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ABSTRACT
Regular expressions (regexes) are widely used in different fields of
computer science such as programming languages, string process-
ing and databases. However, existing tools for synthesizing or re-
pairing regexes were not designed to be resilient to Regex Denial of
Service (ReDoS) attacks. Specifically, if a regex has super-linear (SL)
worst-case complexity, an attacker could provide carefully-crafted
inputs to launch ReDoS attacks. Therefore, in this paper, we propose
a programming-by-example framework, FlashRegex, for generating
anti-ReDoS regexes by either synthesizing or repairing from given
examples. It is the first framework that integrates regex synthesis
and repair with the awareness of ReDoS-vulnerabilities. We present
novel algorithms to deduce anti-ReDoS regexes by reducing the
ambiguity of these regexes and by using Boolean Satisfiability (SAT)
or Neighborhood Search (NS) techniques. We evaluate FlashRegex
with five related state-of-the-art tools. The evaluation results show
that our work can effectively and efficiently generate anti-ReDoS
regexes from given examples, and also reveal that existing synthesis
and repair tools have neglected ReDoS-vulnerabilities of regexes.
Specifically, the existing synthesis and repair tools generated up to
394 ReDoS-vulnerable regex within few seconds to more than one
hour, while FlashRegex generated no SL regex within around five
seconds. Furthermore, the evaluation results on ReDoS-vulnerable
regex repair also show that FlashRegex has better capability than
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existing repair tools and even human experts, achieving 4 more
ReDoS-invulnerable regex after repair without trimming and re-
sorting, highlighting the usefulness of FlashRegex in terms of the
generality, automation and user-friendliness.
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1 INTRODUCTION
Regular expressions (regexes) are a fundamental concept across
the fields of computer science, e.g., programming languages, string
processing tools, and database query languages [5, 10, 14, 15, 29, 47].
Though popular, regexes are hard for users and even experts to
understand and compose [10, 29, 51]. To alleviate this problem, var-
ious techniques [3–5, 7, 8, 21, 24, 32, 34] have been proposed. From
either positive and/or negative examples, these techniques can syn-
thesize regexes by accepting all positive examples while rejecting
all negative ones. This programming-by-example (PBE) technique
has the salient advantage of allowing users to provide examples to
reflect their true intentions. However, existing works [14, 15, 29, 47]
do not consider the issue of security vulnerability in regex synthesis.
As such, the synthesized regexes are subject to attacks.

To be more specific, if a regex has super-linear worst-case com-
plexity (abbrev. SL regex), an attacker may be able to trigger this
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complexity by malign input, exhausting the victim’s CPU resources
and causing Regex Denial of Service (ReDoS) [14]. In other words,
SL regexes are ReDoS-vulnerable, since for these regexes, the evalu-
ation could take higher-degree polynomials (i.e., quadratic or worse)
or even exponential time in the size of the input. In 2016, ReDoS led
to an outage at StackOverflow [19] and rendered vulnerable any
websites built with the popular Express.JS framework [2]. Further-
more, a recent study [14] found that SL regexes are rather common
in practice—they appear in the core Node.JS (JavaScript) and Python
libraries as well as in thousands of modules in the npm [38] and
PyPI [23] module registries, including some popular modules with
millions of downloads per month. Similar concerns are made by
Wstholz [59]: “Since it is often difficult for humans to reason about
the complexity of regular expression matching, we believe there is a
real need for techniques that can automatically synthesize equivalent
regular expressions with linear complexity”.

We extend this idea to not only synthesize ReDos-invulnerable
regexes, but also help repair incorrect1 and/or ReDos-vulnerable
regexes. Existing techniques [33, 39, 44] that aim at repairing regexes
usually focus only on the incorrect ones. There is only two line of
work [11, 55] targeting on repairing ReDos-vulnerable regexes; yet
the restriction to revisions that would match the exact same lan-
guages (refer to Section 2 for definition) is actually rarely applicable
in practice (for example, cases #5, #7, and #20 in Table 3) according
to [14, 47]. To achieve the aforementioned goals , there are three
challenges to be addressed.

Huge search space. For both regex synthesis and repair, the
search space is extremely large [32, 39] because practical regexes: (i)
are large, (ii) operate over very large alphabet size, and (iii) contain
various operators such as disjunction, concatenation, quantifiers,
and so on.

Difficulty of learning regexes from examples. The problem
of synthesis- [25] and repair-from-examples [39] is shown to be an
NP-complete problem. We further add the requirement of ReDoS-
invulnerabilities, making the problem even harder.

Difficulty of prevention of ReDoS-vulnerabilities. Instead
of avoiding certain patterns of regexes as prerequisites of ReDoS at-
tacks [14], developers or users expect to address ReDoS-vulnerability
from its root cause—the ambiguity of regexes. Indeed, ambiguity
can lead to SL behavior (also known as catastrophic backtracking)
that causes ReDoS attacks [14]. How to avoid generating these
ambiguous regexes effectively is a distinct merit of our work over
existing techniques.

Our key idea is that using deterministic regexes (DREs) [9] can
prevent generating SL regexes. As its name implies, determinism
means that when matching a string from left to right against a
regex, a symbol in the string can be matched to only one position
in the regex without lookahead. Take two equivalent2 regexes as
an example: (i) Non-deterministic regex: \s*#?\s* [14] and (ii)
DRE: \s*(#\s*)? . If we input a whitespace character (i.e., \s),
the first regex cannot decide which \s* (the first or the second)
should be matched without looking ahead, while the DRE can
efficientlymatch the first \s*without ambiguity. From this example,
we can see that one merit of DREs is their efficient matching with

1A regex is incorrect if it is not consistent with all the given examples.
2Two regexes are equal iff the corresponding languages are equivalent.

malign input avoiding catastrophic backtracking [14], because each
matching position in the input word can be uniquely decided, which
is in line with the spirit of avoiding ReDoS-vulnerabilities.

This paper proposes FlashRegex with three functionalities: (i)
regex synthesis, (ii) incorrect regex repair, and (iii) ReDoS-vulnerable
(i.e., SL) regex repair. Given positive and/or negative examples,
FlashRegex automatically generates anti-ReDoS regexes that are
consistent with the given examples.

We develop novel algorithms that generate anti-ReDoS regexes
by reducing the ambiguity of these regexes and by using Boolean
Satisfiability (SAT) and Neighborhood Search (NS) techniques. In
particular, we design Boolean formulae for the determinism con-
straint and positive and negative example constraints, and use a
heuristic strategy called Local Constraints Strengthening (LCS) to
further speed up the process (see Figure 3 in Section 4), enabling
us to encode the synthesis problem into SAT. For regex repair,
FlashRegex adopts a strategy that a regex after repair is as close
to its original regex as possible. To this end, we present a way of
slightly changing the edges of the current regex (represented by
an automaton) (i.e., the neighborhood) and perform neighborhood
search starting from the original regex using ameasure function (see
Section 5), until a solution is found. In fact, the synthesis problem
and the repair problem are related. The latter can be reduced to the
former by disregarding the original regex. However, the regex such
repaired may be very dissimilar to the original one.

Although in this paper we only consider the regexes that do not
contain non-regular operators (e.g., positive lookahead), our tool
is expressive enough to capture most of the regexes appearing in
practical applications according to the statistical result [39]. We
evaluate FlashRegex by comparing FlashRegex with five state-of-
the-art tools in terms of effectiveness (including the correctness and
ReDoS-vulnerabilities) and time efficiency on the publicly available
benchmarks. The evaluation results reveal that FlashRegex is the
only technique that can run on all benchmarks with higher effi-
ciency and generate anti-ReDoS regexes, while the results of other
tools can be ReDoS-vulnerable. For example, on benchmark Multi-
Syn-Regex, FlashRegex reduces the average runtime frommore than
1 hour by GP-RegexGolf [4] containing 4 ReDoS-vulnerable results
to 4 seconds and without ReDoS-vulnerabilities. The evaluation
results on ReDoS-vulnerable regex repair also show that FlashRegex
has better capability than existing repair tools and even human
experts (see Section 6.4), demonstrating the usefulness of our work.

To summarize, this paper makes three main contributions:

• We develop FlashRegex, a programming-by-example frame-
work, to deduce anti-ReDoS regexes by either synthesizing
or repairing from given examples. To the best of our knowl-
edge, it is the first framework that integrates regex synthesis
and repair with the awareness of ReDoS-vulnerabilities.
• We present novel algorithms to generate anti-ReDoS regexes
by reducing the ambiguity of these regexes. The processes
are greatly accelerated by using deterministic automata and
optimizations such as the LCS strategy and SAT techniques.
• We conduct a series of comprehensive experiments compar-
ing FlashRegexwith the state-of-the-art tools. The evaluation
results show that FlashRegex can effectively and efficiently
generate anti-ReDoS regexes from given examples, and also
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reveal that existing synthesis and repair tools have neglected
ReDoS-vulnerabilities of regexes.

2 PRELIMINARIES
Let Σ be a finite alphabet of symbols. The set of all words over Σ is
denoted by Σ∗. The empty word and the empty set are denoted by
𝜀 and ∅, respectively.

