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Abstract. Traditional machine learning techniques, including deep learn-
ing, most assume that the classes of testing samples belong to the subset
of training samples. However, there are many scenarios that conflict with
this assumption in the real world, that is, the classes of testing samples
have never been seen in model training. To improve the generalization
ability of the model in these cases, zero-shot learning (ZSL) was pro-
posed, which can mine the mapping relationship between the features
and the labels of the seen class samples and then transfer it to the pre-
diction of unseen classes. Most of the existing ZSL algorithms or appli-
cations are concerned with computer vision problems. In fact, the above
difficulties and the demand for ZSL also exist in other fields, but there
is currently a lack of relevant research progress review. To make up for
this gap, this paper reviews the latest research progress of ZSL beyond
computer vision, introduces the general concepts of ZSL, classifies the
mainstream models, and refines three issues worthy of study. This study
is expected to provide ZSL-based solution guidance for researchers and
engineers beyond the field of computer vision.
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1 Introduction

In recent years, with the rapid development of machine learning techniques,
especially deep learning, related algorithms have made breakthroughs in many
fields, such as computer vision and natural language processing. Most of these
algorithms assume that the application environment is in a closed set state, that
is, the classes of the testing samples must be the classes that have been seen
during the model training. However, the real world is actually an open set state,
that is, sometimes the classes of testing samples are never seen by the model. We
call the classes that one can see during the model training as the seen classes,
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which corresponds to the unseen classes. Most of the traditional machine learning
algorithms are devoted to the prediction of the seen classes but there is no way
to predict the unseen classes. To improve the prediction performance of the
model for the unseen classes, zero-shot learning (ZSL) was proposed [34], which
refers to the technology that can make the model accurately predict the unseen
classes [35]. According to different testing settings, existing ZSL algorithms can
be divided into two categories: traditional ZSL and generalized ZSL [45]. The
difference between them is that the testing samples of the former can only come
from unseen classes, while the testing samples of the latter can come from both
the unseen classes and the seen classes.

One of the differences between ZSL and traditional machine learning is the
construction of the training data set. In ZSL, in addition to labels (i.e., the
classes), it is often necessary to provide the side information corresponding to
the labels. The side information is usually the semantic coding of the classes
and their attributes, which can be extracted manually or by automatic tech-
niques such as word2vec [29]. After the training data set is constructed, the
ZSL algorithm learns the general knowledge in the problem domain by mining
the relationship between the features of the seen class samples, class informa-
tion, and the side information, and then applies it to the prediction of unseen
classes. For example, for image classification problems, in the training phase,
the ZSL algorithm first learns the mapping function between the visual space
corresponding to the seen classes images and the semantic space corresponding
to the classes; in the testing phase, given a testing sample, the ZSL model can
predict the semantic feature corresponding to its class according to its visual
features, then compare the semantic features corresponding to the original side
information to find the closest one, and finally map back to the corresponding
class to complete the prediction.

The advantages of ZSL include: (1) It can improve the generalization ability
and practicality of machine learning models. For a well-trained ZSL model, it
can make an accurate prediction even if it encounters unseen classes, which is
critical for real-world applications; (2) it greatly eases the dependence of machine
learning algorithms on labeled data. In many scenarios, the cost of collecting
a large number of training samples and labeling them is very expensive, such
as medical image recognition and wild animal recognition scenarios. For these
cases, sometimes we can obtain some prior knowledge related to the classes in
advance, which can be used to construct the side information of the classes, and
then one can use ZSL to train a model with good generalization ability. ZSL has
attracted extensive attention in recent years, and many related algorithms and
applications have been proposed [35, 51].

However, most of the existing work is oriented to the field of computer vision.
In fact, the problem to be solved by ZSL is a common problem in the real world.
In other words, ZSL can be applied to solve problems other than computer
vision. Actually, there have been many research achievements on this issue in
recent years [30, 14, 36]. However, to the best of our knowledge, there is currently
no relevant survey to introduce the research progress of ZSL beyond computer
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vision. To fill this gap, this paper introduces ZSL from the following four aspects
(also shown in Fig. 1):

(1) General concepts: the history of ZSL, commonly used data sets, evaluation
standards, and the strategies for constructing the side information;

(2) Mainstream algorithms: categories and characteristics of mainstream ZSL
models;

(3) Research progress: mainly focus on the notable work of ZSL beyond computer
vision;

(4) Future trends: discussion on the future research direction of ZSL.

