) ∩
First(r1) = ∅) ∧ (followLast(r1) ∩ First(r2) = ∅) =
β1 ∧ β2 ∧ (R2 ∩ S1 = ∅) ∧ (R1 ∩ S2 = ∅).

Moreover, to ensure determinism, the condition of
the rule (Union) in D, that is, (5) First(r1)∩First(r2) =
S1 ∩ S2 = ∅, must hold as well. In conclusion, the
productions for DREGs of the form r1 | r2 must satisfy
Conditions (1)-(5), which form the definition of Φ. The
argumentation for DREGs of the form r1 · r2 and the
function Θ are similar.

Clearly, the grammars are context-free. Next, we
study the correctness of these grammars: r is a DREG
if and only if r is derivable from Gd. More precisely,
we prove that L(XS,R,α,β) is intended to describe the
correct language, which is shown by Lemma 3.3 and
Lemma 3.4.

Lemma 3.3. If XS,R,α,β ∗⇒ r, then r is a DREG
with First(r) = S, followLast(r) = R, λ(r) = α and
P(r) = β.

Proof. We prove it by induction on the length of the
derivation XS,R,α,β ∗⇒ r. For convenience, we write
X, X1 and X2 short for XS,R,α,β , XS1,R1,α1,β1 and
XS2,R2,α2,β2 , respectively.

Base case: If the derivation is one-step, then r is
either ε or ai, where ai ∈ Σ. It is easy to see that
the statement holds.

Inductive step: Suppose that the derivation takes
k + 1 steps (k ≥ 1), and the statement holds for any
derivation of no more than k steps.

Assume the rule used in the first step of the derivation
is (G-Union). That is, the derivation is in the form

X ⇒ X1 | X2
∗⇒ r. In this case, r should be in form of

r1 | r2, and we have that Xi
∗⇒ ri with steps no more

than k, where i = 1, 2. By the inductive hypothesis
on ri, we know that ri is a DREG with First(ri) = Si,
followLast(ri) = Ri, λ(ri) = αi and P(ri) = βi. From
the definition of the rule (G-Union), we have that
S1∪S2 = S, S1∩S2 = ∅, R1∪R2 = R, α1∨α2 = α and
(β1 ∧ β2 ∧ (S1 ∩R2 = ∅)∧ (R1 ∩ S2 = ∅)) = β. Because
r1 and r2 are deterministic and First(r1) ∩ First(r2) =
S1 ∩ S2 = ∅, r is a DREG from Lemma 3.1. Moreover,
from the computations of First, followLast, λ and P, we
can get First(r) = S, followLast(r) = R, λ(r) = α and
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G-Base: X{ai},∅,false,true → ai X∅,∅,true,true → ε
G-Union: XS,R,α,β →

⋃
Φ(S,R,α,β,S1,R1,α1,β1,S2,R2,α2,β2)

(XS1,R1,α1,β1 | XS2,R2,α2,β2)

G-Concat: XS,R,α,β →
⋃

Θ(S,R,α,β,S1,R1,α1,β1,S2,R2,α2,β2)

(XS1,R1,α1,β1 ·XS2,R2,α2,β2)

G-Plus: XS,R,α,true →
⋃

R1∪S=R

XS,R1,α,true +

G-Que: XS,R,true,β →
⋃

α1∈{true,false}
XS,R,α1,β ?

where i = 1, . . . , n, the nonterminal symbol XS,R,α,β is intended to describe the set of DREGs whose First, followLast, λ and
P values are respectively S,R, α and β, and the Boolean functions Φ and Θ are defined as follows:

Φ(S,R, α, β, S1, R1, α1, β1, S2, R2, α2, β2)
def
= and


(S1 ∪ S2 = S) ∧ (S1 ∩ S2 = ∅)
R1 ∪R2 = R
α1 ∨ α2 = α
β1 ∧ β2 ∧ (S1 ∩R2 = ∅) ∧ (R1 ∩ S2 = ∅) = β

Θ(S,R, α, β, S1, R1, α1, β1, S2, R2, α2, β2)
def
= and


R1 ∩ S2 = ∅
α1 ∧ α2 = α
α1 ∧ (S1 ∪ S2 = S) ∧ (S1 ∩ S2 = ∅) ∨ ¬α1 ∧ (S1 = S)
α2 ∧ (R1 ∪ S2 ∪R2 = R) ∨ ¬α2 ∧ (R2 = R)
θ(S1, R1, α1, β1, S2, R2, α2, β2) = β

θ(S1, R1, α1, β1, S2, R2, α2, β2)
def
= or


¬α1 ∧ ¬α2 ∧ (S1 ∩R2 = ∅)
α1 ∧ ¬α2 ∧ β2 ∧ (S1 ∩R2 = ∅)
¬α1 ∧ α2 ∧ β1 ∧ (S1 ∩R2 = ∅) ∧ (S1 ∩ S2 = ∅)
α1 ∧ α2 ∧ β1 ∧ β2 ∧ (S1 ∩R2 = ∅)

FIGURE 1. Context-free grammars for DREGs

P(r) = β. Hence the result follows.
Similarly for the other rules used in the first step of

the derivation.

Lemma 3.4. If r is a DREG, then we have
XFirst(r),followLast(r),λ(r),P(r) ∗⇒ r.

Proof. We prove it by induction on the structure of r.
For convenience, we write Xr short for the nonterminal
XFirst(r),followLast(r),λ(r),P(r).

The cases for r = ε or r = a are obvious, where a ∈ Σ.
Assume that r is in the form of r1 | r2. According

to Lemma 3.1, we have that both r1 and r2 are also
deterministic. By the inductive hypothesis, both r1

and r2 are derivable from Gd, that is, Xri
∗⇒ ri with

i = 1, 2. From the computations of First, followLast, λ
and P, and the fact that r is a DREG, we know that (1)
First(r) = First(r1)∪First(r2); (2) First(r1)∩First(r2) =
∅; (3) followLast(r) = followLast(r1)∪ followLast(r2); (4)
λ(r) = λ(r1) ∨ λ(r2); (5) (P(r1) ∧ P(r2) ∧ (First(r1) ∩
followLast(r2) = ∅) ∧ (followLast(r1) ∩ First(r2) = ∅)) =
P(r). Therefore, Xr, Xr1 and Xr2 satisfy the conditions
of (G-Union). According to the definition of Gd, we

have that Xr ⇒ Xr1 | Xr2
∗⇒ r1 | r2. That is,

Xr
∗⇒ r. Hence, the result follows.

Similarly for the other cases.

Based on the lemmas above, we can conclude that

Theorem 3.2. DREGs can be defined by context-free
grammars.

Proof. We only need to show that L(XS,R,α,β) is the
intended language. That is to show: (1) The strings
generated by Gd are DREGs, which follows from
Lemma 3.3; and (2) All DREGs can be generated by
Gd, which follows from Lemma 3.4.

