
Android Malware Family Classification and
Characterization Using CFG and DFG

Zhiwu Xu∗†, Kerong Ren∗ and Fu Song‡
∗College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

†National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
‡School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Abstract—Android malware has become a serious threat for
our daily life, and thus there is a pressing need to effectively
mitigate or defend against them. Recently, many approaches and
tools to analyze Android malware have been proposed to protect
legitimate users from the threat. However, most approaches focus
on malware detection, while only a few of them consider malware
classification or malware characterization. In this paper, we pro-
pose an extension of CDGDroid to classifying and characterizing
Android malware families automatically. We first perform static
analysis used in CDGDroid to extract control-flow graphs and
data-flow graphs on the instruction level. Then we encode the
graphs into matrices, and use them to build the family classi-
fication models via deep learning. For family characterization,
we extract the n-gram sequences from the graphs, which are
filtered according to the weights of the classification model built
for the target family. And then we construct a vector space model
and select the top-k sequences as a characterization of the target
family. We have conducted some experiments to evaluate our
approach and have identified that the family classification model
taking the horizontal combination of CFG and DFG as features
offers the best performance in terms of accuracy among all
the models. Compared with CDGDroid, Drebin and many anti-
virus tools gathered in VirusTotal, our family classification model
gives a better performance. Finally, We have also conducted
experiments on family characterization, and the experimental
results have shown that our characterization can capture the
malicious behaviors of the testing families.

Index Terms—Android malware, malware family, malware
characterization, static analysis, deep learning

I. INTRODUCTION

As reported by IDC [1], Android is the most popular
platform for mobile devices, with almost 86.8% of the market
share in the third quarter of 2018. Unfortunately, the increasing
adoption of Android comes with the growing prevalence of
Android malware. A report from security firm G DATA [2]
shows that around 3.2 million new malware apps up to the end
of the third quarter of 2018. Consequently, Android malware
has become a serious threat for our daily life, and thus there is
a pressing need to effectively mitigate or defend against them.

Over the past decade, many approaches and tools to analyze
Android malware have been proposed to protect legitimate
users from the threat, which can be summarized into three
categories, namely, malware detection, malware classifica-
tion and malware characterization. Malware detection aims
to identity whether a given application is malware or not,
which can protect the users directly; malware classification
tries to group malware samples into families or identity the

family for a malware sample, which helps to organize and
analyze malware samples; and malware characterization is to
characterize the underlying malicious behaviors or patterns for
a malware family (or a malware sample), which will benefit the
malware detection and classification. However, it is pity that
most approaches focus on malware detection [3]–[6], while
only a few of them consider malware classification or malware
characterization. Moreover, these existing classification or
characterization approaches either use program analysis [7]–
[10], which may be too heavyweight to use in practice, or use
machine learning with syntax features [11]–[14], which could
be too simple to characterize malware.

In this paper, we propose an approach to classifying
and characterizing Android malware families automatically,
wherein two classic semantic representations of programs,
namely, control-flow graph (CFG for short) and data-flow
graph (DFG for short), are used as features, under the as-
sumption that the given malware samples have been iden-
tified correctly by any malware detection toolkit such as
CDGDroid [15]. Generally, a CFG reflects what a program
intends to behave (e.g., opcodes) as well as how it behaves
(e.g., possible execution paths), such that malware behavior
patterns can be captured easily by this feature. For example,
Geinimi samples share the similar control flow graphs. On
the other hand, a DFG represents the data dependancies
between a number of operations, and thus can help in detecting
malware involving sensitive or network data, like HippoSMS
and RogueSppush that send and block SMS message in the
background.

Our classification approach is an extension of CDGDroid,
which is an effective approach to detecting Android malware.
Specifically, we perform static analysis used in CDGDroid to
extract CFGs and DFGs on the instruction level for Android
applications, and then abstract the graphs into weight graphs,
where the nodes are opcodes or the invoke opcode with a
permission and the weight of an abstracted edge denotes
the number of the original edges that are abstracted into
it. The main extension lies in that the permissions that an
invoke instruction requests are considered during the graph
abstraction. Next, we encode the weight graphs into matrices
and build a family classification model via deep learning,
which can be used to analyze new, unseen malware samples.
Similar to CDGDroid, two combination modes of control flow
graph and data flow graph are considered: two graphs are

combined either via the matrix addition (called the vertical
mode) or via the matrix extension (called the horizontal mode).

To characterize malware samples of a target family, we
extract the n-gram sequences from the paths of the graphs,
which are then filtered according to the weights of the clas-
sification model that are built for the target family. Based on
the sequences, we construct a vector space model and select
the top-k sequences as a characterization of the target family.

Several experiments have been conducted to evaluate our ap-
proach. We first conduct 10-fold cross validation experiments
to see the effectiveness of CFG and DFG in malware family
classification. We have found that the classification model
taking the horizontal combination of CFG and DFG as features
performs the best, with the average accuracy 94.71% for all
families. Next, we conduct some experiments to compare
our approach with CDGDroid [15], Drebin [11] and most of
anti-virus tools gathered in VirusTotal [16]. The results have
confirmed that our family classification model has a better
performance than the others in terms of accuracy. Finally, we
also conduct some experiments on family characterization, and
the experimental results have shown that our characterization
can capture the malicious behaviors of the testing families.

In summary, our contributions are as follows:
• We have proposed an approach to classifying and charac-

terizing Android malware families using CFGs and DFGs
as features.