Fig. 1. The structure of this survey

Compare with other existing reviews on ZSL [35, 51], our paper has the fol-
lowing highlight: This is the first review of research progress beyond computer
vision that provides researchers and engineers in a wider field with a basic in-
troduction to ZSL and representative application examples, which is expected
to provide them with valuable guidelines for solving a wider range of real engi-
neering problems.

The remainder of this paper will be organized as follows. In Sec. 2, we intro-
duce several general concepts of ZSL, such as its evaluation standards; we group
some notable ZSL models into five categories in Sec. 3; Sec. 2 and Sec. 3 can
help readers understand the research status of ZSL from a macro perspective.
In Sec. 4, we pay attention to the representative work of ZSL beyond computer
vision. In Sec. 5, we summarize three worthy research directions for researchers.
We conclude this paper in Sec. 6.

2 Introduction to general concepts of ZSL

In this section, we briefly introduce the history of ZSL, the commonly used data
sets, the evaluation criteria, and the constructive methods of the side informa-
tion.
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2.1 The proposal and development of ZSL

Before the concept of ZSL was formally proposed, some scholars had certain
assumptions on the recognition of unseen classes. Representative work includes:
zero-data learning of new tasks [23], ZSL with semantic output codes [34], unseen
class learning by between-class attribute transfer [21], and ZSL through cross-
modal transfer [40].

Specifically, zero-data learning of new tasks was proposed by Larochelle et
al. in 2008 [23]. Its main goal is to apply the learned knowledge to the predic-
tion of classes or tasks without training data, and to provide related semantic
information for them, which is similar to the definition of ZSL. The authors also
proposed the input space-based method and the model space-based method for
dealing with this problem, which inspires the ZSL to use the side information of
classes for classification.

In 2009, Palatucci et al. [34] proposed to use the semantic output coding clas-
sifier and the label base containing semantic knowledge to realize ZSL, which is
the first time to propose the concept of “zero-shot learning”. The model is mainly
classified by the semantic codes information of class labels in the knowledge base.
It compares the semantic codes information corresponding to the testing sample
with the semantic codes information of the known classes in the knowledge base
to distinguish the seen classes and the unseen classes.

Based on the semantic coding, Lampert et al. [21] proposed an unseen class
learning method based on the between-class attribute transfer. The contributions
of their work include: (1) Provided a unified training framework for most of
the current ZSL methods; (2) Established a benchmark data set for ZSL (i.e.,
“Animals with attributes”); (3) Introduced the concept of “attribute” into ZSL.
Based on this framework, two classic ZSL models are derived: the direct attribute
prediction model (DAP) and the indirect attribute prediction model (IAP).

In 2013, Socher et al. [40] proposed a ZSL algorithm with a cross-modal
transfer function, which transformed the ZSL into a subspace learning problem.
The core idea of this method is to map the training images and their labels into
the same subspace, and then use similarity measurement techniques to determine
the labels of the testing samples.

Later, with the rapid development of deep learning, researchers began to use
related technologies to realize the evolution from the low-level visual features to
the deep-level visual features, and then better mining the mapping relationship
between the visual space and the semantic space. For example, one can use
the deep convolutional neural network proposed by Alex et al. in 2012 [20] and
the word2vec technique proposed by Mikolov et al. in 2013 [29] to extract the
deep visual features from the training data and obtain the semantic vectors
corresponding to the labels, respectively, and then train the model based on the
existing ZSL algorithm.

The classes of testing samples in conventional ZSL are completely different
from those in the training phase, which deviates from the real-world rules because
the classes of the testing samples in the real world should include both the seen
classes and the unseen classes. To make the ZSL model more consistent with the
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real world, generalized ZSL (GZSL) was proposed [7], which has no restrictions
on the types of testing samples. Therefore, GZSL is more difficult but also more
practical, which has become one of the current research hotspots.

2.2 Data sets and evaluation criteria

At present, ZSL is mainly used to solve computer vision problems and some
representative data sets for this scenario include: ImageNet [10], Animals with
Attributes (AwA) [7], Caltech-UCSD-Birds200-2111 (CUB) [43], Attribute Pas-
cal and Yahoo (aPY) [12], SUN attribute [37], Oxford Flowers (FLO)[31], etc.