Let us discuss the size of the grammars. Assume
the alphabet of DREGs is Σ. Firstly, we can compute
the number of possible nonterminals easily: there are
2|Σ| different possible First and followLast sets, and thus
there are 2|Σ| · 2|Σ| · 2 · 2 = 22|Σ|+2 different possible
nonterminals. Secondly, we compute the numbers of
the productions of the same nonterminal XS,R,α,β by
case analysis. Clearly, there is only one production of
XS,R,α,β for (G-Base) when the side condition (e.g.,
S = {ai}, R = ∅, α = false and β = true) is satisfied.
For (G-Plus) (resp. (G-Que)), there are 2|S| (resp.
2) productions, when S ⊆ R and β = false (resp.
α = true). While for (G-Union) (resp. (G-Concat)), the
number of possible productions of XS,R,α,β is exactly
the number of solutions to the Boolean function Φ (resp.
Θ) for the given values S,R, α, β. Here we only show
the case for Φ where both α and β are true; the other
cases are similar. In this case, we have that there are
3 candidates for αis and 1 candidate for βis, and both
S1 ∩ R2 = ∅ and S2 ∩ R1 = ∅ hold. Suppose that S1

consists of i elements from S \ R and j elements from

S ∩R. Then S2 is S \ S1 and there are
(|S\R|

i

)
·
(|S∩R|

j

)
possible candidates for S1. As S1 ∩ R2 = ∅ (resp.
S2 ∩ R1 = ∅), the elements in S1 ∩ R (resp. S2 ∩ R)
should belong to R1 (resp. R2). Consider the elements
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TABLE 1. Number of productions in Gd by cases

Case Class Condition Production Number of XS,R,α,β Total Number

1 (G-Base) S = ∅, R = ∅, α = true, β = true O(1) O(1)

2 (G-Base) S = {ai}, R = ∅, α = false, β = true O(1) O(|Σ|)
3 (G-Union) α = true, β = true O(2|S| · 3|R\S|) O(8|Σ|)

4 (G-Union) α = true, β = false O(2|S\R| · 3|R\S| · 6|S∩R|) O(12|Σ|)

5 (G-Union) α = false, β = true O(2|S| · 3|R\S|) O(8|Σ|)

6 (G-Union) α = false, β = false O(2|S\R| · 3|R\S| · 6|S∩R|) O(12|Σ|)

7 (G-Concat) α = true, β = true O(3|R|) O(8|Σ|)

8 (G-Concat) α = true, β = false O(3|R\S| · 4|S∩R|) O(9|Σ|)

9 (G-Concat) α = false, β = true max(O(5|R\S|), O(3|Σ|)) O(12|Σ|)

10 (G-Concat) α = false, β = false max(O(5|R\S| · 5|S∩R|), O(3|Σ|)) O(12|Σ|)

11 (G-Plus) β = true, S ⊆ R O(2|S|) O(4|Σ|)

12 (G-Que) α = true O(1) O(4|Σ|)

in R \ S. Assume that R1 contains k elements from it,

which has
(|R\S|

k

)
possible candidates. Then to satisfy

the condition R1 ∪R2 = R, the other elements in R \S
should belong to R2. Moreover, R2 can share some
elements with R1, which can only come from these k
elements. So there are

(
k
m

)
possible candidates for R1∩

R2, where m is the number of the common elements.
Therefore, we can conclude that in the case (G-Base)

there are at most
∑|S\R|
i=0

∑|S∩R|
j=0

∑|R\S|
k=0

∑k
m=0

(|S\R|
i

)
·(|S∩R|

j

)
·
(|R\S|

k

)
·
(
k
m

)
· 3 = 3 · 2|S| · 3|R\S| productions,

that is, in O(2|S| · 3|R\S|). Table 1 gives the number of
possible productions for all cases.

Finally, we compute the total number of the possible
productions in Gd by case analysis, which is also shown
in Table 1. Likewise, here we only show the case for (G-
Union) where both α and β are true. Both the sizes of S
and R can range from 0 to |Σ|, and they may share some
common elements. We consider S \R, R \ S and S ∩R
instead, which are pairwise disjoint. By combinatorics,
there are

( |Σ|
|S\R|

)
, and

(|Σ|−|S\R|
|S∩R|

)
and

(|Σ|−|S\R|−|S∩R|
|R\S|

)
possible candidates for S \ R, R \ S and S ∩ R,
respectively. So the total production number in this

case is
∑|Σ|
|S\R|=0

∑|Σ|−|S\R|
|S∩R|=0

∑|Σ|−|S\R|−|S∩R|
|R\S|=0

( |Σ|
|S\R|

)
·(|Σ|−|S\R|

|S∩R|
)
·
(|Σ|−|S\R|−|S∩R|

|R\S|
)
· 3 · 2|S| · 3|R\S| = 3 · 8|Σ|,

that is, in O(8|Σ|). From the table, we can see that the
size of Gd is in O(12|Σ|).

It is known that the syntax of regular expressions
is context-free. But as exemplified in Section 1, not
all the subsets of a context-free language are context-
free. Nevertheless, the set of DREGs preserves the well-
nested parentheses, so we conclude that DREGs cannot
be defined by regular grammars as well.

Proposition 3.3. DREGs cannot be defined by
regular grammars.

Proof. Regular languages are closed under homomor-
phisms, and we can define an homomorphism mapping
the set of DREGs to the Dyck language with one kind

of parenthesis by projecting out symbols which are not
parentheses. So we know that the set of DREGs cannot
be regular.

4. VALID PRODUCTIONS

In this section, we will study the validity of productions,
to remove useless symbols in the grammar.

For a general nonterminal XS,R,α,β , we call XS,R,α,β

is useful if there exists a DREG r such that XS,R,α,β ∗⇒
r. Obviously, if S = ∅, then only the empty string
ε satisfies this condition, and thus we have R = ∅,
α = true, and β = true. Moreover, when S ∩ R = ∅,
by Proposition 3.1, we have that β = true. These
two conditions are clearly necessary for XS,R,α,β being
useful. We show that these two conditions are also
sufficient.

Lemma 4.1. Given S, R, α, and β, the nonterminal
XS,R,α,β is useful if and only if the following two
conditions hold:

(1) (S = ∅)→ ((R = ∅) ∧ (α = true) ∧ (β = true));
(2) (S ∩R = ∅)→ (β = true).

Proof. (⇐) We will show that if the conditions hold,
then we can construct a DREG r such that First(r) = S,
followLast(r) = R, λ(r) = α and P(r) = β. According
to Lemma 3.4, we know that r ∈ L(XS,R,α,β), that is,
XS,R,α,β is useful. We prove it by case analysis on the
conditions.

Assume that S ∩ R 6= ∅ and S 6= ∅. In this case,
both Condition (1) and (2) hold trivially. Without loss
of generality, we assume S = {a1, . . . , an, b1, . . . , bm1}
and R = {a1, . . . , an, c1, . . . , cm2}, and thus S ∩ R =
{a1, . . . , an}, where ai, bj , ck ∈ Σ are different symbols,
1 ≤ n, 0 ≤ m1 and 0 ≤ m2. The DREG r is constructed
as follows:

• If α = true and β = true, then we construct
the expression r = ε | (a+

1 | . . . | a+
n | b1 | . . . |

bm1)(ε|c1 | . . . | cm2).

The Computer Journal, Vol. ??, No. ??, ????



Towards an Effective Syntax and a Generator for DREGs 9

• If α = true and β = false, then we construct the
expression r = ε | (a1 | . . . | an | b1 | . . . | bm1

)(ε |
a1 | . . . | an | c1 | . . . | cm2

).
• If α = false and β = true, then we construct the
expression r = (a+

1 | . . . | a+
n | b1 | . . . | bm1

)(ε | c1 |
. . . | cm2).
• If α = false and β = false, then we construct the
expression r = (a1 | . . . | an | b1 | . . . | bm1

)(ε | a1 |
. . . | an | c1 | . . . | cm2

).

For each case above, we can verify that the constructed
expression r is deterministic, and satisfies that
First(r) = S, followLast(r) = R, λ(r) = α and P(r) = β.