• We have conducted several experiments, which demon-
strate that our approach is viable and effective to Android
malware family classification, and has a better perfor-
mance than a number of existing anti-virus tools in terms
of accuracy.

• We have also conducted some experiments on family
characterization, which shows that our characterization
can capture the malicious behaviors of the testing fami-
lies.

The remainder of this paper is organized as follows. Sec-
tion II describes our approach, followed by the experimental
results in Section III. Section IV presents the related work,
followed by some concluding remarks in Section V.

II. APPROACH

In this section, we present our approach to classifying
and charactering Android malware families using CFGs and
DFGs as features. Figure 1 shows the framework of our
approach, which consists of three tasks: static analysis, family
classification and family characterization. Firstly, the static
analysis task is meant to extract CFGs and DFGs from Android
applications (APK for short) and then to abstract them into
weight graphs. Secondly, the classification task aims to build
a family classification model (or a binary classification for a
target family) from an existing Android malware dataset based
on deep learning, which can then be used to classify Android
malware samples detected by any malware detection toolkit,
such as CDGDroid [15]. Finally, the characterization task tries
to mine the possible malicious behaviors on the opcode level
for a target family, guiding by the corresponding classification

Fig. 1. Framework of Our Approach

model built for the target family. In what follows, we depict
each task of our approach in detail.

A. Static Analysis

To begin with, we give the definitions of graph, which is
used to describe both CFGs and DFGs, and weight graph,
which is used to describe the abstractions of CFGs and DFGs.

Definition 1. A graph G is a 4-tuple (N,E, S, F), where N
is a finite set of nodes, E ⊆ N × N is a finite set of edges,
S ⊆ N is the set of starting nodes, and F ⊆ N is the set of
exiting nodes.

Definition 2. A weight graph G is a 5-tuple (N,E, S, F,W),
where N,E, S, F are the same to the ones in Definition 1 and
W is a weight mapping from edges E to natural numbers N .

Our static analysis is an extension of the analysis used in
CDGDroid. We first perform the analysis in CDGDroid on the
given APKs to extract CFGs and DFGs, where nodes of CFGs
and DFGs are the instructions, rather than the basic blocks.
Due to space limitation, the details are not presented here.
Interested readers can refer to [15].

Generally, the purpose of a permission is to protect the
privacy of an Android user. APKs must request permission to
access sensitive user data (such as contacts and SMS), as well
as certain system features (such as camera and internet). So
the required permissions of an invoke instruction can reflect its
intention and behavior, and thus can help in classifying android
malware as well as characterizing the malicious behaviors in
Section II-C. Hence, different from CDGDroid, we consider
the permissions that an invoke instruction requests as well,
when we perform the graph abstraction.

The detail of graph abstraction is shown in Algorithm 1,
which takes a CFG or DFG as input and returns a weight
graph, where the nodes are opcodes or the invoke opcode with
a permission, and the weight of an abstracted edge denotes the
number of the edges in the original graphs that are abstracted
into it. The algorithm simply iterates the nodes and edges in
the given graph by performing the instruction abstraction IA
and accumulates the number of abstracted edges, which is
almost the same as the one in [15], except the instruction
abstraction IA.

The instruction abstraction IA is given in Algorithm 2,
which takes any instruction as input and returns a singleton set
or a set of the invoke opcode with different permissions. The
algorithm first checks whether the instruction is an invoke one.
If it is, then the algorithm analyzes the possible permission
set that the invoke instruction requests, which can be done
via Pscout [17]. Then the algorithm returns a singleton set
of the invoke opcode if the permission set is empty, or a set
of the invoke opcode associating with each permission in the
set otherwise. If it is not an invoke instruction, the algorithm
returns a singleton set of its opcode. While in [15], IA simply
returns the opcode of the input instruction.

Algorithm 1 Graph Abstraction GA(G)

Input: a graph G
Output: a weight Ga

1: let Ga = (∅, ∅, ∅, ∅, ∅)
2: Ga.N =

⋃
n∈G.N IA(n)

3: Ga.S =
⋃

n∈G.S IA(n)
4: Ga.F =

⋃
n∈G.F IA(n)

5: for (n1, n2) ∈ G.E do
6: for n′1 ∈ IA(n1) and n′2 ∈ IA(n2) do
7: Ga.E = Ga.E ∪ {(n′1, n′2)}
8: inc Ga.W [(n′1, n

′
2)]

9: end for
10: end for
11: return Ga

Algorithm 2 Instruction Abstraction IA(i)

Input: an instruction i
Output: a singleton set or a set of the invoke opcode with

different permissions
1: if i is an invoke instruction then
2: let c and m be the invoked class and method of i
3: let pl be the required permission set of c.m
4: if pl is empty then
5: return {invoke}
6: else
7: return {(invoke, p) | p ∈ pl}
8: end if
9: else

10: return {the opcode of i}
11: end if

B. Family Classification

The next step is to encode the weight graphs into adjacency
matrices, which yields a training data set. In particular, we
consider all the 222 opcodes in total listed in Android Dalvik-
bytecode list [18], and the 91 permissions in total (includ-
ing 29 protection normal permission, 36 protection signature
permission and 26 dangerous permissions) listed in Android
permission overview [19]. That is to say, the size of the
encoded matrix is 313. Moreover, similar to CDGDroid, two
combination modes of CFG and DFG are considered, namely,

the vertical mode (denoted as cfg + dfg) and the horizontal
model (denoted as cfg ⊕ dfg). In the vertical mode, like
constructing a program dependence graph, CFG and DFG
are combined via the matrix addition; while in the horizontal
model, they are combined via the matrix extension, just as
they are treated as different views. Finally, we build the
classification models based on neural network, whose network
structures are similar to the one used in CDGDroid, except the
number of labels, that is the size of the last layer.