A regular expression (regex) over Σ is defined inductively
as follows: 𝜀, ∅, and 𝑎 ∈ Σ are regular expressions; for regular
expressions 𝑟1 and 𝑟2, the disjunction 𝑟1 |𝑟2, the concatenation 𝑟1𝑟2,
and the quantifier 𝑟1{𝑚,𝑛} where𝑚 ∈ N, 𝑛 ∈ N ∪ {∞}, and𝑚 ≤ 𝑛

are also regular expressions. Besides, 𝑟?, 𝑟∗, 𝑟+ and 𝑟 {𝑖} where 𝑖 ∈ N
are abbreviations of 𝑟 {0, 1}, 𝑟 {0,∞}, 𝑟 {1,∞} and 𝑟 {𝑖, 𝑖}, respectively.
𝑟1{𝑚,∞} is often simplified as 𝑟1{𝑚, }.

The language 𝐿(𝑟 ) of a regex 𝑟 is defined as follows: 𝐿(∅) =
∅; 𝐿(𝜀) = {𝜀}; 𝐿(𝑎) = {𝑎}; 𝐿(𝑟1 |𝑟2) = 𝐿(𝑟1) ∪ 𝐿(𝑟2); 𝐿(𝑟1𝑟2) =
{𝑣𝑤 | 𝑣 ∈ 𝐿(𝑟1),𝑤 ∈ 𝐿(𝑟2)}; 𝐿(𝑟 {𝑚,𝑛}) = ⋃

𝑚⩽𝑖⩽𝑛 𝐿(𝑟 )𝑖 .
Practical regexes support special operators , also known as char-

acter classes, to denote certain sets of characters. Common character
classes include: (i) \s , which contains all whitespace characters, (ii)
\d , which contains digital characters, (iii) intervals [𝑐1-𝑐2] which
specifies a range of characters from 𝑐1 to 𝑐2 by using a hyphen, for
example, the regex [a-d] is the same as (a|b|c|d).

A marked form of a regex 𝑟 is denoted as 𝑟 , which is obtained
by marking symbols in 𝑟 with subscripts, such that each marked
symbol occurs only once in 𝑟 . For instance, given an expression
𝑟 = 𝑎(𝑎 |𝑏) (𝑎𝑏)∗, its marked form can be 𝑎1 (𝑎2 |𝑏1) (𝑎3𝑏2)∗. The
same notation will also be used for unmarking, namely, dropping
off subscripts from the marked symbols: 𝑟 = 𝑟 . We extend this
notation for words and sets of symbols in the same way. The set of
symbols that occur in a regex 𝑟 is denoted by sym(𝑟 ).

Definition 1. Deterministic Regular Expression (DRE) [9].
Let 𝑟 be a marked form of the expression 𝑟 , 𝑟 is deterministic if
and only if for all words 𝑢𝑥𝑣 , 𝑢𝑦𝑤 ∈ 𝐿(𝑟 ) where 𝑥,𝑦 ∈ sym(𝑟 )
and 𝑢, 𝑣,𝑤 ∈ sym(𝑟 )∗, if 𝑥 = 𝑦 then 𝑥 = 𝑦. An expression 𝑟 is
deterministic iff 𝑟 is deterministic.

The regex 𝑟1 = 𝑎∗𝑎 is nondeterministic since 𝑟1 = 𝑎∗1𝑎2 is nonde-
terministic: given two words 𝑎1𝑎2, 𝑎2 ∈ 𝐿(𝑟1), there is 𝑎1 = 𝑎2 = 𝑎

but 𝑎1 ≠ 𝑎2. Similarly, one can verify that 𝑟2 = 𝑎𝑎∗ is deterministic.
Notice that DREs are a restricted subclass of regular expressions

—i.e., not every regular expression has an equivalent DRE.

Definition 2. A 𝑘-Occurrence Regular Expression (𝑘-ORE) [7, 8]
is a regular expression in which every alphabet symbol occurs at
most 𝑘 times.

For example, 𝑎𝑏+ is a 1-ORE and 𝑎(𝑎𝑏)?𝑏+ is a 2-ORE. Note
that 1-ORE is also known as Single-Occurrence Regular Expression
(SORE) [8, 24]. A 𝑘-Occurrence Automaton (𝑘-OA) is a specific type
of finite state automaton defined in the following (where the states
are labeled with symbols while edges are not).

Definition 3. 𝒌-Occurrence Automaton (𝒌-OA) [7, 34]. A 𝑘-
OA is a node-labeled graph 𝐺=(𝑉 , 𝑅, 𝑙𝑎𝑏) where:
• 𝑉 is a finite set of nodes (also known as states) with a distin-
guished source 𝑠𝑟𝑐 and sink 𝑠𝑛𝑘 .

• 𝑅 is a set of edge relations representing reachable paths. 𝑠𝑟𝑐
has only outgoing edges and 𝑠𝑛𝑘 has only incoming edges.
Every 𝑣∈𝑉 \{𝑠𝑟𝑐, 𝑠𝑛𝑘} is reachable by a path from 𝑠𝑟𝑐 to 𝑠𝑛𝑘 .
• 𝑙𝑎𝑏 is the labeling function 𝑉 \ {𝑠𝑟𝑐, 𝑠𝑛𝑘} → Σ.
• There are at most 𝑘 states labeled with the same symbol in
Σ.

We use 𝑜𝑢𝑡 (𝑣, 𝜎) to denote {𝑣1 | (𝑣, 𝑣1) ∈ 𝑅 𝑎𝑛𝑑 𝜎 = 𝑙𝑎𝑏 (𝑣1)}, i.e.,
the set of direct successors of a state 𝑣 in A that are labeled 𝜎 .

A Single-Occurrence Automaton (SOA) [8, 24] is a special case
of 𝑘-OA where 𝑘 = 1. A marked 𝑘-OA A is a 𝑘-OA where each
node is marked with a subscript such that each node label is unique
in A. It is clear that a marked 𝑘-OA is an SOA. A deterministic
𝑘-OA is a 𝑘-OA in which for each node 𝑣 ∈ 𝑉 and 𝜎 ∈ Σ, 𝑜𝑢𝑡 (𝑣, 𝜎)
contains at most one state.

We can use an adjacency matrix to represent a 𝑘-OA. The 2-OA
A for the regex 𝑎(𝑎𝑏)?𝑏+ and its adjacency matrix A𝐺 are shown
in Figure 1.

𝑠𝑟𝑐 𝑎 𝑎

𝑏𝑏𝑠𝑛𝑘

A𝐺 =

𝑎 𝑎 𝑏 𝑏 𝑠𝑛𝑘©«
ª®®®®¬

𝑠𝑟𝑐 T F F F F
𝑎 F T F T F
𝑎 F F T F F
𝑏 F F F T F
𝑏 F F F T T

Figure 1: 2-OA A for 𝑎(𝑎𝑏)?𝑏+ and its adjacency matrix A𝐺 .

3 OVERVIEW
In this section, we present an overview of our approach.
Regex Synthesis. The first problem we target at is to synthesize
anti-ReDoS regexes from positive and negative examples. That is,
given a positive example set 𝑆+ and a negative example set 𝑆−, the
goal is to learn a regex 𝑟 such that (i) 𝑆+ ⊆ 𝐿(𝑟 ) and 𝑆− ∩ 𝐿(𝑟 ) = ∅;
and (ii) 𝑟 is invulnerable to ReDoS attacks.

The key of our solution to tackle this problem is the use of
deterministic regexes. In particular, our solution consists of two
steps, namely, 𝑘-OA synthesis (Section 4.1) and regex extraction
(Section 4.2). 𝑘-OA synthesis takes the given positive and negative
examples as input and tries to synthesize a deterministic 𝑘-OA from
the examples via SAT. This task first uses a Boolean variable to
represent a possible edge relation between two nodes, wherein 𝑇
represents an edge exists while 𝐹 represents no edge exists; and
then it encodes the properties of the possible 𝑘-OAs into Boolean
formulas, which are then fed into a SAT solver. If the formulas
are satisfiable, the SAT solver returns a solution, from which 𝑘-OA
synthesis builds a 𝑘-OA.

After that, regex extraction marks the synthesized deterministic
𝑘-OA and extracts a marked regex from the marked 𝑘-OA, by call-
ing the procedure 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 used in Freydenberger and Kotzing’s
work [24]. This procedure 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 builds from a given SOAA an
SORE 𝑟 that minimally generalizes 𝐿(A) (see [24] for the explana-
tion of minimal generalization). Then regex extraction unmarks the
regex and returns it if it is deterministic.
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Generally, regexes with smaller nested quantifiers (e.g., “star
height”) are less likely to suffer from ReDoS attacks. We also find
that a regex extracted from a 𝑘-OA with a smaller value of 𝑘 has a
smaller nested quantifiers. Thus, our solution will perform these
two tasks starting from 𝑘 = 1. Once a possible regex is found, our
solution returns this regex immediately. Furthermore, a 𝑘 of 7 is
sufficient to capture the intended semantics of 95.76% of the regexes
from RegExLib [45], and it is treated as a user parameter controlling
how long the synthesizer searches. The bounding of 𝑘 is helpful in
reducing the huge search space.
Regex Repair. The second problem is to repair an incorrect (i.e.,
rejecting some examples in 𝑆+ or accepting some examples in 𝑆−) or
ReDos-vulnerable regex 𝑟 (i.e., ReDoS-prone) with respect to a posi-
tive example set 𝑆+ and a negative example set 𝑆−. The idea is quite
similar to regex synthesis: to use deterministic regexes when possi-
ble. That is, our solution (Section 5) tries to derive a deterministic
regex from 𝑟 to achieve the same goal of regex synthesis.