Assume S∩R = ∅ and S 6= ∅. In this case, Condition
(1) holds trivially, and by Condtion (2), we have β =
true. Let S = {b1, . . . , bm1} and R = {c1, . . . , cm2},
where the symbols are the same as above, except that
1 ≤ m1, since S is not empty. Similarly, we construct
the DREG r as follows:

• If α = true, then we construct the expression
r = ε | (b1 | . . . | bm1)(ε | c1 | . . . | cm2).
• If α = false, then we construct the expression
r = (b1 | . . . | bm1

)(ε | c1 | . . . | cm2
).

Similarly, we can verify that r ∈ L(XS,R,α,β) for each
case above.

Assume S = ∅ and thus S ∩R = ∅ holds trivially. In
this case, we have that R = ∅, α = true, and β = true
from these two conditions. Clearly, the expression r = ε
satisfies that First(r) = ∅, followLast(r) = ∅, λ(r) = true
and P(r) = true.

(⇒) Let us consider a general useful nonterminal
XS,R,α,β . If S 6= ∅ and S ∩ R 6= ∅, then both
conditions hold trivially. In the following, we consider
the nontrivial cases.

Assume that S = ∅. As XS,R,α,β is useful, there
exists a DREG r such that r ∈ L(XS,R,α,β). According
to Lemma 3.3, we have First(r) = S = ∅. Without loss
of generality, we assume that regular expressions are not
∅. Thus, there exists only one expression ε satisfying the
condition First(r) = ∅. Accordingly, followLast(r) = ∅,
λ(r) = true and P(r) = true. By Lemma 3.3 again,
we get R = ∅, α = true, and β = true, and thus both
conditions hold.

Assume that S 6= ∅ and S ∩ R = ∅. In this case,
Condition (1) holds trivially. So we only need to
consider Condition (2), that is, to prove β = true. As
XS,R,α,β is useful, there exists a DREG r such that r ∈
L(XS,R,α,β). By Lemma 3.3, we have that First(r) = S,
followLast(r) = R, λ(r) = α and P(r) = β. From the
premise S ∩ R = ∅, we get First(r) ∩ followLast(r) = ∅,
and so does First(r]) ∩ followLast(r]) = ∅. Therefore,
the following condition holds: ∀x ∈ followLast(r]),∀y ∈
First(r]), if x] = y] then x = y. By Proposition 3.1, we
have that P(r) = true, that is, β = true.

We use Go to denote such optimized grammars with
only valid productions. According to Lemma 4.1, we

know that Go denotes the same language as Gd.
In the following, we discuss the effectiveness of

Lemma 4.1, that is, we show how many nonterminals
and productions are approximately ruled out by this
lemma. If S = ∅, then there are 2|Σ| · 2 · 2 = 2|Σ|+2

different nonterminals. But only one among them is
useful. Therefore, 2|Σ|+2 − 1 nonterminals are ruled
out by Condition (1). Next, we consider the useless
nonterminals such that |S| 6= ∅, S∩R = ∅ and β = false,
which are ruled out by Condition (2). Assuming |S| = i,

there are
(|Σ|
i

)
possible sets for S. As S∩R = ∅, R must

be a subset of Σ\S, which has 2|Σ|−i cases. So there are

at most
(|Σ|
i

)
· 2|Σ|−i · 2 useless nonterminals for |S| = i,

and thus the number of nonterminals ruled out by

Condition (2) is
∑|Σ|
i=1(

(|Σ|
i

)
·2|Σ|−i ·2) = 2 · (3|Σ|−2|Σ|).

In total, the number of nonterminals ruled out by
Lemma 4.1 is 2 · 3|Σ| + 2|Σ|+1 − 1, which is in O(3|Σ|).

Let us consider the number of possible invalid
productions. There are two reasons for a production
to be invalid: (1) the nonterminal on the left-hand side
is useless, and (2) one of the nonterminals on the right-
hand side is useless. Clearly, if a nonterminal XS,R,α,β

is useless, then all its productions listed in Figure 1 are
invalid. Let us consider the case for (G-Union) where
both α and β are true again. The situation to make
XS,R,α,β useless is that S = ∅ but R 6= ∅. So there are∑|Σ|
|R\S|=1

( |Σ|
|R\S|

)
· 3 · 2|S| · 3|R\S| = 3 · (4|Σ| − 1), that is,

in O(4|Σ|). The other cases can be done similarly.
Assume that XS,R,α,β is useful and the first nonter-

minal XS1,R1,α1,β1 on the right-hand side is useless.
Take the case for (G-Union) where α = true, β = false,
and both S1 ∩ R2 = ∅ and S2 ∩ R1 = ∅ hold as an
example. In this case, we have β = β1 ∧ β2. Assume
that XS1,R1,α1,β1 is useless due to S1 ∩ R1 = ∅ and
β1 = false. This case is quite similar to the one for (G-
Union) where both α and β are true. According to the
analysis in Section 3.2, we have |S1∩R1| = j. To satisfy
S1∩R1 = ∅, j should be 0. Therefore, in this case there

are
∑|S\R|
i=0

∑0
j=0

∑|R\S|
k=0

∑k
m=0

(|S\R|
i

)
·
(|S∩R|

j

)
·
(|R\S|

k

)
·(

k
m

)
· 6 = 6 · 2|S\R| · 3|R\S| invalid productions. More-

over, as XS,R,α,β is useful and β = false, S ∩ R (and
S) should not be empty. Hence, in the grammar there

are
∑|Σ|
|S∩R|=1

∑|Σ|−|S∩R|
|S\R|=0

∑|Σ|−|S∩R|−|S\R|
|R\S|=0

( |Σ|
|S∩R|

)
·(|Σ|−|S∩R|

|S\R|
)
·
(|Σ|−|S∩R|−|S\R|

|R\S|
)
· 6 · 2|S\R| · 3|R\S| =

6(7|Σ| − 6|Σ|) invalid productions in total, that is, in
O(7|Σ|).

Table 2 lists some numbers of invalid productions by
cases, where the first column denotes the cases shown
in Table 1. The computation of the invalid production
numbers due to that XS2,R2,α2,β2 is useless is similar
to the one of XS1,R1,α1,β1 and thus is not given. From
this table, we can see that the number of productions
ruled out by Lemma 4.1 is at least in O(10|Σ|), which
indicates that this lemma is effective to reduce the size
of grammars. Nevertheless, the size of Go is still in
O(12|Σ|).
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TABLE 2. Numbers of invalid productions by cases

Case XS,R,α,β is useless XS1,R1,α1,β1 is useless

3 O(4|Σ|) O(6|Σ|)

4 O(6|Σ|) O(10|Σ|)

5 O(4|Σ|) O(6|Σ|)

6 O(6|Σ|) O(10|Σ|)

7 O(4|Σ|) O(6|Σ|)

8 O(5|Σ|) O(8|Σ|)

9 O(6|Σ|) O(6|Σ|)

10 O(7|Σ|) O(10|Σ|)

11 O(2|Σ|) 0

12 O(3|Σ|) O(1)

TABLE 3. |Gd| and |Go| over small alphabets

|Σ| 1 2 3 4 5

|Vd| 16 64 256 1024 4096

|Vo| 7 39 187 831 3547

|Gd| 208 3297 43698 542387 6553772

|Go| 46 815 14904 240481 3520010

To show the effectiveness of this lemma, we list the
numbers of nonterminals and productions in |Gd| and
|Go| over small alphabets in Table 3, where Vd (resp.
Vo) denotes the nonterminals in Gd (resp. Go). Note
that permutation of symbols in First and followLast sets
does not matter. From the table, we can see that
(1) both the number of productions in |Gd| and |Go|
increases rapidly; (2) the numbers of productions in Go
are much fewer than the ones in Gd.