C. Family Characterization

This section is devoted to mine the malicious behaviors,
namely, the n-gram sequences of opcodes, for a target An-
droid malware family, which consists of three steps: behavior
extraction, behavior filtering, and behavior analysis.

1) Behavior Extraction: An instruction, in particular, the
opcode, specifies the operation to be performed. We call a
sequence of instructions or opcodes as a behavior. Instead
of from the raw instruction text, here we extract the opcode
sequences from the CFGs or DFGs of a malware sample, via
n-gram. The extracting procedure is given in Algorithm 3. In
detail, given a CFG or DFG, we first extract all the possible
paths of the graph and then collect the n-gram sequences for
all the paths, yielding the behavior set for the malware sample.
Likewise, to reduce the size of the behavior set, we perform the
instruction abstraction IA on the instruction sequences as well.
In addition, during extracting we also count the frequencies of
the opcode sequences.

Algorithm 3 Graph nGram GnG(G,n)

Input: a graph G
Output: an opcode sequence set

1: let paths be all the paths of G and res = ∅
2: for p ∈ paths do
3: let seqs = nGram(p, n)
4: for seq ∈ seqs do
5: let seqs ia = {r1 . . . r|seq| | ri ∈ IA(seq[i])}
6: for seq ia ∈ seqs ia do
7: res ∪ = {seq ia}
8: inc nums[seq ia]
9: end for

10: end for
11: end for
12: return res

2) Behavior Filtering: To reduce the size of the opcode
sequence set further, we filter these sequences with respect
to the binary classification built for the target family (in the
family classification task). To do that, we first approximately
calculate the weights of the target classification model, which
reflect how each unit of the input matrix contributes to the
classification. Then we take the units of top-k weights as a
reference, and filter out the extracted opcode sequences that do
not contain these selected units for the target family. Indeed,
each unit of the input matrix is a 2-gram opcode sequence.
And we believe that the selected 2-gram or n-gram sequences

contribute to the interpretation of the family classification
models.

Weight Calculation. We calculate the weights back-forward
and layer by layer for the target classification model. For
simplicity, we only consider the weight of the highest degree
for each layer. The last layer of a binary model is always a
vector with size 2, and the first value of the vector always
denotes the possibility of the input belonging to the target
class. So we set the weight for the last layer as [1, 0]. Without
loss of generality, we assume that the last i-th layer is a
matrix of size mi × ni and its weight matrix contributing to
the classification is Wi. Let us consider the last (i + 1)-th
layer, whose input is a matrix of size mi+1 × ni+1. Clearly,
the weight matrix of the (i + 1)-th layer Wi+1 contributing
to the classification is the one Wi+1,i of the (i + 1)-th
layer contributing to the i-th layer multiplied by the one
Wi of the i-th layer. In detail, we first calculate each unit
(e.g., Wi+1[r][c]) in the input matrix of the (i + 1)-th layer
contributing to the i-th layer, yielding the intermediate weights
(e.g., W r,c

i+1,i). This calculation depends on the layer structure.
Then we multiply the intermediate weights by Wi and thus
obtain Wi+1. Taking the unit Wi+1[r][c] for example, we have
Wi+1[r][c] =

∑
1≤p≤mi,1≤q≤ni

W r,c
i+1,i[p][q]×Wi[p][q], where

1 ≤ r ≤ mi+1 and 1 ≤ c ≤ ni+1.
Opcode Filtering. After the weight matrix is calculated, we

select the units of the top-k weights as a reference, which
is used to filter the opcode sequences collected in Section
II-C1. The opcode filtering is given in Algorithm 4, which
takes an opcode sequence set and a set of keys (i.e., the top-k
units) as input, and returns another opcode sequence set. The
algorithm iterates each opcode sequence as follows: it checks
how many keys (i.e. 2-Gram sequences) are there appearing in
the sequences and accumulate the corresponding weights; If
there are some keys appearing in it (i.e., w > 0), the sequence
is kept in the result. Note that the accumulated weights of the
selected sequences reflect how they contribute to the target
family classification in some sense.

Algorithm 4 Opcode Filtering OF (oSeqs, kKeys)

Input: an opcode sequence set and a set of keys
Output: an opcode sequence set

1: let res = ∅
2: for seq ∈ oSeqs do
3: let w = 0
4: for 2ops ∈ 2Gram(seq) do
5: if 2ops ∈ kKeys then
6: w+ = 2ops.weight
7: end if
8: end for
9: if w > 0 then

10: seq.weight = w and res ∪ = {seq}
11: end if
12: end for
13: return res

3) Behavior Analysis: A simple solution to mine the behav-
ior for a target malware family is to compute the behaviors
that only belong to the target family, that is,

Ch(F) =
⋂

apk∈F

seqs(apk) \
⋃

apk∈F ′,F ′ 6=F

seqs(apk)

where F, F ′ are family names and seqs is a function returning
the selected opcode sequences presented in Section II-C2.
However, this solution may yield no behaviors for some
families. In this paper, we use vector space model (VSM) [20]
to represent the malware families, that is, each malware family
is represented as a vector as follows:

Fj = (rj1, . . . , r
j
n)

where Fj denotes the j-th family, n is the number of total
selected behaviors for all families, and rji is the relevance (or
the importance) of the i-th behavior with respect to the j-th
family. We characterize the relevances by the term frequency-
inverse document frequency (TF-IDF), one of the popular
statistical indicators used in the VSM:

rji = tf j
i × idf j

i

We define the term frequency tf j
i as

tf j
i =

num(seqi, Fj) ∗ weight(seqi, Fj)

maxi′∈[1,n](num(seqi′ , Fj) ∗ weight(seqi′ , Fj))

and the inverse document frequency idf j
i as

idf j
i = log

m

|{F | seqi ∈ seqs(Fj)}|+ 1

where num(seqi, Fj) denotes the number of behavior seqi ap-
pearing in the family Fj , weight(seqi, Fj) denotes the weight
of behavior seqi with respect to the family Fj calculated
by Algorithm 4, and m is the number of malware families.
The relevance rji measures not only that the corresponding
behavior seqi appears quite often in the Fj family, but also
that it is not frequent in the other families. As a result, it
tends to filter out behaviors that are common across malware
families. Finally, after all the vectors are calculated, we select
the top-k behaviors as a characterization for the target family.

III. EXPERIMENT

This section presents our experimental results, including
the family classification experimental results and the family
characterization experimental results.

The malware samples we used are collected from Mar-
vin [21], Drebin [11], VirusShare [22], and Contagio-
Dump [23]: we first upload the samples1 into VirusTotal and
identity their labels as the most voted ones by those anti-virus
tools gathered in VirusTotal via the tool AVclass [24]. As many
families contain only few samples, we take the most common
20 families with 10675 malware, which are listed in Table I,
wherein we take 90% of samples from each malware family
as the training set and the remaining as the testing set.

1The samples from Drebin have been labelled, so we do not upload them.

TABLE I
MALWARE SAMPLES OF DIFFERENT FAMILIES

Id Family Num Id Family Num
A Adrd 134 K GinMaster 1315
B BaseBridge 673 L GoldDream 90
C DroidDream 90 M Iconosys 180
D DroidKungFu 1323 N Imlog 57
E ExploitLinuxLotoor 70 O Kmin 1364
F FakeDoc 131 P MobileTx 130
G FakeInstaller 925 Q Opfake 2753
H FakeRun 68 R Plankton 811
I Gappusin 176 S SendPay 66
J Geinimi 247 T SMSreg 72

Fig. 2. Results on Different Features

A. Family Classification Experiments

In this section, we first conduct experiments to see the ef-
fectiveness of CFG and DFG in malware family classification.
Then we present experiments to compare our approach with
some related tools, namely, CDGDroid [15], Drebin [11], and
VirusTotal [16].

1) Experiments on Different Features: We separately use
the features CFG, DFG, and their combinations to build
the classification model and conduct 10-fold cross validation
experiments on the training set. The experimental results are
given in Figure 2.

From the results, we can see that all the features are effective
in classifying malware families, with the average accuracy
89.56%, 90.97%, 89.90% and 94.71%, respectively. Compared
with CFG, DFG can classify more malware families with a
better accuracy (10 betters for DFG while 5 betters for CFG).
And considering the average accuracies, DFG performs a little
better than CFG. This is mainly because that DFGs are built
on CFGs such that DFGs would, in some sense, contain some
“control flow” information.

Moreover, the results also show that the horizontal com-
bination performs better than the vertical combination: (1)
the horizontal combination performs better on more malware
families with a better accuracy than the vertical combination;
and (2) the average accuracy of the horizontal combination
is higher than the one of the vertical combination. Rather
surprisingly, the combination may make against the classifi-
cation, for example, both combination modes perform a little
worse than either CFG or DFG on Family C. But on average,

TABLE II
AVERAGE ACCURACY FOR OUR APPROACH AND CDGDROID

CFG DFG Vertical Horizontal
Our Approach 93.90% 92.35% 94.76% 95.46%

CDGDroid 87.24% 85.43% 86.56% 89.73%

Fig. 3. Comparison against Drebin

both the combinations can offer a better performance for
more families than either CFG or DFG does. Especially, the
horizontal combination offers the best performance. A possible
reason for this is that the horizontal combination can make full
use of both CFG and DFG.

2) Comparison Against Some Tools: In this section, we
present experiments to compare our approach with CDGDroid,
Drebin, and VirusTotal.

We first compare our approach against a natural extension
of CDGDroid (from binary classification to multi-level clas-
sification) on the dataset. The comparison results are shown
in Table II, where the average accuracy is counted without
families. From the results we can see that our extended
approach performs better than CDGDroid on all the features,
in terms of average accuracy. The main reason is that our
extended approach takes the permissions required by an invoke
instruction into account.

Drebin is a lightweight Android malware detecting and clas-
sifying tool based on SVM, using 8 different types of features.
We next conduct experiments to compare our approach against
Drebin on the Drebin dataset. The experimental results are
given in Figure 3, which show that (1) our approach performs
better on more malware families than Drebin; and (2) the
average accuracy of our approach is higher than the one of
Drebin. The results also indicate that the features we consider
(i.e. CFG and DFG) are quite effective in malware family
classification, with respective to the 8 features used in Drebin.