In detail, our solution starts with a deterministic 𝑘-OA, which
is converted from the given regex 𝑟 . Then it searches for a 𝑘-OA
which can accept the most positive examples and/or reject the most
negative ones among those in the neighborhood (i.e., those with
one different value from the current 𝑘-OA). Our method keeps on
searching, until it finds a deterministic 𝑘-OA that accepts all the
positive examples and rejects all the negative ones, or the number
of iterations exceeds a given number (set to be 200 in this paper).
A Case Study of Regex Synthesis.We illustrate our solution with
an example, whose positive example set is 𝑆+ = {𝑎𝑏, 𝑎𝑏𝑏𝑏, 𝑎𝑎𝑏𝑏}
and negative example set is 𝑆− = {𝑏𝑎, 𝑎𝑎𝑏, 𝑏𝑎𝑏𝑎}. Assume the au-
tomaton to synthesize is a deterministic 2-OA. That is to say, we
have at most two nodes labeled with 𝑎 (resp. 𝑏), which are denoted
as 𝑎1 and 𝑎2 (resp. 𝑏1 and 𝑏2), respectively. And we represent a pos-
sible edge between two nodes 𝑢 and 𝑣 as a Boolean variable 𝐴𝑢,𝑣 .
Firstly, as the 2-OA is deterministic, there is at most one node that is
labelled by any symbol 𝜎 ∈ {𝑎, 𝑏} as well as direct successors of any
node 𝑣 ∈ {𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑠𝑟𝑐, 𝑠𝑛𝑘}. That is to say, 𝑜𝑢𝑡 (𝑣, 𝜎) contains at
most one node, which can be encoded as a Boolean formula. For ex-
ample, the condition for 𝑜𝑢𝑡 (𝑎1, 𝑎) can be encoded as the following
formula: (¬𝐴𝑎1,𝑎1∧¬𝐴𝑎1,𝑎2 )∨(𝐴𝑎1,𝑎1∧¬𝐴𝑎1,𝑎2 )∨(¬𝐴𝑎1,𝑎1∧𝐴𝑎1,𝑎2 ) .
We do the same to other 𝑜𝑢𝑡 (𝑣, 𝜎)’s. Secondly, each word𝑤 in 𝑆+

should be accepted by this synthesizd 2-OA; hence there exists
a path for 𝑤 . Take 𝑎𝑏 as an example. As both 𝑎 and 𝑏 have two
possible labelled nodes, there are four possible cases for the path of
𝑎𝑏, which can be represented as the following formula:
(𝐴𝑠𝑟𝑐,𝑎1 ∧𝐴𝑎1,𝑏1 ∧𝐴𝑏1,𝑠𝑛𝑘 ) ∨ (𝐴𝑠𝑟𝑐,𝑎1 ∧𝐴𝑎1,𝑏2 ∧𝐴𝑏2,𝑠𝑛𝑘 ) ∨

(𝐴𝑠𝑟𝑐,𝑎2 ∧𝐴𝑎2,𝑏1 ∧𝐴𝑏1,𝑠𝑛𝑘 ) ∨ (𝐴𝑠𝑟𝑐,𝑎2 ∧𝐴𝑎2,𝑏2 ∧𝐴𝑏2,𝑠𝑛𝑘 )
It is the same with the other words in 𝑆+. Finally, we also require
that each word𝑤 in 𝑆− should not be accepted by the 2-OA, which
can be converted into Boolean formulas similarly (with a negation
on the top).When the formulas are generated3, we feed the formulas
into the SAT solver and get a solution, which is illustrated as the
matrixA𝐺 in Figure 1. Based on this solution, a deterministic 2-OA
A2 can be built easily, which is also given in Figure 1.

3We can also generate the formulas according to the local properties, such as 2-
successive-steps, of the given words to synthesize a sound 𝑘-OA faster, which are
called Local Constraints Strengthening (LCS) heuristic strategy (see Section 4.1 for
more detail).

𝑠𝑟𝑐 𝑎1 𝛾 𝑏+2 𝑠𝑛𝑘

𝛾 = (𝑎2𝑏1)?

Figure 2: An intermediate SOA in 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 (A2)

Next, we mark A2, on which we call the procedure 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒
to extract a regex. Figure 2 gives an intermediate SOA obtained
in 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 (A2), from which a marked regex 𝑎1 (𝑎2𝑏1)?𝑏+2 is built
by 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 . Therefore, the final regex we extract for A2 is 𝑟2 =

𝑎(𝑎𝑏)?𝑏+.

4 SYNTHESIS ALGORITHM
In this section, we present the details of our synthesis algorithm
SynRegex.

Our synthesis algorithm is shown in Algorithm 1, which tries
to synthesize a possible 𝑘-ORE for 𝑘 ranging in [1, 𝑘𝑚𝑎𝑥 ]. Here,
𝑘𝑚𝑎𝑥 is a customized parameter, and in this paper, 𝑘𝑚𝑎𝑥 is set to
7 due to the reason discussed in §3. In detail, for a given 𝑘 , our
algorithm first synthesizes a deterministic 𝑘-OA from the given
examples (line 2), which is introduced in Section 4.1, and then it
extracts a regex from the marked version of the synthesized 𝑘-OA
(line 4), which is presented in Section 4.2, if the 𝑘-OA is not 𝑛𝑢𝑙𝑙 .
Finally, our algorithm returns the regex with the smallest 𝑘 if found
(lines 5 − 6), or returns 𝑛𝑢𝑙𝑙 otherwise (line 7).

Algorithm 1: SynRegex
Input: a positive set 𝑆+ and a negative set 𝑆−
Output: a deterministic regex 𝑟 with 𝑆+ ⊆ 𝐿(𝑟 ) and

𝑆− ∩ 𝐿(𝑟 ) = ∅ if solvable for 𝑘𝑚𝑎𝑥 , or 𝑛𝑢𝑙𝑙
otherwise

1 for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do
2 A ← 𝑠𝑦𝑛KOA+−(𝑆+, 𝑆−, 𝑘)
3 if A ≠ 𝑛𝑢𝑙𝑙 then
4 𝑟 ← GenRegex(A)
5 if 𝑟 ≠ 𝑛𝑢𝑙𝑙 then
6 return 𝑟

7 return 𝑛𝑢𝑙𝑙

4.1 k-OA Synthesis
This section presents the 𝑘-OA synthesis algorithm, which synthe-
size a deterministic 𝑘-OA by encoding the synthesis problem into a
Boolean satisfiability problem (SAT).

As shown in Figure 1 (Section 2), a 𝑘-OA can be represented as a
Boolean adjacency matrix. Therefore, we use a Boolean variable to
represent a possible edge in a 𝑘-OA. Once all the Boolean variables
are fixed, a 𝑘-OA is obtained meanwhile.

Recall that the 𝑘-OA to be synthesized (a) is deterministic and
(b) accepts the words in 𝑆+ while rejecting the words in 𝑆−. For the
condition (a), 𝑜𝑢𝑡 (𝑣, 𝜎) contains at most one state for any 𝑣 ∈ 𝑉
and 𝜎 ∈ Σ. Then this deterministic condition on a 𝑘-OA can be
encoded into a formula via the constraint generatorDeter(k), which
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is shown in Figure 3,where Σ is the alphabet, 𝛼𝑚 , 𝛼𝑛 and 𝛼𝑡 are
indexed states for 𝛼 ∈ Σ, and𝐴𝑢,𝑣 is a Boolean variable representing
a possible edge (i.e., a unit in the Boolean adjacency matrix) for two
indexed states 𝑢 and 𝑣 .

Let us consider the condition (b). As illustrated in Section 3, both
positive examples and negative examples can be entirely dealt with
by a general example constraint generator (called global constraint
generator). Thus, the longer the example, the more the possible
cases (i.e., the conjunctive clauses yielded by the transformation on
the corresponding logic formulas). Moreover, for negative examples,
a top negation needs to be taken, so that the number of cases for
a negative example𝑤 would be (2 |𝑤 | − 1) times that of a positive
example of the same length, where |𝑤 | denotes the length of𝑤 . As
a result, with the increase of negative examples, the runtime of the
algorithm could grow significantly, especially for the long ones.
To speed up the 𝑘-OA synthesis algorithm, we present a heuristic
algorithm 𝑓𝑎𝑠𝑡KOA+−, which adopts local constraints, rather than
the global constraints on the whole words. We call the strategy as
Local Constraints Strengthening (LCS) heuristic one.

The local constraint generators are also given in Figure 3, where
Exam(𝑤,𝑘) denotes the global constraint generator for positive
examples. Different from the global constraint generator, the posi-
tive example constraint generator Posa does not ensure that there
exists a path in the 𝑘-OA for each word𝑤 in the positive set 𝑆+, but
ensures that every step of a possible path for𝑤 exists in 𝑘-OA. This
is clearly a weaker condition. To ensure the soundness, we enhance
our constraints with another generator Posb. Posb checks that if a
step of a possible path for𝑤 ∈ 𝑆+ exists in the 𝑘-OA, then its next
2-successive-steps exists as well. The condition is a complement of
Posa, and the composition of Posa and Posb is a stronger condition.
Take the word 𝑤 = 𝑎𝑏𝑐𝑎𝑑𝑒 for example. Posb (𝑎𝑏𝑐𝑎𝑑𝑒, 𝑘) requires
that both 2-successive-steps 𝑏𝑐 and 𝑑𝑒 should be next to every state
labelled by 𝑎 in the 𝑘-OA. While the negative example constraint
generator Neg(𝑤,𝑘) requires that for each step of a possible path
for 𝑤 ∈ 𝑆−, none of its next 2-successive-steps in the path exists
in the 𝑘-OA. The condition is a stronger one as well. Note that
only one of the next 2-successive-steps does not exist in the 𝑘-OA
may be sufficient. For example, if 𝑎𝑏𝑐𝑎𝑑𝑒 is negative, then one of 𝑏𝑐
and 𝑑𝑒 not following 𝑎 is sufficient. But this is similar to the global
constraint generator: there is a top-level negation. In brief, local
constraint generators take 2 steps forward for each step. This step
size 2 is set up based on our experience, which can guarantee the
solvability of most problems and speed up the solution process.