At last, we show that for a given alphabet Σ, there are
valid productions in all the five classes of productions
in Gd. The case (G-Base) is trivial, since these
productions can generate expressions in one step. In
the following, we show that there are valid productions
in the other classes. Actually, the conditions in
the productions correspond to the conditions for an
expression to be deterministic and the processes of
computing First, followLast, λ and P. Let us consider
the following DREGs: r1 = ε | a, r2 = aa, r3 = a+ and
r4 = a? for any symbol a ∈ Σ, which correspond to the
other classes of productions in Gd. Then it suffices to
construct one valid production for each expression. The
productions we constructed are as follows: (P1) X2 →
X0 | X1, (P2) X1 → X1 · X1, (P3) X3 → X1+,
and (P4) X2 → X1?, where X0, X1, X2, and X3

stand for X∅,∅,true,true, X{a},∅,false,true, X{a},∅,true,true, and
X{a},{a},false,true, respectively. Since all Xis are useful,
all these productions are valid.

5. RANDOM GENERATION OF DREGS

We have shown in Section 3.2 that DREGs can be
defined by context-free grammars. In this section,
we further show that these context-free grammars can

be used to automatically generate DREGs. Our aim
is to generate DREGs, whose sizes are as close to a
predefined size as possible, as uniformly at random and
efficiently as possible.

5.1. Random Generation Algorithm

With the grammars presented in Section 3.2, a naive
idea is to first construct the whole grammar for a
given alphabet, and then use the existing methods [28,
30, 32, 33, 38] to randomly generate DREGs from
the constructed grammar. However, due to the facts
that the grammars are too large to construct fully
(see Section 3.2), and that existing methods require
some pre-processing of the whole grammar, the existing
methods become inefficient and thus are not suitable
for the grammars of DREGs. In existing methods,
pre-processing is used to compute some information to
make the random generation efficient. Hence the key
problem is how to make the random generation efficient
without the construction and the pre-processing of the
whole grammar. Thanks to the parameters in the
nonterminals of the grammars for DREGs, we can
take full advantage of such information to make the
random generation efficient without constructing the
whole grammar.

Our solution consists of the following ideas:

• Construct the valid productions only when they
are needed, to avoid the construction of the whole
grammar. Thanks to Lemma 4.1, we can directly
construct the valid productions. Otherwise, we
need to construct the whole grammar to check the
validity of each production, which could lead to an
inefficient generation.

• Select the productions of a nonterminal uniformly.
Based on the parameters, we can compute the
numbers of the valid productions of a nonterminal
by case analysis, which enable us to select the
productions as uniformly as possible.

• Impose a conservative size condition to make the
generation efficient. More specifically, if the size of
the DREG that is being generated exceeds a given
size, the generation terminates with a failure. This
is similar to most existing work, but different in
that the size of the generated DREG is not larger
than the given one, while existing work requires
that the size4 is exactly the given one. This weak
condition enables us to avoid the pre-processing of
the whole grammar, which is required by existing
work.

• Employ a size control mechanism to improve the
efficiency of generation. In detail, we overestimate
the possible (minimum) size le for the current
DREG that is being generated. Then we compare
le with the given size l. If le ≥ l, the generation

4Indeed, existing work uses the notion of length. But for
consistency, we use size instead.
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starts to select the productions with smaller First
and followLast sets randomly, which we call the
smaller selection. As a result, the selected First
and followLast become smaller and smaller until
the case (G-Base) of the grammar. Therefore, the
generation will terminate eventually. Moreover,
the smaller selection can make the generation more
uniform.

Algorithm 1 Random Generation Algorithm

Input: the size l and the alphabet Σ
Output: a DREG s s.t. |s| ≤ l or failure
1: generate a useful nonterminal Xs randomly and put it

into stack stack
2: set current expression sc ← ε, size lc ← 0
3: set size control off LC ← false
4: while stack is nonempty and lc ≤ l do
5: X ← pop stack
6: if X is terminal then
7: sc ← sc ·X, lc ← lc + 1 if X ∈ Σ
8: else
9: if LC is false then

10: lr ← estSize(stack), LC ← (lc + lr > l)
11: end if
12: p = selPro(X,LC)
13: if p is failure then
14: return failure
15: end if
16: push rhs(p) into stack reversely
17: end if
18: end while
19: if stack is empty then
20: return sc
21: else
22: return failure
23: end if

The random generation algorithm is shown in
Algorithm 1, which takes an alphabet Σ and a size
l as input, and returns a DREG with size no larger
than l, or a failure. The algorithm starts with a stack
with a random useful nonterminal (Line 1). In other
words, the algorithm starts with two random subsets
S,R ⊆ Σ and two random Boolean values α, β such
that XS,R,α,β is useful, i.e., XS,R,α,β satisfies the two
conditions in Lemma 4.1. And the algorithm initializes
the current expression sc as empty string ε and its
current size lc as 0 (Line 2), and sets the size control
mechanism off (Line 3). Then the algorithm proceeds
with each (top) symbol in the stack until either the
stack is empty or the size of the current expression
exceeds the required one (lc ≥ l) (Lines 4-18). In
detail, if the processed symbol X is a terminal, then the
algorithm concatenates it with the current expression,
and increases the size by 1 if X ∈ Σ (Lines 6-7).
Otherwise, the algorithm uses the size function estSize
(see Section 5.2) to estimate a possible size lr that the
current stack can generate, and compares it with the
remaining size (i.e., the required size l minus the current

one lc) to trigger the size control mechanism (Line 10).
Next, the algorithm tries to construct a production p
for the symbol X following the rules in Figure 1 (Line
12) depending on the size control: If the size control
mechanism is off, p is selected as uniformly at random
as possible from all valid productions of X; otherwise, p
is randomly selected from those productions such that
each nonterminal symbol X ′ on the right-hand side has
a smaller First set S and a smaller followLast set R
than the corresponding ones in X (see Section 5.3 for
more details). If the construction fails, the algorithm
terminates with a failure (Lines 13 − 15); otherwise, it
pushes all the symbols on the right-hand side of p into
the stack reversely (Line 16), and continues with the
next possible symbol on the top of the stack. Finally, if
the stack is empty, the algorithm returns the generated
DREG (Lines 19 − 20); otherwise, it returns a failure
(Line 22).

5.2. Size Estimation

In this section we discuss how to define the size
estimating function estSize on symbols (Line 10 in
Algorithm 1) to make the random generation efficient
without any pre-processing of the whole grammar.
Clearly, the size of a sentence generated from a terminal
symbol is fixed (i.e., 1), while it is variant when
generated from a nonterminal symbol. So in the
following, we focus on the definition of estSize on
nonterminals. To do that, we first review existing
solutions, namely, the minimum size of the sentences
generated from a nonterminal. But defining estSize
as the minimum size is problematic in our setting (see
the discussion below). Then we show how to refine
the minimum size definition with respect to the smaller
selection, employed in our algorithm mentioned above.

Existing work on sentence generation with size
control mechanism [42, 39] takes the the minimum
size of the sentences generated from a nonterminal
as a reference to guide the generation. Likewise, we
can also define the size estimating function estSize
on a nonterminal as the minimum size of the DREGs
generated from this nonterminal. The solutions in
existing work require some pre-processing of the whole
grammar to calculate the minimum size and the
corresponding sentence that can be generated from a
nonterminal. As we want to avoid pre-processing, the
calculation is not applicable in our setting.