Finally, we also compare our approach against some anti-
virus tools gathered in VirusTotal. For that, we design a
crawler to automatically upload the samples in the testing set
collected from the Drebin dataset into VirusTotal for further
detecting by those anti-virus tools. The results are shown
in Table III, where those tools with too few responds from
VirusTotal are filter out, the responds with a similar family

TABLE III
COMPARISON AGAINST ANTI-VIRUS TOOLS IN VIRUSTOTAL

Tool A B C D E F G H I J

our 90.000% 96.970% 88.889% 97.015% 85.714% 100.000% 96.774% 100.000% 83.333% 100.000%

Ad-Aware – 93.939% 100.000% 35.821% 42.857% 100.000% 96.774% 85.714% 50.000% 100.000%

Arcabit – 96.970% 100.000% 34.328% 28.571% 100.000% 95.699% 100.000% 83.333% 100.000%

Avast 100.000% 27.273% 33.333% 71.642% 42.857% 28.571% 51.613% – – 100.000%

AVG 100.000% 27.273% 66.667% 71.642% 42.857% 28.571% 51.613% – – 100.000%

Avira 40.000% 78.788% 77.778% 80.597% – 35.714% 51.613% – – 100.000%

BitDefender – 96.970% 100.000% 26.866% 100.000% 100.000% 94.624% 100.000% – 100.000%

CAT-QuickHeal – 100.000% 100.000% 85.075% – 100.000% 77.419% 100.000% 100.000% 100.000%

ClamAV – 75.758% 55.556% 82.090% – – – – – 90.000%

DrWeb 10.000% 63.636% 33.333% 49.254% – 92.857% – – – 100.000%

Emsisoft – 96.970% 100.000% 26.866% 42.857% 92.857% 98.925% – – 100.000%

ESET-NOD32 – 24.242% 100.000% 98.507% 71.429% – 45.161% – 16.667% 100.000%

F-Prot 10.000% 100.000% 100.000% 25.373% 71.429% 92.857% 88.172% – 50.000% 100.000%

F-Secure 10.000% 100.000% 77.778% 91.045% 42.857% 100.000% 80.645% – 33.333% 100.000%

Fortinet 10.000% 18.182% 100.000% 40.299% 71.429% 7.143% 87.097% – 16.667% 100.000%

GData – 75.758% 100.000% 92.537% – 100.000% 94.624% – – 100.000%

Ikarus – 57.576% 100.000% 62.687% 42.857% 21.429% 45.161% 71.429% – 100.000%

Kaspersky 100.000% 100.000% 88.889% 89.552% 100.000% 100.000% 63.441% 100.000% – 100.000%

Microsoft – 27.273% 88.889% 70.149% 28.571% – 11.828% – – 100.000%

NANO-Antivirus – 96.970% 100.000% 25.373% – 78.571% 70.968% – – 70.000%

Sophos – 24.242% 66.667% 95.522% – – 26.882% – – 100.000%

Symantec – 15.152% 33.333% – 14.286% – – – – 80.000%

Tencent 50.000% 100.000% 66.667% 46.269% 85.714% 100.000% 97.849% 100.000% 16.667% 100.000%

TrendMicro-HouseCall 60.000% 93.939% 88.889% 77.612% 28.571% 71.429% 44.086% 14.286% – 80.000%

Zillya 60.000% 27.273% 77.778% 85.075% 14.286% 57.143% 45.161% – 33.333% 80.000%

ZoneAlarm 100.000% 100.000% 88.889% 7.463% 100.000% 100.000% 63.441% 100.000% – 100.000%

AhnLab-V3 100.000% 9.091% 100.000% 100.000% 42.857% 100.000% 96.774% 100.000% 50.000% 100.000%

Antiy-AVL 90.000% 96.970% 88.889% 97.015% 71.429% 92.857% 97.849% 71.429% – 100.000%

Baidu – 27.273% – 68.657% 14.286% 0.000% 30.108% – 100.000% 100.000%

Kingsoft – – 44.444% – – 78.571% 55.914% 71.429% 33.333% 30.000%

VBA32 90.000% 100.000% 22.222% 83.582% 42.857% 64.286% 48.387% – – 80.000%

Tool K L M N O P Q R S T

our 91.176% 85.714% 100.000% 100.000% 100.000% 100.000% 98.387% 96.825% 100.000% 80.000%

Ad-Aware 76.471% 100.000% 81.250% – 100.000% 100.000% 96.774% 79.365% – –
Arcabit 76.471% 100.000% 87.500% – 93.333% 100.000% 88.710% 82.540% – 20.000%

Avast 97.059% – 25.000% 100.000% 100.000% 100.000% 17.742% – – 40.000%

AVG 97.059% – 25.000% 100.000% 100.000% 100.000% 17.742% – – 40.000%

Avira 79.412% 42.857% 25.000% 20.000% 40.000% 100.000% – 98.413% – 60.000%

BitDefender 76.471% 100.000% 87.500% – 93.333% 100.000% – 84.127% – 20.000%

CAT-QuickHeal 100.000% 100.000% 100.000% – 73.333% 100.000% – 95.238% – 40.000%

ClamAV – 42.857% 20.000% 100.000% 100.000% – – – –
DrWeb – 100.000% 81.250% 100.000% 80.000% 28.571% – – 66.667% –