In the early stage, there was no unified standard to divide the seen classes
and the unseen classes for a given data set, resulting in an unfair phenomenon
in the performance evaluation of the ZSL algorithm. To alleviate this problem,
Xian et al. proposed a standard data set segmentation method [47] in 2017,
which unifies the benchmarks of model evaluation by unifying the evaluation
protocol and the data segmentation. In addition, due to the uneven distribution
of the classes in ZSL, the traditional mean average precision (MAP) can not
reflect the performance of the ZSL algorithm well, so the class average accuracy
was proposed [45] and has become one of the most commonly used evaluation
indicators, which can be obtained using the following formula:

M =

∑K
i=1 A

i
u

K
(1)

where K is the number of the unseen classes and Ai
u refers to the prediction

accuracy of the model on the i-th unseen class.
Moreover, to better evaluate the performance of the GZSL algorithm, the

harmonic mean H was proposed [47] and has become one of the most commonly
used evaluation indicators, which can be obtained as follows:

H =
2×As ×Au

As + Au
(2)

where As and Au are the top-1 accuracy of the model on the seen classes and
the unseen classes, respectively.

2.3 Side information

Side information is used to describe the auxiliary information of the classes such
as their attributes. It serves as a bridge between the seen classes and the unseen
classes, making it possible to use the seen samples to train a ZSL model that
can predict the unseen classes. Therefore, side information is an important part
of ZSL, which can usually be obtained through two methods: human annotation
and text-based learning [35, 51].

Methods based on human annotation can be further divided into the attribute-
based method and the non-attribute-based method. As a kind of prior knowledge,
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attributes can semantically represent specific classes and reflect their character-
istics, so that they can be used to distinguish different classes in a data set.
Commonly used attribute representation can be divided into binary attributes
and continuous attributes. Binary attributes are used to describe whether a spe-
cific class or object has a certain attribute, if it is, the value of this dimension
is 1, otherwise it is 0. Continuous attributes are generally used to describe the
possibility of a specific class or object having a specific attribute, which is usually
expressed in the form of real values. The non-attribute-based method directly
uses the names of the classes as their semantic information description to con-
struct the semantic vectors. Methods based on human annotation need the help
of human’s prior knowledge, so it inevitably has certain subjectivity. Moreover,
when there are many classes, this method is time-consuming and expensive. The
advantage of this method is that it is helpful to get high accuracy of the ZSL
model, and to some extent, it can improve the interpretability of the results.

Text-based learning methods mainly use machine learning algorithms to ob-
tain mapping models and then map classes or their descriptions to corresponding
vectors. According to different auxiliary information, this kind of method can
be divided into two categories: label embedding and text embedding. Label em-
bedding mainly uses natural language processing models, such as word2vec, to
represent the class labels in vectorization. The similarity between word vectors
can be used as a reference for classification. The text embedding method needs
to obtain the description text of the classes, and convert the text description
into the corresponding semantic vector through text encoding models. The text-
based methods can effectively reduce the labor cost, but the disadvantage is that
the data sources often have noise and the results are less interpretable.

3 Categories and characteristics of mainstream models

Inspired by the classification method of [45], here we divide the existing notable
ZSL models into five categories: intermediate attribute classifiers models, com-
patibility models, hybrid models, transductive models, and generative models.
The details of these five categories and the corresponding notable algorithms are
shown in Table 1.

3.1 Intermediate attribute classifiers models

In this learning paradigm, attributes are the key information that the ZSL model
uses to make decisions. Specifically, given a testing sample, the ZSL model first
predicts the attribute of its class and then selects the most probable class accord-
ing to the similarity of the attribute to the attributes of the known classes. The
consistency model and the hybrid model are also derived from the intermediate
attribute classifiers models.

At present, the existing intermediate attribute classifiers models can be di-
vided into two categories: the direct attribute prediction model (DAP) and the
indirect attribute prediction model (IAP) [22]. In the training phase, DAP trains
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Table 1. The details of the five categories of ZSL and the corresponding notable
algorithms

Categories Notable algorithms

Intermediate attribute classifiers models DAP [27], IAP [22], etc.

Compatibility models DEVISE [15], ALE [1], SJE [2], ES-
ZSL [39], SAE [19], LATEM [44],
CMT [40], etc.

Hybrid models SSE [52], CONSE [32], SYNC [6],
GFZSL [42], etc.