Nevertheless, thanks to the parameters (i.e., the First
set S and the followLast set R) in a nonterminal, we
can figure out that any DREG s generated from the
nonterminal XS,R,α,β satisfies that the size |s| of s is
not less than the size of the union of its First set S and
its followLast set R, since both sets are contained in the
set sym(s) of symbols occurring in s. This is formalized
as the following lemma.

Lemma 5.1. Given S, R, α, and β, then for each
s ∈ L(XS,R,α,β), |S ∪R| ≤ |s|.
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Proof. Due to S ⊆ sym(s) and R ⊆ sym(s), we can get
|S ∪R| ≤ |s|.

Lemma 5.1 gives us a low bound for the minimum
size of generated DREGs. To check whether this low
bound is exactly the minimum size or very close to
it, we try to construct DREGs from different possible
nonterminals such that their sizes are as close to |S∪R|
as possible. Examples of such constructed DREGs are
listed in Table 4, where P1 = {a1, . . . , am}, P2 =
{c1, . . . , cp} and P3 = {b1, . . . , bn}, ai, bj , ck ∈ Σ are
different symbols, 1 ≤ m, 1 ≤ n, and 1 ≤ p. From
these constructed DREGs, we can see that, for a useful
nonterminal XS,R,α,β , there exists a DREG with size
|S ∪R| if β is true, or with size |S ∪R|+ 1 if β is false.
Consequently, we declare that the low bound given by
Lemma 5.1 is a reasonable solution to estSize5.

As the calculation of the minimum size is solved, let
us go back to the generation. When the current size
lc plus the estimated size lr (i.e., the possible size)
exceeds the required size l, there is no more “space”
for us to “expand” the DREG and we will trigger
the size control mechanism. Therefore, we have to
guide the generation to select the productions for the
nonterminals in the stack such that the total size of the
(sub-)DREGs generated from them is not larger than
the remaining size (i.e., the estimated size lr). This is
to say, we have to select the productions that leads to
a DREG with the minimum size. As mentioned above,
existing work [42, 39] performs some pre-proceeding on
the whole grammar to record such productions (and the
minimum sentences) for each nonterminal. While in our
setting, as the whole grammar is “unknown”, so are the
productions leading to a minimum DREG. Moreover,
even if the minimum DREGs were known (such as the
DREGs presented in Table 4), the generation should
not return them directly, since it would skip over the
other candidates. In a word, defining estSize as the
minimum size could make the generation less uniform
over the DREGs whose sizes are close to l.

As shown in Section 5.1, our solution employs a
different size selection mechanism, to which we refer
as the smaller selection. The smaller selection selects
the productions randomly from the ones with smaller
First sets and followLast sets, so it can select as more
candidates as possible and lead the generation to
terminating. Accordingly, we should refine estSize with
respect to the minimum size of generated DREGs under
this smaller selection.

To satisfy the size condition lc + lr ≤ l, the size
generated by the smaller selection should be smaller
than the estimated size lr. This indicates that the
estimated size lr should be as large as possible. Hence,
the earlier the size control mechanism is triggered on,
the better it is. On the other hand, we would like to

5Similarly, we can give the low bounds with respect to length
by case analysis. Different from the setting of size, the low bounds
for the setting of length have a larger variance.

generate the DREGs whose sizes are as close to the
given one as possible. This requires the generation to
start the size control mechanism as late as possible.
Based on the analysis above, we refine estSize as
the maximum of the minimum sizes for each class of
productions under the smaller selection.

The remaining is to show how to calculate the
maximum of the minimum sizes. For that, let
us consider the production cases of a nonterminal
XS,R,α,β . It is clear that the minimum size for (G-
Base) is 1. For (G-Plus) and (G-Que), there is only one
nonterminal XS1,R1,α1,β1 on the right-hand side, and we
know |S1 ∪R1| = |S ∪R| from the side conditions. So,
by Lemma 5.1, the possible minimum sizes of XS,R,α,β

and XS1,R1,α1,β1 are almost the same. While for (G-
Union) and (G-Concat), there are two nonterminals
XS1,R1,α1,β1 and XS2,R2,α2,β2 on the right-hand side.
Under the smaller selection, we also need to consider
the following conditions for determinism: S = S1 ∪ S2,
S1 ∩ S2 = ∅ and R1 ∪ R2 = R. Then we know that
the minimum size of XS,R,α,β is no larger than the one
of the sentential form on the right-hand side, since we
have |S∪R| ≤ |S1∪R1|+ |S2∪R2|. Hence, the possible
minimum size increases, if (G-Union) and (G-Concat)
are selected. From these, we can further deduce that
|S∪R| ≤ |S1∪R1|+|S2∪R2| ≤ |S1∪R|+|S2∪R| ≤ |S1|+
|R|+ |S2|+ |R| = |S|+2∗|R|. That is to say, at most an
additional |R| can be added at a time. Moreover, these
two cases can be selected continuously (|S| times at
most) until the case (G-Base) (i.e., |Si| = 1) is selected.
So the possible minimum size can be |S|+ |R|+ |S| ∗ |R|
at most. Therefore, we have the following lemma.

Lemma 5.2. Let XS,R,α,β be a nonterminal. Under
the smaller selection, the maximum of the possible
minimum sizes of DREGs generated from XS,R,α,β is
no larger than |S ∪R|+ |S| ∗ |R|.

Proof. This can be proved by induction on the
derivation trees of DREGs.
(G-Base): Trivial.

(G-Union): From the definition of Φ, we have
that S = S1 ∪ S2, S1 ∩ S2 = ∅, and R1 ∪
R2 = R. Let the minimum sizes of DREGs
from XS,R,α,β , XS1,R1,α1,β1 , XS2,R2,α2,β2 be m,m1,m2,
respectively. Then we can bound m as follows.

m
= m1 +m2

≤ |S1 ∪R1|+ |S1| ∗ |R1|+ |S2 ∪R2|+ |S2| ∗ |R2|
(By induction)

≤ |S1 ∪R|+ |S1| ∗ |R|+ |S2 ∪R|+ |S2| ∗ |R|
(Ri ⊆ R)

= |S1 ∪ S2 ∪R|+ |S1 ∪ S2| ∗ |R| (S1 ∩ S2 = ∅)
= |S ∪R|+ |S| ∗ |R| (S = S1 ∪ S2)

(G-Concat): Due to the smaller selection, we have
|Si| < |S| and |Ri| < |R| (i = 1, 2). It means that
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TABLE 4. DREGs with size |S ∪R| and |S ∪R|+ 1

S R α β = true β = false

∅ ∅ true ε useless

∅ ∅ false useless useless

∅ P2 true useless useless

∅ P2 false useless useless

P1 ∅ true (a1| . . . |am)? useless

P1 ∅ false a1| . . . |am useless

P1 P2 true ((a1| . . . |am)(ε|c1| . . . |cp))∗ useless

P1 P2 false ((a1| . . . |am)(ε|c1| . . . |cp))+ useless

P3 P3 true (b1| . . . |bn)∗ ε|b1 · b+1 |b
+
2 | . . . |b+n

P3 P3 false (b1| . . . |bn)+ b1 · b+1 |b
+
2 | . . . |b+n

P3 P2 ∪ P3 true ((b1| . . . |bn)(ε|c1| . . . |cp))∗ ε|(b1 · b+1 |b
+
2 | . . . |b+n )(ε|c1| . . . |cp)

P3 P2 ∪ P3 false ((b1| . . . |bn)(ε|c1| . . . |cp))+ (b1 · b+1 |b
+
2 | . . . |b+n )(ε|c1| . . . |cp)