Emsisoft 76.471% 100.000% – – 93.333% 100.000% – 84.127% – 40.000%

ESET-NOD32 100.000% 57.143% – 80.000% 86.667% 100.000% – 98.413% – 40.000%

F-Prot 88.235% 100.000% 100.000% 100.000% 60.000% 100.000% 70.968% 92.063% – 40.000%

F-Secure 100.000% 42.857% 93.750% – 86.667% 85.714% 16.129% 3.175% – 20.000%

Fortinet 29.412% 100.000% 12.500% – 60.000% – 17.742% 7.937% – –
GData 23.529% 100.000% – – 100.000% 85.714% 91.935% 84.127% – 40.000%

Ikarus 88.235% 100.000% 87.500% 100.000% 93.333% 85.714% 3.226% 14.286% – 20.000%

Kaspersky 100.000% 100.000% 100.000% 60.000% 66.667% 100.000% 80.645% 95.238% 100.000% 100.000%

Microsoft 32.353% – – – 100.000% – 6.452% 47.619% – –
NANO-Antivirus 70.588% 42.857% 100.000% 20.000% 66.667% 100.000% 72.581% 3.175% 100.000% –

Sophos 79.412% 100.000% 93.750% – 86.667% 100.000% 40.323% 4.762% 100.000% –
Symantec 41.176% 28.571% 100.000% – – 71.429% 3.226% – – –
Tencent 91.176% 100.000% 75.000% 100.000% 100.000% 71.429% 69.355% – 100.000% 40.000%

TrendMicro-HouseCall 32.353% 28.571% 12.500% – 60.000% 28.571% 51.613% 17.460% 16.667% 20.000%

Zillya 26.471% 57.143% 6.250% 100.000% 46.667% – – 39.683% 16.667% –
ZoneAlarm 100.000% 100.000% 100.000% 60.000% 66.667% 100.000% 80.645% 93.651% 100.000% 100.000%

AhnLab-V3 100.000% 42.857% 100.000% – 100.000% 100.000% 87.097% 14.286% 66.667% 20.000%

Antiy-AVL 100.000% 100.000% 100.000% 100.000% 86.667% 100.000% 98.387% 3.175% 100.000% 100.000%

Baidu 100.000% 100.000% 100.000% 100.000% 100.000% – – 100.000% – –
Kingsoft 61.765% – 62.500% 20.000% – 42.857% 64.516% 11.111% 16.667% 60.000%

VBA32 32.353% 100.000% – 20.000% 40.000% 14.286% 54.839% 17.460% 83.333% 60.000%

name are conservatively considered correct2, and – denotes
that there are no correct responds in term of family name.

From the results, we can see that not all the family in the
Drebin dataset are considered by all the tools, except the J
family (i.e., Geinimi): the numbers of malware families that
the tools in VirusTotal can detect on this testing set (i.e., the
accuracy is nonzero) range from 8 to 19 and the numbers of
tools by which each malware family can be detected are from
12 to 30. This is mainly because different tools take different
family classification systems. Moreover, the results also show
that our approach performs better than 73.333% tools (or does
not perform worse than all the tools) on more than half the
malware families that the tool can detect on this testing set.
And on no malware families there are 6 tools performing better

2There may be two different names that characterize an identity family,
which are ignored here.

than ours. In particular, the tool Kingsoft perform worse than
our approach on all the malware families that Kingsoft can
detect. Besides, for each family, except the L family (i.e.,
Glodream), most tools that can detect the target family (i.e.,
tools with a nonzero accuracy) have a lower accuracy than
our approach on the testing dataset. In particular, there are 9
families for which no tools perform better than our approach
on the testing dataset.

B. Family Characterization Experiments

In this section, we present the experimental results about the
family characterization on some selected malware families.

1) Family Characterization: Due to space limitation, we
present the top-20 behaviors extracted from CFG and DFG for
Family R (i.e., Plankton), which are given in Table IV, where
we use 5-gram sequences to represent a behavior and select
the 2-gram sequences of top-100 weight as a reference to filter

TABLE IV
TOP-20 BEHAVIORS FOR FAMILY PLANKTON

Graph 5-Gram

CFG

move-object/from16,move-exception,goto/16,move-object/from16,move-exception
move-result-object,move-exception,monitor-exit,throw,move-exception

const/16,const/16,aput-byte,const/16,const/16
const-string,move-exception,monitor-exit,throw,move-exception

move-object/from16,move-exception,invoke-static,new-instance,invoke-direct
aput-byte,const/16,const/16,aput-byte,const/16

monitor-exit,move-exception,monitor-exit,throw,move-exception
const/16,aput-byte,const/16,const/16,aput-byte

const-string,sput-object,const-string,move-exception,invoke-virtual
move-result-object,move-exception,monitor-exit,move-exception,monitor-exit

sget-object,move-exception,monitor-exit,throw,move-exception
iget-object,move-exception,monitor-exit,throw,move-exception

invoke-static,move-exception,monitor-exit,throw,move-exception
move-object/from16,move-exception,const-string,move-object/from16,invoke-static
move-object/from16,move-exception,invoke-direct/range,const-string,new-instance
move-object/from16,move-exception,sget-object,const-wide/32,invoke-static/range

move-object/from16,move-exception,sget-object,const-wide/32,move-exception
move-object/from16,move-exception,sget-object,move-exception,invoke-static

move-object/from16,move-exception,invoke-direct/range,const-string,move-object/from16
move-object/from16,iget-object,move-object/from16,move-object/from16,move-exception