The algorithm 𝑓𝑎𝑠𝑡KOA+− is shown in Algorithm 2, which first
encodes our𝑘-OA synthesis into a SAT via the constraint generators
in Figure 3 (lines 1-6) and then solves the SAT problem if satisfiable
(lines 7-11). If SAT is unsatisfiable, then the algorithm will invoke
the exact version 𝑖KOA+− (line 12), wherein the global constraint
generator for examples are used instead. Note that the pruning step
aims to delete useless states and edges in an automaton, especially
the trap states, which will not affect the acceptances of the examples
but could cause the procedure 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 used in regex extraction to
fail.

We remark that our algorithm is flexible. From the synthesis
process, it can be seen that our algorithm not only supports regex

Algorithm 2: 𝑓𝑎𝑠𝑡KOA+−
Input: a positive set 𝑆+, a negative set 𝑆−, a value 𝑘
Output: a deterministic 𝑘-OA A or 𝑛𝑢𝑙𝑙

1 initialize the formula set D← ∅
2 add Deter(𝑘) to D
3 for𝑤 ∈ 𝑆+ do
4 add Posa (𝑤,𝑘) ∧ Posb (𝑤,𝑘) to D
5 for𝑤 ∈ 𝑆− do
6 add Neg(𝑤,𝑘) to D
7 Put D in a SAT solver
8 if D is satisfiable then
9 convert Boolean variables (matrix) to a 𝑘-OA A

10 A ← prune A w.r.t. 𝑆+ and 𝑆−

11 return A
12 else return 𝑖KOA+−(𝑆+, 𝑆−, 𝑘);

synthesis from positive and negative examples, but it can also syn-
thesize regular expressions from positive (or negative) examples
only by removing the corresponding constraints of negative (or pos-
itive) examples. Moreover, our algorithm is incremental, since one
can synthesize a correct regex by feeding more and more examples
gradually.

4.2 Regex Extraction
In this section, we present our procedure 𝐺𝑒𝑛𝑅𝑒𝑔𝑒𝑥 to extract a
regex from a marked 𝑘-OA. As mentioned in Section 2, a marked 𝑘-
OA is also an SOA. Freydenberger and Kotzing [24] have proposed
an efficient procedure 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 to convert a given SOA A to an
SORE 𝑟 that minimally generalizes 𝐿(A). This procedure recurses
first on all strongly connected looped components and then on
the directed acyclic graph obtained by contracting all Strongly
Connected Components (SCCs) (i.e., a maximal subgraph in which
every node is reachable from every other node) with pluses “+”.
Here we use this procedure to extract regex from a marked 𝑘-OA.

The procedure 𝐺𝑒𝑛𝑅𝑒𝑔𝑒𝑥 proceeds as follows: 𝐺𝑒𝑛𝑅𝑒𝑔𝑒𝑥 first
invokes 𝑆𝑜𝑎2𝑆𝑜𝑟𝑒 (A) to convert a marked 𝑘-OA A into an SORE
(i.e., a marked regex) 𝑟 , then drops off the marks of all symbols in
𝑟 , and finally returns the unmarked regex if it is deterministic4, or
returns 𝑛𝑢𝑙𝑙 otherwise.

Further, we adopted a regex rewriting step to prettify the synthe-
sized regex 𝑟 in order to get a more concise and practical one by
performing on 𝑟 the rewriting rules in Figure 4 until no more rule
is applicable.

Finally, as shown in Algorithm 1, our algorithm may return 𝑛𝑢𝑙𝑙
(i.e., fail), which is mainly due to (i) the parameter 𝑘 may not be
sufficiently large; and (ii) not every regex has an equivalent deter-
ministic version, as deterministic regexes are a restricted subclass
of regexes.

5 REPAIR ALGORITHM
In practice, one may write an incorrect or ReDoS-vulnerable regex.
So, in the section, we present an algorithm based on Neighborhood

4The determinism of a regex can be decided in linear time [26].
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(1) Determinism Constraint Generator:

Deter(𝑘) =
∧
𝛼∈Σ

{[ ∨
1≤𝑚≤𝑘

(
𝐴𝑠𝑟𝑐,𝛼𝑚 ∧

∧
1≤𝑛≤𝑘,𝑛≠𝑚

¬𝐴𝑠𝑟𝑐,𝛼𝑛

) ]
∨
( ∧
1≤𝑚≤𝑘

¬𝐴𝑠𝑟𝑐,𝛼𝑚

)}
∧

∧
𝛼∈Σ,𝛽∈Σ

∧
1≤𝑡≤𝑘

{[ ∨
1≤𝑚≤𝑘

(
𝐴𝛼𝑡 ,𝛽𝑚

∧
∧

1≤𝑛≤𝑘,𝑛≠𝑚
¬𝐴𝛼𝑡 ,𝛽𝑛

) ]
∨
( ∧
1≤𝑚≤𝑘

¬𝐴𝛼𝑡 ,𝛽𝑚

)}
(2) Positive Example Constraint Generators:

Posa (𝑤,𝑘) =


𝐴𝑠𝑟𝑐,𝑠𝑛𝑘 |𝑤 | = 0∨
1≤𝑚≤𝑘

(
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚 ∧𝐴𝑤 [1]𝑚,𝑠𝑛𝑘

)
|𝑤 | = 1∨

1≤𝑚1≤𝑘
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚1

∧
∧

1≤𝑖≤|𝑤 |−1

( ∨
1≤𝑚≤𝑘,1≤𝑛≤𝑘

𝐴𝑤 [𝑖 ]𝑚,𝑤 [𝑖+1]𝑛
)
∧

∨
1≤𝑚 |𝑤 | ≤𝑘

𝐴𝑤 [|𝑤 | ]𝑚 |𝑤 | ,𝑠𝑛𝑘
|𝑤 | ≥ 2

Posb (𝑤,𝑘) =



T |𝑤 | < 2∧
1≤𝑚1≤𝑘

[
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚1

→
∧

1≤𝑚≤𝑘

(
𝐴𝑤 [1]𝑚1 ,𝑤 [2]𝑚 ∧𝐴𝑤 [2]𝑚,𝑠𝑛𝑘

) ]
|𝑤 | = 2[ ∧

1≤𝑚1≤𝑘

(
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚1

→
∨

1≤𝑚≤𝑘
𝐴𝑤 [1]𝑚1 ,𝑤 [2]𝑚 ∧

( ∨
1≤𝑛≤𝑘

𝐴𝑤 [2]𝑚,𝑤 [3]𝑛
) ) ]
∧
[ ∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [1]𝑚,𝑤 [2]𝑛 →

∨
1≤𝑡≤𝑘

(
𝐴𝑤 [2]𝑛,𝑤 [3]𝑡 ∧𝐴𝑤 [3]𝑡 ,𝑠𝑛𝑘

) ) ]
|𝑤 | = 3


[ ∧
1≤𝑚1≤𝑘

(
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚1

→
∨

1≤𝑚≤𝑘
𝐴𝑤 [1]𝑚1 ,𝑤 [2]𝑚 ∧

( ∨
1≤𝑛≤𝑘

𝐴𝑤 [2]𝑚,𝑤 [3]𝑛
) ) ]
∧
[ ∧
1≤𝑖≤|𝑤 |−3

∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [𝑖 ]𝑚,𝑤 [𝑖+1]𝑛 →∨

1≤𝑡≤𝑘 𝐴𝑤 [𝑖+1]𝑛,𝑤 [𝑖+2]𝑡 ∧
( ∨

1≤𝑜≤𝑘 𝐴𝑤 [𝑖+2]𝑡 ,𝑤 [𝑖+3]𝑜
) ) ]
∧
[ ∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [|𝑤 |−2]𝑚,𝑤 [|𝑤 |−1]𝑛 →

∨
1≤𝑡≤𝑘

(
𝐴𝑤 [|𝑤 |−1]𝑛,𝑤 [|𝑤 | ]𝑡 ∧𝐴𝑤 [|𝑤 | ]𝑡 ,𝑠𝑛𝑘

) ) ] |𝑤 | > 3

(3) Negative Example Constraint Generators:

Neg(𝑤,𝑘) =



¬Exam(𝑤,𝑘) |𝑤 | ≤ 2[ ∧
1≤𝑚≤𝑘

(
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚 → ¬

( ∨
1≤𝑛≤𝑘

𝐴𝑤 [1]𝑚,𝑤 [2]𝑛 ∧
( ∨
1≤𝑡≤𝑘

𝐴𝑤 [2]𝑛,𝑤 [3]𝑡
) ) ) ]
∧
[ ∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [1]𝑚,𝑤 [2]𝑛 → ¬