P1 ∪ P3 P3 true (ε|a1| . . . |am)(ε|b1| . . . |bn) (ε|a1| . . . |am)(ε|b1 · b+1 |b2| . . . |bn)

P1 ∪ P3 P3 false (ε|a1| . . . |am)(b1| . . . |bn)+ (ε|a1| . . . |am)(b1 · b+1 |b
+
2 | . . . |b+n )

P1 ∪ P3 P2 ∪ P3 true ε|(a1| . . . |am|b+1 | . . . |b+n )(ε|c1| . . . |cp) ε|(a1| . . . |am|b1 · b+1 |b2| . . . |b+n )(ε|c1| . . . |cp)
P1 ∪ P3 P2 ∪ P3 false (a1| . . . |am|b+1 | . . . |b+n )(ε|c1| . . . |cp) (a1| . . . |am|b1 · b+1 | . . . |b+n )(ε|c1| . . . |cp)

we have to select the productions such that αi = true6,
which yields S = S1∪S2, S1∩S2 = ∅ and R1∪S2∪R2 =
R. Then similar to the case of (G-Union), we can prove
that the minimum size is at most |S ∪R|+ |S| ∗ |R|.
(G-Plus): Let the minimum sizes of DREGs generated
from XS,R,α,true and XS,R1,α,true be m and m′,
respectively. By induction m′ ≤ |S ∪ R1| + |S| ∗ |R1|.
Clearly, we have m = m′. Thus m ≤ |S ∪ R1| + |S| ∗
|R1| ≤ |S ∪R|+ |S| ∗ |R| since R1 ⊆ R.

(G-Que): Similar to the case of (G-Plus).

Actually, we also tried some other choices, such as the
approximate average of the possible minimum sizes, i.e.,
(|S ∪R|+ 0.5 ∗ |S| ∗ |R|). More details are presented in
Section 6.

5.3. Production Selection

In this section, we first discuss the difficulty in the
production selection to guide the generation to generate
DREGs of the same size uniformly. Then we discuss
how to select a production for a nonterminal XS,R,α,β

(selPro in Line 12 of Algorithm 1) as uniformly over the
possible ones as possible, without any pre-processing of
the whole grammar.

Theoretically, similar to Dong’s algorithm [38], we
can compute the following information by induction:
(1) the number of DREGs with size l generated from a
nonterminal X (i.e., the Hierarchy information in [38]);
(2) the number of DREGs with size l generated from a
production P (i.e., the Cluster information in [38]); (3)
the number of DREGs generated from a production P
satisfying that the size of sub-DREG generated from

6In our implementation, if such productions do not exist,
we relax the conditions of smaller selection as |Si| ≤ |S| and
|Ri| ≤ |R| such that αi can be false, rather than returning a
failure.

the ith nonterminal Xi on the right-hand side of P
is li (i.e., the Cube information in [38]). With these
information, we can guide the generation to generate
DREGs, uniformly distributed over the ones of the same
size. However, due to the grammar is too large (see
Section 3.2), the computational load is too large and
it requires too much space to record these information.
We failed in the grammars with alphabet size larger
than 7, when we tried to generate DREGs in this way
(see Section 6.1). An alternate way is to compute these
information when it is needed, but the computation
would be redundant and inefficient.

Algorithm 2 Production Selection Algorithm selPro

Input: a nonterminal XS,R,α,β and size control status LC
Output: a production p or failure
1: if XS,R,α,β is useless then
2: return failure
3: end if
4: if LC is false then
5: for i = 1, . . . , 12 (the 12 cases in Table 1) do
6: ni = the production number of XS,R,α,β for Case i
7: end for
8: else
9: for i = 1, . . . , 12 do

10: ni = the production number of XS,R,α,β s.t. ∀X ′ ∈
rhs(p). X ′.S ⊂ X.S and X ′.R ⊂ X.R for Case i

11: end for
12: end if
13: t =

∑12
i=1 ni

14: if t = 0 then
15: return failure
16: end if
17: generate a random number n in {1, . . . , t}
18: let c s.t.

∑c−1
i=1 ni < n ≤

∑c
i=1 ni

19: generate Si, Ri, αi, βi w.r.t. Case c and LC, yielding p
20: return p
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As shown in Section 3.2 and Section 4, according to
the parameters in the nonterminals, we can compute
the (approximate) numbers of all the productions and
of the invalid ones by case analysis, and thus the number
of the valid productions. Based on these numbers,
we can select the productions uniformly. It is similar
for the smaller selection, plus the consideration of the
additional conditions. Algorithm 2 shows the details of
our production selection, which consists of two steps:
(1) production case selection (Lines 4 − 18) and (2)
production parameter selection (Line 19). Firstly,
according to Tables 1 and 2, we compute the numbers
of valid productions by cases7 (Lines 4 − 12). Taking
these numbers as a reference of probabilities, we select
a case c randomly (Lines 13 − 18). Secondly, following
the conditions of Case c and LC, we randomly generate
the parameters Si, Ri, αi, βi, and then construct the
production p (Line 19).

For example, assume that the case for (G-Union)
where both α and β are true is selected. According
the discussion in Section 3.2, we will select the
possible values for i, j, k and m such that the resulting
production p is valid. Similar to case selection, we can
compute the number of candidates for j, k and m for
each possible value of i, and then select a value for i
based on these numbers. The selections of j, k and m
are proceeded in a similar way. It is easy to see that this
selection enables us to select a production as uniformly
as possible. While in practice, some cases may be too
tedious to compute, so for efficiency and simplicity, we
make a compromise for these cases: we select i, j, k
and m uniformly among their possible values in proper
order.

Without the size condition, the uniform selection of
production will generate a DREG uniformly among all
the DREGs, and thus is prone to generate a large
DREG. So we think that our generation generates
DREGs as close to a given size as possible when LC is
off. When LC is on, thanks to the smaller selection and
the definition of estSize, it tries to select the DREGs
whose sizes are close to the given size as uniformly as
possible. It is not easy to figure out the exact relation
between the distribution of productions and the one of
the corresponding DREGs for our generation, but our
generation can generate DREGs efficiently and is viable
in practice (see Section 6 for more details).

6. EXPERIMENTS

We have implemented a prototype of the generator
to construct the DREG grammars and to randomly
generate DREGs from these grammars in Java.

Using our prototype, we conducted a series of
experiments to evaluate our solution. (1) Firstly,
we conducted experiments to see whether the DREG
grammars can be constructed and further be easily used
in practice. (2) Secondly, we conducted experiments

7Other taxonomies are fine as well.

TABLE 5. Grammar construction for given alphabet Σ

|Σ| |Go| T ime Stored Avg T

1 46 0.033ms 1.69k 0.711us
2 815 0.817ms 35.2k 1.002us
3 14904 7.276ms 726k 0.488us
4 240481 119.113ms 12.6M 0.495us
5 3520010 2323.929ms 203M 0.660us
6 48369939 28506.531ms 2.98G 0.589us
7 638241628 396844.845ms 42.7G 0.622us

to test the performance of our random generation
algorithm on different estimating functions. (3)
Thirdly, to test the efficiency further, we also conducted
experiments to compare our algorithm with the RE
algorithm, which first generates regular expressions and
then selects the deterministic ones. (4) Finally, to
see the usefulness of our generator, we applied the
generated DREGs in an inclusion checker for DREGs.

All the experiments are conducted on a machine with
Intel core I5 CPU and 4GB RAM, running Ubuntu
14.04.