DFG

move/from16,invoke-virtual,move-result,move/from16,invoke-virtual
move-object/from16,invoke-virtual,move-result,move/from16,invoke-virtual

move-result-object,invoke-interface,move-result-object,invoke-interface,move-result-object
move-result-object,invoke-static,move-result-object,invoke-static,move-result-object

invoke-virtual,move-result-object,invoke-interface,move-result-object,invoke-interface
move-result,iget-object,iget-object,iget-object,iget-object

move-object/from16,iget-object,iget-object,move-object,move-object
invoke-interface,move-result-object,invoke-interface,move-result-object,invoke-interface

invoke-static,move-result-object,invoke-static,move-result-object,invoke-static
move-result-object,invoke-interface,move-result-object,invoke-interface,move-result
move/from16,invoke-virtual,move-result,move/from16,android.permission.DUMP

move-object/from16,iget-object,move,move,invoke-virtual
move-object/from16,iget-object,iget-object,iget-object,move-object

move-object/from16,invoke-virtual,move-result,move/from16,android.permission.DUMP
iput-object,iget-object,iput-object,iget-object,throw

invoke-interface,move-result-object,invoke-interface,move-result,if-eqz
move-object/from16,iget-object,move,move,move

const/4,move,add-int/lit8,invoke-virtual,move-result
move-object/from16,iget-object,iget-object,move-object,iget-objectl

move-object/from16,iget-object,iget-object,move-object,invoke-virtual

behaviors, and the final total number of the selected behaviors
for CFG and DFG are 1430127 and 55488, respectively.

From the table, we can see that the most possible com-
mon behaviors that shared by the samples of the Plank-
ton family from CFG and DFG are “move-object, move-
exception, goto, move-object, move-exception” and “move,
invoke-virtual, move-result, move, invoke-virtual”, respec-
tively. In detail, all the top-20 behaviors from CFG are related
to data manipulation, wherein 16 behaviors (80%) involve
at least two data manipulations, and there are 8 behaviors
(40%) involving function invokes. While for DFG, there are 19
behaviors (95%) that are related to data manipulation, wherein
18 behaviors (90%) involve at least two data manipulations,
and 14 (70%) involving function invokes. This is in accordance
with the behaviors of the Plankton family: most Plankton
samples is included in host apps by adding a background
service, which collect information, including the device ID
as well as the list of granted permissions to the infected app,
and send them back to a remote server. Moreover, there are
2 behaviors from DFG that request the DUMP permission,
which allows an APK to get the dump system information
from the System Services; and there are 17 behaviors from
CFG that involve exceptions and may deserve attention.

2) Evaluation on Characterization: To evaluate the charac-
terization, we build a classification model with top-k behaviors
as features and then perform the model on the testing dataset.
Figure 4 shows the experimental results about the six largest
malware families with top-1o/oo behaviors.

In general, for both CFG and DFG, the more behaviors, the
higher accuracy. Specifically, the accuracy increases rapidly
when we select the top-2o/ooo behaviors for CFG and the top-

7o/ooo for DFG, respectively; while it increases slowly after
that. This indicates that the characterization can capture the
behaviors of the testing families.

IV. RELATED WORK

Over the past decade, there are a lot of research work for
Android malware analysis. Here we only review some related
and recent ones, namely, malware classification and malware
characterization.

DroidAPIMiner [25] extracts critical API calls, their pack-
age level information, as well as their parameters as features
to characterize Android malware. Hyunjae Kang et. al. [26]
proposed an Android malware detection and classification
system based on static analysis by using serial number in-
formation from the certificate as a feature. Richard Killam et.
al. [12] proposed a system for classifying Android malware
by leveraging the text strings present in an APK’s binary file.
Drebin [11] uses 8 different types of features, namely, hard-
ware components, requested permissions, app components,
filtered intents, restricted API calls, used permissions, suspi-
cious API calls, and network addresses, to classify Android
malware. Hein and Myo [13] proposed a characterization of
Android malware, where permission, API calls and strings are
used as features. Martı́n et. al. [14] proposed another android
malware characterization using metadata, such as permissions,
the application developer and certificate issuer. Nannan XIE et.
al. [27] proposed a framework to explore the key features for
Android malware families from three categories of features,
that is, platform-based permissions, hardware components, and
suspicious API calls. However, most of these approaches con-
sider neither control flow properties, nor data flow properties.

Dendroid [28] is a text mining approach to analyzing and
classifying android malware families, where the feature they
used are a high-level representation of classic control-flow
graphs. DroidMiner [7] uses a two-level behavioral graph,
which is built on control-flow graphs and call graphs, to
represent APKs, and then identifies and labels elements of
the graph that capture malicious behavioral patterns. However,
most of these approaches only consider control flow properties,
leaving data flow properties out of consideration.

Data flow analysis is also adopted in malware family
classification. DroidADDMiner [8] uses features based on
data dependency between sensitive APIs to detect, classify
and characterize Android malware. ASTROID [9] tries to
look for a maximally suspicious common subgraph, which is
built from inter-component call relations and their semantic
metadata (e.g., data-flow properties), such that the subgraph
is shared between all known instances of a malware fam-
ily, using Maximum Satisfiability. EnMobile [10] is a new
entity-based characterization of Android application behaviors,
which includes four types of predicates: event predicate, entity
predicate, data-flow predicate, and control-flow predicate. All
these tools can characterize malware behaviors on the high
level semantically. But different from these work, our approach
work on the instruction level and use the lightweight analysis,
and thus is simpler.