( ∨
1≤𝑡≤𝑘

(
𝐴𝑤 [2]𝑛,𝑤 [3]𝑡 ∧𝐴𝑤 [3]𝑡 ,𝑠𝑛𝑘

) ) ) ]
|𝑤 | = 3

[ ∧
1≤𝑚≤𝑘

(
𝐴𝑠𝑟𝑐,𝑤 [1]𝑚 → ¬

( ∨
1≤𝑛≤𝑘

𝐴𝑤 [1]𝑚,𝑤 [2]𝑛 ∧
( ∨
1≤𝑡≤𝑘

𝐴𝑤 [2]𝑛,𝑤 [3]𝑡
) ) ) ]
∧
[ ∧
1≤𝑖≤|𝑤 |−3

∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [𝑖 ]𝑚,𝑤 [𝑖+1]𝑛 →

¬
( ∨

1≤𝑡≤𝑘 𝐴𝑤 [𝑖+1]𝑛,𝑤 [𝑖+2]𝑡 ∧
( ∨

1≤𝑜≤𝑘 𝐴𝑤 [𝑖+2]𝑡 ,𝑤 [𝑖+3]𝑜
) ) ) ]
∧
[ ∧
1≤𝑚≤𝑘

∧
1≤𝑛≤𝑘

(
𝐴𝑤 [|𝑤 |−2]𝑚,𝑤 [|𝑤 |−1]𝑛 → ¬

( ∨
1≤𝑡≤𝑘

(
𝐴𝑤 [|𝑤 |−1]𝑛,𝑤 [|𝑤 | ]𝑡 ∧𝐴𝑤 [|𝑤 | ]𝑡 ,𝑠𝑛𝑘

) ) ) ] |𝑤 | > 3

Figure 3: Determinism Constraint Generator and Local Constraint Generators

𝑐1 | . . . |𝑐𝑛 =⇒ [𝑐1-𝑐𝑛 ]
[A-Za-z0-9_] =⇒ \w

𝑟1 . . . 𝑟1︸    ︷︷    ︸
𝑘 times

=⇒ 𝑟1{𝑘}

𝑟1 . . . 𝑟1︸    ︷︷    ︸
𝑘 times

𝑟∗1 =⇒ 𝑟1{𝑘, }

[0-9] =⇒ \d
[ \t\r\n\f] =⇒ \s
𝑟1 . . . 𝑟1︸    ︷︷    ︸
𝑘 times

𝑟1? =⇒ 𝑟1{𝑘,𝑘 + 1}

𝑟1 . . . 𝑟1︸    ︷︷    ︸
𝑘 times

𝑟+1 =⇒ 𝑟1{𝑘 + 1, }

Figure 4: Rewriting Rules for Regex

Search (NS) to repair such an incorrect or ReDos-vulnerable regex
to achieve the same goals as our synthesis algorithm. In particular,
given an incorrect or ReDos-vulnerable regex 𝑟 and sets of positive
and negative examples, it returns a ReDoS-invulnerable regex 𝑟 ′
that is consistent with the examples.

We assume that the given regex is close to a solution. So the
key idea of our algorithm is to search for a better solution, i.e., one
that accepts more positive samples and/or rejects more negative
samples, from the neighborhoods of a candidate 𝑘-OA. To start
with, we define the neighborhood and an evaluation criterion of
a 𝑘-OA A. Given a 𝑘-OA A, i.e., a Boolean matrix, we define its
neighborhood, denoted as 𝑁 (A), as the set of 𝑘-OAs, which can be
obtained by flipping one Boolean value of A. In order to select a
𝑘-OA among a set of 𝑘-OAs, we define a measure 𝑓 on 𝑘-OA with
respect to 𝑆+ and 𝑆− as

𝑓 (A, 𝑆+, 𝑆−) = |𝑇𝑃 | − |𝐹𝑁 | + |𝑇𝑁 | − |𝐹𝑃 ||𝑆+ | + |𝑆− |
where we have 𝑇𝑃 = {𝑤 ∈ 𝑆+ | 𝑤 ∈ 𝐿(A)}, 𝐹𝑁 = {𝑤 ∈ 𝑆+ | 𝑤 ∉

𝐿(A)},𝑇𝑁 = {𝑤 ∈ 𝑆− | 𝑤 ∉ 𝐿(A)}, 𝐹𝑃 = {𝑤 ∈ 𝑆− | 𝑤 ∈ 𝐿(A)},
and |𝑆 | is the number of elements in the set 𝑆 . Intuitively, the higher

the 𝑓 value, the better the 𝑘-OA. Especially, the 𝑘-OA with 𝑓 value
1 will accept all positive samples and reject all negative samples. In
addition, if two 𝑘-OAs share the same 𝑓 value, we will select the one
with fewer SCCs (or loops). Moreover, similar to regex synthesis,
we use deterministic regexes to avoid ReDoS-vulnerabilities.

The repair algorithm is shown in Algorithm 3. It starts with a
deterministic 𝑘-OA A that is converted from the marked version
of the given regex 𝑟 (line 1). Then, the algorithm selects the 𝑘-OA
with the maximum 𝑓 value, denoted as Amax, from the neighbor-
hoods of A (line 4). Next, it compares the 𝑓 values between the
current 𝑘-OA and the selected 𝑘-OA. If the selected 𝑘-OA gets a
higher 𝑓 value, then the algorithm replaces the current 𝑘-OA by
the deterministic version of the selected 𝑘-OA (lines 5-6). After
that, it checks whether the current 𝑘-OA is satisfied, namely, the
𝑓 value is 1. If it is, the algorithm returns a regex extracted from
the pruned version of the current 𝑘-OA (lines 7-10). While if the
selected 𝑘-OA gets a lower 𝑓 value, then the current 𝑘-OA may
be a local maximum, so the algorithm returns 𝑛𝑢𝑙𝑙5 (line 12). The
algorithm repeats the processing above until a satisfactory 𝑘-OA is
returned or the iteration number exceeds ITER_MAX (lines 3-12).
Finally, the algorithm returns 𝑛𝑢𝑙𝑙 if the iteration number exceeds
ITER_MAX (line 13).

A 𝑘-OA can be obtained easily from the marked form 𝑟 of 𝑟 : (i)
each symbol in 𝑟 forms a state of 𝑘-OA; (ii) for each symbol 𝑎, there
is an edge from 𝑎 to any symbol that follows 𝑎 in 𝑟 ; (iii) there is an
edge from 𝑠𝑟𝑐 to any symbol that may be matched first in 𝑟 , similar
5Enlarging the neighborhood is a possible but ineffective approach to search a better
solution.
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Algorithm 3: RepairingRE
Input: a regex 𝑟 , a positive set 𝑆+, a negative set 𝑆−
Output: a deterministic regex 𝑟 with 𝑆+ ⊆ 𝐿(𝑟 ) and

𝑆− ∩ 𝐿(𝑟 ) = ∅ if solvable or 𝑛𝑢𝑙𝑙 otherwise
1 A ← DISAMBIGUATE(RE2KOA(𝑟 ), 𝑆+, 𝑆−);
2 𝑖 ← 0;
3 while 𝑖 < ITER_MAX do
4 A𝑚𝑎𝑥 ← arg maxA′∈𝑁 (A) 𝑓 (A ′, 𝑆+, 𝑆−);
5 if 𝑓 (A𝑚𝑎𝑥 , 𝑆

+, 𝑆−) > 𝑓 (A, 𝑆+, 𝑆−) then
6 A ← DISAMBIGUATE(A𝑚𝑎𝑥 , 𝑆+, 𝑆−);
7 if 𝑓 (A, 𝑆+, 𝑆−) == 1 then
8 A ← prune A w.r.t. 𝑆+ and 𝑆−;
9 𝑟 ← 𝐺𝑒𝑛𝑅𝑒𝑔𝑒𝑥 (A);

10 return 𝑟 ;
11 𝑖 ← 𝑖 + 1;
12 else return 𝑛𝑢𝑙𝑙 ;
13 return 𝑛𝑢𝑙𝑙 ;

to 𝑠𝑖𝑛𝑘 . Then a deterministic version can be obtained by removing
the superfluous edges via the procedure DISAMBIGUATE given in
Algorithm 4.

Algorithm 4: DISAMBIGUATE
Input: a 𝑘-OA A, a positive set 𝑆+, a negative set 𝑆−
Output: a deterministic 𝑘-OA A

1 while ∃𝑠 ∈ A .𝑉 and 𝜎 ∈ Σ. |𝑜𝑢𝑡 (𝑣, 𝜎) | > 1 do
2 𝐶 ← ∅;
3 for 𝑡 ∈ 𝑜𝑢𝑡 (𝑣, 𝜎) do
4 A ′ ← A;
5 delete (𝑠, 𝑡 ′) in A ′ for all 𝑡 ′ ∈ 𝑜𝑢𝑡 (𝑣, 𝜎) \ {𝑡};
6 add A ′ in 𝐶;
7 A ← arg maxA′∈𝐶 𝑓 (A ′, 𝑆+, 𝑆−);
8 return A;

Note that character classes can be treated as special symbols
such that all (special) symbols are pairwise disjoint.

In addition, the repair algorithm is incremental as well. The user
may think that if she keeps on repairing the regex with some more
interesting positive or negative examples, then she could finally
get the equivalent one that she wants. However, the fact is that
our neighborhood search may not find such a solution in a limited
number of iterations, if the given examples are too many or the
given regex is far away from a solution. Nevertheless, in that case,
we would strongly suggest the user to use the synthesis algorithm
instead.