6.1. DREG Grammar Construction

Given an alphabet Σ, constructing the grammar is
easy, just by constructing all the valid productions
according to the rules presented in Figure 1. Thanks
to Lemma 4.1, those invalid productions can be directly
thrown away, without any additional check on the whole
grammar. Table 5 shows the experimental results in
the optimized grammars with small alphabets, where
|Go| denotes the number of productions in optimized
grammar Go, Time and Avg T denote the constructing
time for the grammar and the average time for each
production respectively, and Stored denotes the size of
the file storing the grammar. Although the grammars
can be constructed easily for small alphabets, the result
shows that the time and space needed by the grammars
are exponential in |Σ|. This is consistent with the
number of productions given in Section 4, i.e., in
O(12|Σ|).

Due to the large scale, it seems that these grammars
cannot be easily used in practice. For example, we have
tried to generate DREGs using Dong’s algorithm [38],
which is a linear time algorithm to enumerate sentences
from a CFG and can be used as a sentence generator
provided with a randomizer [39]. But we only succeed
for the grammars whose alphabet sizes are smaller than
7, due to the large memory required by the maintenance
of the whole grammar and the information required by
the generation.

However, in some cases, only some productions for
a specific non-terminal symbol are required, rather
than the whole grammars. For example, when using
these grammars for sentence generation (e.g., our
random generation) only one production is required for
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each nonterminal symbol at a time. Moreover, the
experimental result also shows that the average time
for constructing a production is very low (almost in the
order of 1us). This enables us to efficiently generate
DREGs by only constructing the productions when they
are needed.

6.2. DREG Generation

In this section, we present some experiments to evaluate
our random generation algorithm. First, as discussed
in Section 5.2, the size estimating function estSize
affects the generation, so we use different size functions
to conduct experiments on grammars with different
alphabet sizes (ranging from 1 to 20). Second,
experiments on grammars with large sizes (ranging from
21 to 27)8 are conducted as well.
Experiments on different size functions. In these
experiments, we respectively generate 100 DREGs with
size no larger than 10, 20 and 50 from the grammars,
whose alphabet size ranges from 1 to 20. For each
generation, we use as estSize the maximum of the
minimum sizes (i.e., |S ∪ R| + |S| ∗ |R|), the minimum
size (i.e., |S ∪R|), and the average between them (i.e.,
|S ∪R|+ 0.5 ∗ |S| ∗ |R|). During generation, we collect
the total time, the average size, and the failure number.

The experimental results are shown in Figure 2,
where the horizontal axes of all the figures represent
the sizes of the grammar’s alphabets, the vertical axes
of Figures 2(a) - 2(c), Figures 2(d) - 2(f), and Figures
2(g) -2(i) represent the total times in seconds, the
average size ratios with respect to the required size,
and the failure numbers respectively, and “l-n” means
that the required size is l and the size function estSize
is |S ∪R|+ n ∗ |S| ∗ |R|.

The results show that our algorithm can generate
DREGs efficiently: the total times cost by most DREG
generations are in several seconds, except the case of 50-
0 for the grammars with the alphabet size larger than 15
(due to the underestimating of estSize). In particular,
when either |S ∪R|+ |S| ∗ |R| or |S ∪R|+ 0.5 ∗ |S| ∗ |R|
is used as the size function, the cost time is in 1s, even
in 0.1s when the required size is large (e.g. 50).

Moreover, from Figures 2(a)-2(c), we can see that (i)
the larger the size function, the fewer (better) the cost
time; and (ii) the cost time does not increase rapidly
(almost the same) as the alphabet size increases. The
reason is that a larger estimated size can trigger the size
control mechanism earlier, and thus leave more “space”
for the smaller selection.

While considering the actual sizes of the generated
DREGs, as shown in Figures 2(d)-2(f), most genera-
tions can generate the DREGs such that their average
size accounts for more than 60% of the required one.
In particular, taking the minimum size as the size func-
tion performs best: the average size of the generated
DREGs is quite close to the required one. Different

8From 28 on, the generation fails due to the Java heap space.

from the cost time, the smaller the size function, the
larger (better) the average size. The reason is that a
smaller estimated size makes the algorithm to generate
the DREGs with a closer size to the required one.

Due to the same reason as the cost time, the larger
the size function, the less the failure number. Indeed,
the failure number contributes to the cost time. Figure
2(i) shows that the failure number is no more than 100,
when taking either |S ∪R|+ |S| ∗ |R| or |S ∪R|+ 0.5 ∗
|S| ∗ |R| as the size function to generate DREGs with
size no larger than 50.

As a conclusion, taking both the cost time and
the average size into account, we suggest the average
minimum size (i.e., |S ∪R|+ 0.5 ∗ |S| ∗ |R|) as the size
function estSize in practice.
Experiments on large grammars. We would
also like to see how our algorithm performs when
generating long DREGs from large grammars. So we
try to generate 100 DREGs with size no larger than
500 from grammars whose alphabet size ranges from
21 to 27. Table 6 shows the experimental results,
where |Σ| denotes the size of the alphabet Σ, TTime
denotes the total time in seconds for the random
generation, Failure denotes the failure number during
the generation, and ASize denotes the average size of
the generated DREGs.

The results show that our algorithm is still effective to
generate long DREGs from large grammars: generating
a DREG with size no larger than 500 from a grammar
with alphabet size 27 is about 5.833s on average.
Moreover, as the alphabet size increases, the cost time
rises. Meanwhile, thanks to the size function we take,
the failure number is very low (almost 0), and the
average sizes still account for more than 60% of the
required ones.

6.3. Comparison with the RE Algorithm

In this section, we present the experiments to
compare our random generation algorithm with the
RE algorithm (i.e., the algorithm generating regular
expressions first and then selecting the deterministic
ones). For that, we first conduct experiments to
generate DREGs from the same grammar with different
sizes, and then conduct experiments to generate
DREGs from different grammars with the same size,
using both our algorithm and the RE algorithm.
The RE algorithm. By RE algorithm, we refer
to the one generating regular expressions (RE for
short) first with a random sentence generator for RE
and then selecting those deterministic ones [9]. To
avoid the time caused by the pre-proceeding, we take
the simplest random generation algorithm, namely
Hanford’s algorithm [27], as the RE generator. We also
employ the size control mechanism [42] to ensure the
termination. In detail, the RE generator takes as input
the following grammar for REs:

R→ ai | R R | R o R | R+ | R ? | ε,
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(a) Total time for l ≤ 10 (b) Total time for l ≤ 20 (c) Total time for l ≤ 50

(d) Aver. size ratio for l ≤ 10 (e) Aver. size ratio for l ≤ 20 (f) Aver. size ratio for l ≤ 50

(g) Fail. num. for l ≤ 10 (h) Fail. num. for l ≤ 20 (i) Fail. num. for l ≤ 50

FIGURE 2. Results for different size estimations

TABLE 6. Time, average size and failure for generating DREGs of Len ≤ 500

|Σ| TTime Failure ASize |Σ| TTime Failure ASize

21 8.540 1 357.58 22 9.085 1 360.49
23 15.943 1 359.42 24 34.888 1 350.48
25 64.419 0 350.21 26 132.174 0 346.57
27 583.298 0 335.8

where ai represents any symbol in alphabet and o
denotes the union. The RE generator starts with the
nonterminal R and selects a rule for each nonterminal
randomly during generation. Meanwhile, the RE
generator counts the current size of the generated
sentential form. If the current size exceeds the given
one, then the RE generator starts to select the terminal
rules R→ ai randomly.