Transductive models GFZSL-tran [42], DSRL [50], etc.

Generative models f-xGAN [46], cycle-CLSWGAN [13], AFC-
GAN [25], etc.

the attribute classifier. In the testing phase, one can directly obtain the attribute
feature estimate by inputting the attributes of the testing sample into the model
even if the testing class is an unseen class. The difference between IAP and DAP
is that the attribute classifier of IAP cannot directly obtain the attribute fea-
ture estimate. IAP needs to input the class label of the sample and its attribute
indication vector to indirectly obtain the attribute feature estimate.

3.2 Compatibility models

The compatibility models are models that map the input and output to a sub-
space and then judge the compatibility of the input and output mapping vec-
tors in the subspace and determine the class label. The compatibility models
can be divided into linear compatibility models and non-linear compatibility
models according to whether the compatibility function is linear. Some notable
linear compatibility models include: deep visual-semantic embedding model (DE-
VISE) [15], attribute label embedding model (ALE) [1], structured joint embed-
ding (SJE) [2], embarrassingly simple zero-shot learning (ESZSL) [39], semantic
auto-encoder embedding (SAE) [19], etc. Some representative non-linear com-
patibility models include: latent embedding models (LATEM) [44], cross-mode
migration model (CMT) [40], etc.

Compatibility models need to train the class label embedding function so that
the class label can be accurately embedded in the feature space. However, the
compatibility models rely heavily on the quality of auxiliary information. The
learning ability of the linear compatibility models is often limited by the linear
function, so its expression ability is not as good as the nonlinear compatibility
models.

3.3 Hybrid models

The hybrid models use a hybrid combination of feature subspace mappings cor-
responding to the training class labels to represent the mapping of the testing
samples in the feature subspace, and then obtain the class label estimation of the
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testing sample based on the similarity between the input sample mapping and
the testing class label mapping. Some notable hybrid models include: semantic
similarity embedding model (SSE) [52], convex combination semantic embedding
model (CONSE) [32], synthesized classifiers (SYNC) [6], generative framework
for zero-shot learning (GFZSL) [42], etc.

The training mechanism of the hybrid models is similar to that of the IAP,
so they also rely heavily on the similarity between the training classes and the
testing classes, and the robustness of their models is relatively weak.

3.4 Transductive models

Transductive models [41] use the class labels of the training classes and the
side information of the testing classes to determine the class labels of the testing
samples, and then add the testing samples with their predicted class labels to the
original training data set. Then, continue to learn the new decision rules based on
the augmented data set, and use the updated model to continue the above steps
until all testing samples are labeled. Representative transductive models include
GFZSL-tran [42], discriminative semantic representation learning (DSRL) [50],
etc.

Transductive models belong to an online learning paradigm that can continue
to update themselves during the testing phase. The disadvantage of this kind
of method is that their training process needs a lot of calculation and the final
model performance dependents on the initial accuracy of the model.

3.5 Generative models

Recently, it is popular to combine generative adversarial networks (GAN) [18]
with ZSL to produce generative ZSL models. Using the side information of the
classes as the constraint of the GAN model can enable its generator to generate
features related to the specific class, which in turn can make the model better
distinguish different classes.

In particular, if the corresponding pseudo samples or features can be gen-
erated according to the side information of the unseen classes, the ZSL task
can be converted into traditional supervised learning. Some notable work in-
cludes: f-xGAN [46], cycle-CLSWGAN [13], alleviating feature confusion GAN
(AFC-GAN) [25], etc.

4 Application progress of ZSL beyond computer vision

ZSL has been widely used in the field of computer vision and some researchers
have reviewed these works well [35, 51]. Different from the existing surveys, here
we focus on the research progress of ZSL in natural language processing and
other fields.
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4.1 Application of ZSL in natural language processing

Nakashole et al. [30] combined ZSL with the bilingual dictionary induction to
realize that one can translate an uncommon language (e.g., Portuguese) into a
common language (e.g., English) through a third relatively relevant language
(e.g., Spanish) when only a small seed dictionary is used. The authors claimed
that using ZSL to train the translation model can achieve high accuracy even
with a small amount of labeled data.

In [14], Ferreira et al. proposed a complete semantic analyzer based on the
word embedding and ZSL techniques. This semantic analyzer does not require
annotated contextual data, ontology description of the target domain, and gen-
eral word embedding features, which reduces the cost of manual annotation and
can obtain performance comparable to the use of manual annotation data.