(a) Model with Top-k Behaviors from CFG (b) Model with Top-k Behaviors from DFG

Fig. 4. Accuracy for Model with Top-1o/oo Behaviors

V. CONCLUSION

In this work, we have proposed an Android malware family
classification and characterization approach, using control flow
graph (CFG) and data flow graph (DFG) as features. To
evaluate the proposed approach, we have carried out some
interesting experiments. Through experiments, we have found
that the family classification model taking the horizontal
combination of CFG and DFG as features performs the best
and our family classification model has a better performance
than CDGDroid, Drebin and most of anti-virus tools gathered
in VirusTotal. The experimental results have also shown that
our characterization can capture the behaviors of the testing
families.

As for future work, we may consider the key instructions
to improve the approach. We can use other program graphs,
such as program dependence graphs, to train the model. We
can also consider the corresponding instructions of the top-k
behaviors to explain the target malware families. More exper-
iments on malware anti-detecting techniques (i.e., obfuscation
techniques) are under consideration.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural
Science Foundation of China under Grants No. 61772347,
61836005, 61532019 and 61761136011, Science and Tech-
nology Foundation of Shenzhen City under Grant No.
JCYJ20170302153712968, Project 2016050 supported by
SZU R/D Fund and Natural Science Foundation of SZU (Grant
No. 827-000200).

REFERENCES

[1] IDC Report, http://www.idc.com/promo/smartphone-market-share/os.
[2] Report from G DATA, 2017, https://www.gdatasoftware.com/blog/2018/

11/31255-cyber-attacks-on-android-devices-on-the-rise.
[3] J. Sahs and L. Khan, “A machine learning approach to android malware

detection,” in EISIC ’12, 2012, pp. 141–147.
[4] K. Allix and et al., “Empirical assessment of machine learning-based

malware detectors for android,” Empirical Software Engineering, vol. 21,
no. 1, pp. 183–211, 2016.

[5] N. A and et al., “Adaptive and scalable android malware detection
through online learning,” in IJCNN ’16, 2016, pp. 157–175.

[6] N. Mclaughlin and et al., “Deep android malware detection,” in CO-
DASPY ’17, 2017, pp. 301–308.

[7] C. Yang and et al., “DroidMiner: Automated Mining and Characteriza-
tion of Fine-grained Malicious Behaviors in Android Applications,” in
ESORICS ’14, 2014, pp. 163–182.

[8] Y. Li and et al., “Detection, Classification and Characterization of
Android Malware Using API Data Dependency,” in SecureComm ’15,
2015, pp. 23–40.

[9] Y. Feng and et al., “Automated synthesis of semantic malware signatures
using maximum satisfiability,” in NDSS, 2017.

[10] W. Yang, M. R. Prasad, and T. Xie, “Enmobile: Entity-based character-
ization and analysis of mobile malware,” in ICSE, 2018.

[11] D. Arp and et al., “DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket,” in NDSS ’14, 2014.

[12] P. C. R. Killam and N. Stakhanova, “Android malware classification
through analysis of string literals,” in Workshop on TA-COS, 2016.

[13] C. L. P. M. Hein and K. M. Myo, “Characterization of malware detection
on android application,” in Genetic and Evolutionary Computing, 2016,
pp. 113–124.

[14] I. Martı́n and et al., “Android malware characterization using metadata
and machine learning techniques,” CoRR, vol. abs/1712.04402, 2018.

[15] Z. Xu and et al., “CDGDroid: Android Malware Detection Based on
Deep Learning Using CFG and DFG,” in ICFEM’18, 2018, pp. 177–
193.

[16] VirusTotal, https://www.virustotal.com.
[17] K. W. Y. Au and et al., “Pscout: Analyzing the android permission

specification,” in CCS, 2012.
[18] Dalvik Bytecode, https://source.android.com/devices/tech/dalvik/

dalvik-bytecode.
[19] Android Permission Overview, https://developer.android.com/guide/

topics/permissions/overview.
[20] G. M. Salton, A. Wong, and C. S. A. Yang, “A vector space model for

automatic indexing,” Communications of the Acm, vol. 18, no. 11, pp.
613–620, 1974.

[21] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in ComSAC ’15, 2015, pp. 422–433.

[22] VirusShare, https://virusshare.com/.
[23] Contagiodump, http://contagiodump.blogspot.com/.
[24] M. Sebastián and et al., “AVclass: A Tool for Massive Malware Label-

ing,” in International Symposium on Research in Attacks, 2016.
[25] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features

for robust malware detection in android,” in SecureComm, 2013.
[26] H. Kang and et al., “Detecting and classifying android malware using

static analysis along with creator information,” International Journal of
Distributed Sensor Networks, vol. 11, no. 6, pp. 1–9, 2015.

[27] N. Xie and et al., “Fingerprinting android malware families,” Frontiers
of Computer Science, no. 12, pp. 1–10, 2018.

[28] G. Suarez-Tangil and et al., “Dendroid: A text mining approach to
analyzing and classifying code structures in android malware families,”
Expert Systems with Applications, vol. 41, no. 4, Part 1, pp. 1104 –
1117, 2014.