Experiments on different grammars with the
same size. In these experiments, we first use our
algorithm to respectively generate 100 DREGs with size
no larger than 50 from the grammars, whose alphabet
size ranges from 1 to 26. Next, using the RE algorithm,
we redo each experiment by setting the required size as
the corresponding average size of the DREGs generated
by our algorithm. The results are shown in Figure
3(a), where the horizontal axis represents the sizes
of the alphabets of the grammars, and the vertical
axis represents the total times in seconds used by our
algorithm and the RE algorithm.

The results show that our algorithm is much more
efficient than the RE algorithm, especially for the

grammars with small alphabets. There are two factors
making the RE algorithm inefficient9: (1) one is the
very low ratio of DREGs in regular expressions (e.g,
to generate 100 DREGs with size 50 from grammar
with alphabet size 26, we need to generate about 8618
REs with a ratio 1.2%); (2) and the other is the
determinism checking, which has to be done for every
RE. As our algorithm generates DREGs directly, these
two factors are absent, yielding an efficient generator.
Moreover, if the required size, rather than the average
size from our algorithm, were used for the RE algorithm,
then it would cost much more time (see the following
experiments). Even worse, the RE algorithm could
not terminate in a day for the grammars with small
alphabets.
Experiments on the same grammar with
different sizes. In these experiments, we use our
algorithm on the grammar with alphabet size 26 to
generate 100 DREGs with size no larger than a given

9If some other algorithms, such as Hickey and Cohen’s
algorithm [29], were used, the pre-proceeding could be another
factor.
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(a) Total time for different sizes (b) Total time for different sizes

FIGURE 3. Comparison between ours and the RE algorithm

size, ranging from 50 to 150. Then we do the same
experiments as above. Figure 3(b) shows the results,
where the horizontal axis represents the required size
on DREGs and the vertical axis is the same as Figure
3(a).

The results show that as the given size increases, the
times cost by the RE algorithm increase rapidly. As
a result, it cannot generate a DREG with size larger
than 100 in an hour. In particular, when the given
size is much larger than the alphabet size, it cannot
generate a DREG in one day. This is mainly due to
the fact that as the given size increases, the probability
that the generated regular expression is deterministic
decreases very quickly. On the contrary, thanks to the
size estimating function, our algorithm still performs
well: (i) it generates the required DREGs with size no
larger than 50 in 1 second; and (ii) the cost time seems
linear in the required size.
The conclusion. The results above show that RE
generators are not feasible for generating DREGs, and
our algorithm is quite efficient for generating DREGs.
Due to the simplicity (fewer pre-proceeding) and the
very low ratio of DREGs in RE, we can conclude that
our algorithm cannot be replaced by any RE generation
algorithm.

6.4. Application of DREG Generator

In this section, we present an application of our DREG
generator in the inclusion checker for DREGs in [45].

The inclusion checker presented in [45] implemented
two inclusion algorithms, both of which take two
DREGs r1 and r2 as input and return true if r1 ⊆ r2 and
false otherwise. To evaluate the inclusion checker, many
DREGs of different sizes are required. However, due to
the inefficient generation (i.e., the RE generator), the
inclusion checker are evaluated only on DREGs with
size no larger than 30. To evaluate the inclusion checker
further, here we use our DREG generator to generate
longer DREGs from the grammar with alphabet size
26 and use these DREGs to test the inclusion checker.
In detail, similar to [45], we first generate 100 pairs
of DREGs with size no larger than 50, 100, 150
and 200, and then apply the inclusion checker on

TABLE 7. Results for the inclusion checker

RSIze ASize SMax SMin GTime CTime

50 39.504 50 19 0.820 0.231
100 72.245 100 25 10.294 0.360
150 122.278 150 34 35.106 0.493
200 159.594 200 54 43.301 0.546

these 100 pairs of generated DREGs. Meanwhile, we
account the average size of the generated DREGs,
the generated time, and the checking time. Table
7 gives the experimental results, where RSize and
ASize denote the required size and the average size of
the generated DREGs respectively, SMax and SMin
denote the maximum and the minimum of the DREG
sizes respectively, GTime and CTime denote the times
in seconds cost by the generating and by the checking
respectively. The results show that the inclusion checker
still works effectively on DREGs with size no larger than
200.

This experiment demonstrates that our DREG
generator can help to evaluate the inclusion checker.
We believe our generator can be used in some other
applications which require automatic generation of
DREGs.

7. CONCLUSION

In this paper, we presented syntactic grammars for
DREGs. Each production of the grammars is of the
form X → ai|ε, X → Y uo, or X → Y bo Z,
where ai ∈ Σ, uo denotes the unary operators and
bo denotes the binary operators. Each nonterminal
symbol is of the form XS,R,α,β , which defines the
language L(XS,R,α,β) = {r ∈ DREGs | First(r) =
S, followLast(r) = R, λ(r) = α,P(r) = β}. We showed
that L(XS,R,α,β) is the intended language and the
syntax of DREGs is context-free.

We further designed a random generator for DREGs.
The generator does not construct the whole grammar,
instead it constructs productions only when they are
needed. During the generation, it selects the production
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of a nonterminal uniformly. Further, it imposes a
conservative length condition and a length control
mechanism to ensure the efficiency of the generator.
Experiments showed that the generator is efficient and
useful in practice.

There is several work to do. (1) Further studies of
grammar constructions as started in this paper. It is
possible to find other ways to construct the grammars,
for example using the continuing property [10], in the
hope to find some smaller grammars. (2) Extending
regular expressions with other operators. In this paper
we are considering standard regular expressions. It will
be useful to include other commonly used operators,
such as counting and interleaving, into the grammars.
(3) Optimization rules for the grammars, which will
be quite useful for the context-free grammars for
DREGs. We will examine other optimization rules
to further reduce the number of productions in the
grammars. (4) Other applications of the grammars.
For example we will further develop a tool to help
the user writing DREG expressions, in which the use
of grammars is necessary. (5) Examining practical
subclasses of DREGs which may have simpler grammars
than DREGs such that the use of the grammars can
be more efficient. (6) Investigating the pre-processing
to consider the distribution on sentences of length n
by taking the symmetric similarity of DREG grammars
into account. (7) Algorithms for random generation of
XSDs in which the random generation algorithm for
DREGs must be used.

ACKNOWLEDGEMENTS

The idea of giving a syntax for DREGs and the initial
context-free rules were developed while the third author
was visiting Frank Neven. Neven soon decided to move
to other research topics, and he kindly allowed us to
freely use and pursue the work initiated during the visit.
So we thank Frank Neven for this. We also thank Wim
Martens for fruitful discussion about an early version
of this paper, and anonymous reviewers for suggestions
to improve the presentation of the paper. This work is
supported by the National Natural Science Foundation
of China under Grants No. 61472405, 61502308 and
61872339, and is partially funded by Beijing Advanced
Innovation Center for Big Data and Brain Computing,
Beihang University, Project 2016050 supported by SZU
R/D Fund and Natural Science Foundation of SZU
(Grant No. 827-000200).

REFERENCES

[1] (2006). Extensible Markup Language (XML) 1.1.
http://www.w3.org/TR/xml11.

[2] (2005). World Wide Web Consortium. http://www.

w3.org/wiki/UniqueParticleAttribution.

[3] Losemann, K. and Martens, W. (2013) The complexity
of regular expressions and property paths in SPARQL.
ACM Trans. Database Syst., 38, 24:1–24:39.

[4] Huang, X., Bao, Z., Davidson, S. B., Milo, T., and
Yuan, X. (2015) Answering regular path queries on
workflow provenance. ICDE 2015, Seoul, South Korea,
April 13-17, 2015, Los Alamitos, CA, USA, pp. 375–
386. IEEE.
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