Pasupat et al. [36] used the ZSL technique to extract entities of specified
categories in web pages. Most of the traditional methods are effective for ordi-
nary categories, but they are relatively weak when facing categories with few
samples. ZSL does not rely on multiple web pages to get entities, it only needs a
single web page to get the target entities. Moreover, it can extract the target en-
tities from the semi-structured data on the web page without complete category
information.

In [28], Ma et al. used a ZSL framework to solve the problem that current
named entity recognition methods cannot detect unseen entities. They proposed
a label embedding method that combines prototype information and hierarchical
information to learn the pre-trained label embedding. In this way, the above
problems can be alleviated to some extent.

Funaki et al. [17] proposed an image-based cross-language document retrieval
method, which can take images in two languages as the target, and deduce
the common semantic subspace connecting two languages through generalized
canonical correlation analysis, to realize document retrieval between different
languages. This method can reduce the cost of manually creating a corpus when
there is no or only a small number of parallel corpora.

4.2 Application of ZSL in other fields

In addition to applications in computer vision and natural language processing,
ZSL has also been used in other fields. For example, for the human activity
recognition problem, Zheng et al. [53] proposed that existing experience can be
used to identify unseen human activities through knowledge transfer methods,
and then Cheng et al. [9] realized the recognition of unseen activity categories
based on the semantic description by using ZSL.

In the field of knowledge representation, Xie et al. [48] proposed the DKRL
model to deal with the task of entity classification where at least one entity in
the triple is not in the knowledge graph.

Robyns et al. [38] realized the identification of unseen physical layer devices
by using ZSL. ZSL can also complete tasks such as generating Emoji expres-
sions for unseen images [11], neural decoding of fMRI images [3], and identifying
unseen molecular compounds [23].
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5 Future trends

Here we propose three open problems worthy of study..

5.1 Smart side information construction method

As mentioned in Sec. 2.3, the side information generated by manual labeling has
the advantages of high accuracy and strong interpretability, but its disadvantages
are high cost and low efficiency. The automatic text-based learning method can
overcome these shortcomings, but the quality of the side information obtained
by this method is difficult to guarantee. Combining these two methods to design
a smart side information construction method will be a problem worthy of study.
It is expected that the new method can obtain abundant side information quickly
and accurately.

5.2 Generalized zero-shot learning

As mentioned in 2.1, GZSL is more in line with the rules of the real world, that
is, the testing samples can come from both the seen and unseen classes. Since
the unseen classes samples have never been seen during model training, it is
very difficult for the model to accurately predict them. Moreover, in this case,
the three challenging issues in the ZSL field (i.e., domain shift problem [16],
hubness problem [24], and the semantic gap problem [26]) will become more
difficult [8]. How to improve the generalization ability of the ZSL model under
the evaluation setting of GZSL is one of the current research hotspots. Although
some researchers have put forward some enlightening algorithms [8, 32, 7, 49],
there is still a long way to go before GZSL can be truly applied. How to improve
the generalization ability of the GZSL model is one of the most worthy research
issues.

5.3 Combination with other technologies

Most fields are facing the problem of open set learning, how to combine the
idea of ZSL with the existing algorithms in these fields to improve their gener-
alization ability is a direction worth exploring. For example, some researchers
have combined ZSL with reinforcement learning to optimize the strategies of
agents to deal with unknown environments [33]. Moreover, one can also learn
from the advantages of other technologies to improve the performance of the
ZSL algorithm. For example, neural networks with random weights (NNRW [5,
4]) have extremely fast training speeds, how to combine them with the existing
ZSL algorithms to improve the training efficiency of the latter is an interesting
research direction.
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6 Conclusions

In this paper, we first introduce the research motivation, development history,
and fundamental concepts of ZSL, and then classify the current mainstream ZSL
models into five categories, which enable readers to have a macro understanding
of the field of ZSL. Furthermore, we focus on the representative work of ZSL be-
yond computer vision, which is the biggest difference from other existing surveys.
Moreover, we have refined three valuable research issues to provide direction for
researchers. This paper is expected to provide guidance on open set learning for
researchers and engineers in a wider range of fields.

In the future, we will give more details for the difficult issues mentioned in
this paper, and add more representative work of ZSL beyond computer vision.
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