6 EVALUATION
We implemented FlashRegex based on Z3 [16] SMT solver in Python,
and conducted experiments on a machine with 16 cores Intel Xeon
CPU E5620 @ 2.40GHz with 12MB Cache, 24GB RAM, running
Windows 10 operating system. Our open-source implementation

Table 1: Benchmarks

Task Benchmark Number Sources Description

Synthesis
Bin-Syn-Regex 50

AlphaRegexPublic [32] (25)
AutoTutor [13] (25)

- Alphabet size is binary

Multi-Syn-Regex 50
Regex Golf [17] (17)
RegExLib [45] (33)

- Alphabet size is large

Repair
(Incorrect)

Pos-Rep-Regex 50 Rebele et al. [44] (50)
- Incorrect regex
- Positive examples only

Pos-Neg-Rep-Regex 2,129
RegExLib [45] (25)
AutoTutor [13] (2,104)

- Incorrect regex
- Positive and negative examples

Repair
(SL)

SL-Regex 20
OWASP (3), StackOverflow (1)
snyk (1), RegExLib [45] (3)
Davis et al. [14] (3), CVE (9)

- ReDoS-vulnerable regex
- Positive and negative examples

and the datasets of the experiments are available online6. The ex-
periments were designed to study three sets of research questions
concerning FlashRegex’s functionalities (i.e., synthesizing regexes,
repairing incorrect regexes, and repairing SL regexes).
RQ1. Evaluation of regex synthesis. Can FlashRegex synthe-

size regexes efficiently? (§6.2.1) Can FlashRegex synthesize
regexes from examples correctly? (§6.2.2) Can FlashRegex
synthesize safe regexes that are free fromReDoS-vulnerabilities?
(§6.2.3) Can the local constraints speed up the solution pro-
cess? (§6.2.4)

RQ2. Evaluation of incorrect regex repair. Can FlashRegex re-
pair incorrect regexes efficiently? (§6.3.1) Can FlashRegex
repair incorrect regexes from examples correctly? (§6.3.2)
Can FlashRegex repair incorrect regexes so that they are free
from ReDoS-vulnerabilities? (§6.3.3)

RQ3. Evaluation of SL regex repair. Can FlashRegex repair SL
regexes efficiently? (§6.4.1) Can FlashRegex repair SL regexes
from examples correctly? (§6.4.2) Can FlashRegex repair SL
regexes so that they are free from ReDoS-vulnerabilities after
repair? (§6.4.3)

6.1 Benchmarks and Existing Tools
To evaluate FlashRegex in three application scenarios under dif-
ferent prerequisites, we constructed ten separate benchmarks ac-
cordingly, collected from widely-used sources: (i) Regex Golf [17],
(ii) AlphaRegexPublic [32], (iii) AutoTutor dataset [13], (iv) the
RegExLib library [45], (v) Rebele et al. [44], (vi) OWASP7, (vii)
StackOverflow8 (viii) snyk9, (ix) Davis et al. [14], and (x) Common
Vulnerabilities and Exposures (CVE)10. Some information of them
is given in Table 1.

We compared FlashRegex with five state-of-the-art tools, GP-
RegexGolf [4], AlphaRegex [32], RegexGenerator++ [3, 5], RFixer [39],
and the one recently proposed by Rebele et al. [44]. Among them,
GP-RegexGolf, AlphaRegex, and RegexGenerator++ were developed
for regex synthesis, while the remaining two for regex repair. Fur-
thermore, we used three tools to detect ReDoS-vulnerabilities, ReS-
cue [47], Rexploiter [59] and SDLFuzzer [53] and manually checked
all inconsistent results concluded by these tools.

6https://github.com/EasyRegex/FlashRegex
7https://www.owasp.org/
8https://stackoverflow.com/
9https://snyk.io/blog/redos-and-catastrophic-backtracking/
10https://cve.mitre.org/

https://github.com/EasyRegex/FlashRegex
https://www.owasp.org/
https://stackoverflow.com/
https://snyk.io/blog/redos-and-catastrophic-backtracking/
https://cve.mitre.org/
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Table 2: The effectiveness and efficiency of regex synthesis

Benchmarks Bin-Syn-Regex Multi-Syn-Regex

Technique #Sol (%) #CSol (%) #Vul
Avg.

#Sol (% #CSol (%) #Vul
Avg.

Time (s) Time (s)

RegexGenerator++ - - - - 50 (100%) 3 (6%) 0 198.0
GP-RegexGolf - - - - 50 (100%) 7 (14%) 4 3889.6
AlphaRegex 50 (100%) 50 (100%) 21 7.6 - - - -

FlashRegex-Exact 50 (100%) 50 (100%) 0 3.3 38 (76%) 38 (100%) 0 5.3
FlashRegex-LCS 36 (72%) 36 (100%) 0 1.1 29 (58%) 29 (100%) 0 3.4

FlashRegex 50 (100%) 50 (100%) 0 1.9 38 (76%) 38 (100%) 0 4.0

6.2 Evaluation of Regex Synthesis
In this experiment, we evaluated the effectiveness and efficiency of
regex synthesis, as well as its comparison with the exact-directed
(FlashRegex-Exact) and local-directed (FlashRegex-LCS) constraint
encodings. The evaluation results are shown in Table 2. The ex-
periments were conducted on two benchmarks, Bin-Syn-Regex and
Multi-Syn-Regex, measuring the performance on benchmarks with
different alphabet sizes. Columns in each benchmark represent the
number of synthesized regexes by each tool (#Sol), the number
of correctly synthesized ones by each tool (i.e., the ones that are
consistent with all the examples) (#CSol), the number of ReDoS-
vulnerable ones in the synthesized results (#Vul) and the average
time of synthesizing one regex in seconds (Avg Time), respectively.
The symbol “-” indicates that the tool does not support the corre-
sponding benchmark functionally.

6.2.1 Efficiency of Regex Synthesis. Table 2 compares the run-
time efficiency of FlashRegex with three synthesis tools by their
average time (in seconds) taken to synthesize a regex on the corre-
sponding benchmark. On benchmark Bin-Syn-Regex with binary
alphabet size, though the differences in average time are small (rang-
ing from 1.1 to 7.6 seconds), the average runtime of FlashRegex (1.9
seconds) is still less than half of that of AlphaRegex (7.6 seconds).
On benchmark Mul-Syn-Regex with multiple alphabet sizes, the
average time varies greatly, from one hour to few seconds. Note
that the time in Table 2 refers to average time, so the total running
time taken by RegexGenerator++ and GP-RegexGolf on this bench-
mark are more than 2 hours and 50 hours, respectively, which is
considered unaffordable in practice. In contrast, FlashRegex (using
either of the synthesis algorithms) only takes an average 4 seconds,
which is significantly more efficient than the other tools.

6.2.2 Correctness of Regex Synthesis. The results on correct-
ness are summarized by column #CSol in Table 2. The correctness of
synthesized regex is crucial. It guarantees the quality of regexes af-
ter synthesis. The experiments show that the correctness of existing
tools is unsatisfactory. We can see that though RegexGenerator++
and GP-RegexGolf can synthesize all the 50 regexes on the second
benchmark, only 3 and 7 of them are correct. It is mainly because
they require the synthesized regex to be consistent with as many
given examples as possible, instead of all the examples. By contrast,
FlashRegex and AlphaRegex achieve 100% correctness ratio, be-
cause they aim to find a regex that accepts all the positive examples
while rejecting all the negative examples.

Figure 5: 0*(1(0|1)?)* Figure 6: 0*(10?)*

6.2.3 ReDoS-vulnerability of Regex Synthesis. The two #Vul
columns in Table 2 show that 4 and 21 regexes synthesized by GP-
RegexGolf and AlphaRegex, respectively, are ReDoS-vulnerable.
In other words, the consistency with given examples does not
necessarily guarantee the synthesized regexes free from ReDoS-
vulnerability. In contrast, all the regexes synthesized by FlashRegex
are ReDoS-invulnerable.

Let us give an example from Bin-Syn-Regex to illustrate the differ-
ence between ReDoS-vulnerable and ReDoS-invulnerable regexes.
Given the same set of positive and negative examples, AlphaRegex
synthesizes 0*(1(0|1)?)*, while FlashRegex synthesizes 0*(10?)*.
Although the two regexes are equivalent, their evaluations take
exponential and linear time in the length of the input, respectively.
Let us consider the railroad diagrams of these two regexes, which
are given in Figures 5 and 6. Suppose the given string is “11”; there
are two possible paths in Figure 5 to generate this string, while
there is only one path in Figure 6. When the given string is “111”,
there are four possible paths in Figure 5, whereas there is still one
possible path in Figure 6. This illustrates how the two search spaces
differ as the length of the input increases.

6.2.4 Evaluation of Different Constraint Encodings. Table 2
shows that FlashRegex-Exact is more effective than FlashRegex-
LCS in synthesizing significantly more regexes. On the other hand,
FlashRegex-LCS is more efficient by leveraging the LCS heuristic
strategy. There are 14 (9) benchmarks on Bin-Syn-Regex (Multi-Syn-
Regex) that FlashRegex-Exact can solve while FlashRegex-LCS can-
not. FlashRegex-Exact is, on average, 2.0X slower than FlashRegex-
LCS on Bin-Syn-Regex, and 0.6X slower on Multi-Syn-Regex. The
two constraint encodings are complementary on effectiveness and
efficiency.

Summary to RQ1: FlashRegex can synthesize regex efficiently,
correctly and safely. The advantage of high efficiency of FlashRegex
becomes more obvious with the increase of the alphabet size. Also,
the two constraint encodings of FlashRegex are complementary
on effectiveness and efficiency. The results also confirmed the lack
of focus on ReDoS-vulnerability in previous works, thus making
further repair a necessity.

6.3 Evaluation of Incorrect Regex Repair
Table 5 shows the evaluation results of repairing incorrect regexes
in terms of efficiency, correctness and ReDoS-vulnerability. It uses
the same columns as Table 2. The experiments were conducted on
Pos-Rep-Regex and Pos-Neg-Rep-Regex benchmarks. For comparison,
the tools proposed by Rebele et al [44] and RFixer were evaluated.
Note that the regexes under repair in the evaluation are incorrect.
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Table 3: ReDoS-vulnerable Regexes Repaired by RFixer and FlashRegex. RV denotes ReDoS-vulnerable.

No. Source SL (Sub-)Regex
RFixer FlashRegex

Repaired (Sub-)Regex Time (s) RV Repaired (Sub-)Regex Time (s) RV

#1 OWASP (a|aa)+ (a|aa)+ 0.098 V a+ 0.596 I
#2 OWASP (a|a?)+ (a?)+ 0.133 I a* 0.028 I
#3 OWASP ([a-zA-Z]+)* ([a-zA-Z]+)* 0.057 V ([a-zA-Z])* 0.059 I
#4 StackOverflow (x+x+)+y (x+)+y 10.289 V xx+y 0.183 I
#5 snyk (\w+\d+)+C (\w+\d+)+C 0.176 V ([A-Za-z_]*\d)+C 0.058 I
#6 RegExLib (\d+(,\d+)*)+ (\d+(,\d+)*)+ 0.196 V \d+(,\d+)* 0.427 I
#7 RegExLib ([0-9a-f]+\d+)* ([0-9a-f]+\d+)* 0.204 V (([a-f]+\d)|\d)* 0.574 I
#8 RegExLib (\d+|(\d*\.\d+))+ (\d+|(\d*\.\d+))+ 0.158 V (\.?\d)+ 0.040 I
#9 Davis et al. [14] \s*#?\s* \s*#?\s* 0.139 V \s*(#\s*)? 0.249 I
#10 Davis et al. [14] (\n\s*)+ (\n\s*)+ 0.004 V \n\s* 0.052 I
#11 Davis et al. [14] [$_a-z]+[$_a-z0-9-]* [$_a-z]+[$_a-z0-9-]* 0.003 V [$_a-z][$_a-z0-9-]* 0.061 I
#12 CVE-2009-3277 ((a{1,2}){1,2}){1,10} ((a{1,2}){1,2}){1,10} 15.763 V a{1,40} 8.555 I
#13 CVE-2016-4055 A(B|C+)+D A(B+|C+)+D 0.162 V A(B|C)+D 0.063 I
#14 CVE-2017-15010 ([^=;]+)\s*=\s*([^\n\r\0]*) ([^=;\s]+)\s*=\s*([^\s\0]*) 31.534 I ([^=;\s]+)\s*=\s*([^\s\0]*) 5.484 I
#15 CVE-2017-16098 \s*=\s*['"]? *([\w\-]+) \s*=\s*['"]? *([\w\-]+) 3.218 V \s*=\s*(['"] *)?([\w\-]+) 20.125 I
#16 CVE-2017-16137 \s*\n\s* [ \f\r\t\v]*\n\s* 0.368 I [ \f\r\t\v]*\n\s* 0.543 I
#17 CVE-2017-18214 (\s*?[\u0600-\u06FF]+){1,2} (\s*?[\u0600-\u06FF]+){1,2} 3.270 V \s*[\u0600-\u06FF]+(\s+[\u0600-\u06FF]+)? 23.074 I
#18 CVE-2018-3737 ([\n \t]+([^\n]+))? ([\n \t]+([^\n]+))? 183.469 V ([\n \t]+([^\n \t]+))? 0.375 I
#19 CVE-2019-17592 (\-|\+)?([1-9]+[0-9]*) (\-|\+)?([1-9]+[0-9]*) 15.936 V (\-|\+)?[1-9]\d* 4.305 I
#20 CVE-2020-5243 *([^;]+) * *([^; ]+) * 1.406 I *([^; ]+) * 2.102 I

Table 4: ReDoS-vulnerable Regexes Repaired by Experts and FlashRegex. RV denotes ReDoS-vulnerable.

Source SL Regex
Expert FlashRegex

Strategy Fix Solution RV Strategy Fix Solution RV

CVE-2016-4055 A(B|C+)+D Revise A(?=(B|C+))\1+D I Revise A(B|C)+D I
CVE-2017-15010 ([^=;]+)\s*=\s*([^\n\r\0]*) Revise (([^=;]+))\s{0,512}=\s*([^\n\r\0]*) V Revise ([^=;\s]+)\s*=\s*([^\s\0]*) I
CVE-2017-16098 \s*=\s*['"]? *([\w\-]+) Trim limit match string, only allow max 10

spaces and 100 charset string
- Revise \s*=\s*(['"] *)?([\w\-]+) I

CVE-2017-16137 \s*\n\s* Resort (i) split the line by ’\n’, and (ii) trim each
line, (iii) then join each line by ’ ’

- Revise [ \f\r\t\v]*\n\s* I

CVE-2017-18214 (\s*?[\u0600-\u06FF]+){1,2} Revise (\s*?[\u0600-\u06FF]{1,256}){1,2} V Revise \s*[\u0600-\u06FF]+(\s+[\u0600-\u06FF]+)? I
CVE-2018-3737 ([\n \t]+([^\n]+))? Revise ([\n \t]+([^\n \t][^\n]*))? I Revise ([\n \t]+([^\n \t]+))? I
CVE-2019-17592 (\-|\+)?([1-9]+[0-9]*) Revise (\-|\+)?[1-9][0-9]* I Revise (\-|\+)?[1-9]\d* I
CVE-2020-5243 *([^;]+) * Revise {0,2}([^;]+) {0,2} I Revise *([^; ]+) * I

They either reject some positive examples or accept some negative
ones.

Table 5: The effectiveness and efficiency of incorrect regex
repair

Benchmarks Pos-Rep-Regex Pos-Neg-Rep-Regex

Technique #Sol (%) #CSol (%) #Vul
Avg.

#Sol (% #CSol (%) #Vul
Avg.

Time (s) Time (s)

Rebele et al [44] 50 (100%) 50 (100%) 0 0.2 - - - -
RFixer 35 (70%) 35 (100%) 3 2.4 1,611 (75.67%) 1,611 (100%) 349 9.3
FlashRegex 35 (70%) 35 (100%) 0 1.5 1,948 (91.50%) 1,948 (100%) 0 1.6

6.3.1 Efficiency of Incorrect Regex Repair. The tool proposed
by Rebele et al. [44] ran the fastest (0.2 seconds) on the first bench-
mark (i.e., the one from the tool), but it cannot handle negative ex-
amples. RFixer took the longest average time on both benchmarks.
It took much more average time on the given negative examples. In
constrast, the efficiency of FlashRegex was mildly affected by the
negative samples. The average time it took increased mildly from
1.5 to 1.6 seconds.

6.3.2 Correctness of Incorrect Regex Repair. Table 5 shows
that the tool proposed by Rebele et al. [44] can repair the most num-
ber of regexes on the first benchmark, but it is not able to process
any negative examples on the second benchmark. FlashRegex can
repair 91.5% of the incorrect regexes, 337 (15.83%) more regexes
than those repaired by RFixer, on the second benchmark.
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6.3.3 ReDoS-vulnerability of Incorrect RegexRepair. Accord-
ing to the #Vul coulmn in Table 5, three (8.57%) ReDoS-vulnerable
regexes were generated by RFixer on the first benchmark. The
number increases significantly on the second benchmark. There
were 349 (21.66%) regexes repaired by RFixer suffered from ReDoS-
vulnerability. In contrast, FlashRegex can repair 337 more regexes
than RFixer with no ReDoS-vulnerable regexes generated.

Let us present a few incorrect regexes to illustrate the vulnerable
and invulnerable repairs. From Pos-Neg-Rep-Regex, for the incor-
rect regex (((0+1*)*0+)*|((1+0*)*1+)*)*, a repaired regex pro-
duced by RFixer is (0(0*|1+0)*)|(1(1*|0+1)*), which is ReDos-
vulnerable. We can see that although this regex is consistent with
the given examples, it still causes ambiguity because its star height
(i.e., nested quantifiers) equals to two. For example, the string “0”
can be either consumed by the inner quantifier (*) or the outer
one (*), leading to incorrect behavior with worst-case exponential
costs on a mismatch. In contrast, FlashRegex deduced the regex
((01?)+|(10*)+), which successfully avoids the security issue.
Similar incorrect ones repaired by RFixer have also been found from
Pos-Rep-Regex, they are (([1234567,] [1234568,]|[79,]))*\d
and (([a-z]|[A-Z])? [AegikLloPr3tuVwX ])+(\d+\.?)+. Both
are ReDoS-vulnerable.

Summary to RQ2: FlashRegex can repair incorrect regex effi-
ciently, correctly and safely. The efficiency is not affected signif-
icantly by negative examples, and the regex after repair is free
from ReDoS-vulnerability.

6.4 Evaluation of SL Regex Repair
The evaluation results of SL regex repair are shown in Table 3.
We compared FlashRegex with RFixer, which is designed to repair
regexes from both positive and negative examples. The benchmark
contains 20 SL regexes (listed in Table 3) with positive and negative
examples. Due to the space constraint, we only show the problem-
atic sub-regexes for some regexes. Examples corresponding to these
(sub-)regexes are generated manually or based on the Brics automa-
ton library [37]. Specifically, the positive examples are enumerated
by randomly traversing the deterministic finite automaton (DFA)
of the given regex (resp. the negative examples are synthesized
by stochastically traversing the DFA of the negation of the given
regex). The columns in the table represent the sources of each regex
(Source), the ReDoS-vulnerable regex (SL (Sub)-Regex); columns in
RFixer and FlashRegex are the regex repaired by the corresponding
tools (Repaired (Sub-)Regex), the running time in seconds (Time)
and whether the repaired regexes are ReDoS-vulnerable (RV) (𝑉
for vulnerable, 𝐼 for invulnerable).

6.4.1 Efficiency of SL Regex Repair. The average running time
taken for repairing varies across regexes. RFixer took from less than
0.057 to 183 seconds, and 13.329 seconds on average. FlashRegex
offers a more stable and better efficiency, ranging from 0.04 to 23.074
seconds, and 3.348 seconds on average.

6.4.2 Correctness of SL Regex Repair. In Table 3, all the re-
paired regexes are consistent with the given examples. This sug-
gests the correctness of both tools. The results are also in line with
the results of repairing incorrect regexes in Table 5.

6.4.3 ReDoS-vulnerability of SL Regex Repair. According to
Table 3, 16/20 (80%) regexes repaired by RFixer are still vulnera-
ble to ReDoS attacks. In constrast, all the SL regexes repaired by
FlashRegex are free from ReDoS-vulnerabilities.

We further compared the results repaired by FlashRegex with
the results achieved by developer experts, which are given in Ta-
ble 411. We found that experts repaired SL regexes using one of
three strategies introduced by Davis et al. [14]: revising the regex,
trimming the input, or resorting it to alternate logic. The first one
is motivated but not easy to do it manually, as demonstrated by the
results, 2/6 (33%) regexes repaired by experts are still vulnerable to
ReDoS attacks, and the invulnerable ones may be difficult for users
to follow (e.g., the first one using back-reference and the last one
using bounded iteration). In contrast, all the SL regexes repaired by
FlashRegex are free from ReDoS-vulnerabilities. The second one
works well but is not friendly to users, while the last one is only
effective for some special regexes (i.e., it cannot be generalized).

Summary to RQ3: FlashRegex can repair ReDoS-vulnerable
regex efficiently and correctly. The experiment also indicates
the incapability of existing work for repairing ReDoS-vulnerable
regex. Further, comparing with the manual repair, FlashRegex
works in an automatic and user-friendly manner, keeping users’
intention meanwhile getting rid of the ReDoS-vulnerability.

7 THREATS TO FLASHREGEX’S VALIDITY
Considering that FlashRegex is a programming-by-example (PBE)
algorithm, the quality of regex synthesized by FlashRegex highly
depends on the quality of examples. In other words, if users can not
provide sufficient characteristic examples, the synthesized regexes
will be unsatisfactory (i.e., over-fitting or under-fitting). To alleviate
this problem, we can adopt the following three strategies:

Generalized examples. The users provide some abstract general-
ized examples rather than concrete examples. The generalized ex-
amples can reduce the amount of required concrete (characteristic)
examples meanwhile lessening the workload from users, thereby
improving the quality of regex synthesis by generalizing concrete
examples. For instance,We can use a generalized example <NUM>dog
instead of concrete examples (e.g., 1dog, 2dog, 3dog).

Integration of PBE and programming by natural language (PBNL).
We can leverage PBNL techniques to overcome the drawbacks of
PBE techniques. Specifically, incorporating natural language can
greatly improve the generalization of PBE techniques. For example,
we can use the natural language description “lines with vowels
after lower-case letters” as a major resource, and some concrete
example (e.g., biiii and cee) instead of a large number of concrete
examples.

Interaction with users. A more user-friendly strategy is that when-
ever the generated regex is out of expectation of users, they can
add/delete/update examples interactively so that the resulting regex
can be adjusted dynamically until meet users’ requirements.

11Due to space constraint, only solutions from CVE are given.
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8 RELATEDWORK
Programming-by-Example (PBE). PBE techniques have been
the subject of research in the past few decades [46] and successful
paradigms for program synthesis, allowing end-users to construct
and run new programs by providing examples of the intended pro-
gram behavior [18]. Recently, PBE techniques have been success-
fully used for string transformations [27, 48, 49], data filtering [57],
data structure manipulations [22, 60], table transformations [20, 28],
SQL queries [56, 62], MapReduce programs [1, 50], and also regex
synthesis [3–5, 7, 8, 21, 24, 32, 34]. In this paper, we take advantage
of PBE techniques to enhance user-friendliness by allowing users
to provide examples to reflect their true intentions.
ReDoSDetection and Prevention.Various techniques have been
proposed [30, 41–43, 47, 52, 53, 58, 59] to identify ReDoS-vulnerabilities,
which can be mainly classified into two paradigms: static analy-
sis [30, 42, 43, 52, 58, 59] and dynamic fuzzing [41, 47, 53].

To prevent ReDoS attacks, Davis et al. [14] identified three
anti-patterns of regexes as prerequisites of ReDoS attacks and
recommended avoiding using them. These anti-patterns include:
(i) regexes with nested quantifiers (e.g., A(B|C+)+D); (ii) Regexes
withQuantified Overlapping Disjunction (QOD) (e.g., (\𝑤 |\𝑑)+); and
(iii) Regexes with Quantified Overlapping Adjacency (QOA) (e.g.,
\s*#?\s* ). In our work, we adopt deterministic 𝑘-OA and deter-
ministic regex constraints to avoid the ambiguity caused by QOD or
QOA in FlashRegex algorithms, and searching for solutions starting
from 𝑘 = 1 can effectively avoid nested quantifiers.

ReDoS attacks can also be alleviated by regex matching speedup,
which is possible in some special cases, e.g., by parallel algorithms [35],
GPU-based algorithms [61], state-merging algorithms [6], and Thomp-
son’s Non-deterministic Finite Automaton algorithm [12, 54]. How-
ever, these can only alleviate the ReDoS-vulnerability problem,
since the regexes themselves are still subject to ReDoS attacks. In
our work, we address this issue from the regexes side.
Regexes Synthesis. The problem of automatic regex synthesis
from examples has been explored in many domains [3–5, 7, 8, 21,
24, 31, 32, 34, 36, 40, 63]. AlphaRegex [32] is an enumeration al-
gorithm for synthesizing simple regexes over binary alphabets
from examples. However, all the synthesized expressions are over
alphabets of size 2. RegexGenerator++ [3, 5] is a state-of-the-art
approach for the synthesis of regexes from examples. The fact that
RegexGenerator++ utilizes genetic programming means that it is
not guaranteed to generate a correct solution–i.e., accepting all the
positive examples while rejecting all the negative examples. Lots of
existing works focus on XML schemas inference [7, 8, 21, 24, 34],
via resorting to infer regexes from examples. These approaches
usually aim to tackle restricted forms of deterministic regexes [9]
from positive examples only. GP-RegexGolf [4] is an approach based
on genetic programming for playing regex golf [17] automatically,
i.e., for writing the shortest regex that matches all positive strings
and does not match any negative string. Unlike many of these
efforts which aim to generalize beyond the provided examples, GP-
RegexGolf focuses on binary classifying input strings and it does
not require a form of generalization, i.e., the ability of inducing a
general pattern from the provided examples. Several works from
the Natural Language Processing community address the problem

of generating regexes from natural language specifications based
on sequence-to-sequence (seq2seq) model [31, 36, 40, 63].

All of the synthesis techniques above barely pay attention to
preventing ReDoS during the synthesis process, making the syn-
thesized regexes (hyper-)vulnerable to ReDoS attacks.
Regexes Repair. There are several works targeting at repairing or
modifying regexes from examples, specifically the incorrect regexes.
We discuss two main paradigms of them. In the first paradigm,
works only consider either positive or negative examples. Li et
al. [33] proposed ReLIE, which can modify complex regexes by
rejecting the newly-input negative examples. By contrast, Rebele
et al. [44] proposed a novel way to generalize a given regex so that
it accepts the given positive examples. On the other hand, works
in the second paradigm take both positive and negative examples
into consideration. Pan et al. [39] designed RFixer, a tool for repair-
ing incorrect regexes using both examples. It took advantage of
skeletons of regexes to effectively prune out the search space, and
it employed SMT solvers to efficiently explore the sets of possible
character classes and numerical quantifiers. Our work is similar
to their work, yet differs in the effectiveness and quality of re-
paired regexes — we consider not only the correctness, but also the
ReDoS-invulnerability of the regexes.

There is only twowork exploring how to repair ReDoS-vulnerable
regexes [11, 55], which considers revisions that match the exact
same languages of the original regexes. However, the (exact) equiv-
alence is too strong to use in practice [14, 47].

9 CONCLUSION
Many techniques for synthesizing or repairing regexes have been
proposed. However, the lack of attention to ReDoS-vulnerabilities
affects the security of existing tools. We propose a PBE framework,
FlashRegex, which provides three core functionalities including
regex synthesis, incorrect regex repair, and ReDoS-vulnerable (i.e.,
SL) regex repair. This is achieved by devising novel algorithms to
deduce deterministic regexes from both positive and negative exam-
ples based on SAT or NS. Ours is the first framework that integrates
the synthesis and repair of regexes with the awareness of ReDoS-
vulnerabilities. The evaluation results show that our work can
effectively and efficiently generate anti-ReDoS regexes from given
examples, and has better capability than existing repair tools and
even human experts on ReDoS-vulnerable regex repair, demonstrat-
ing the usefulness of our work. The results also reveal that existing
synthesis and repair tools have neglected ReDoS-vulnerabilities of
regexes. Although our experiments have shown the effectiveness
and efficiency of FlahsRegex, we plan to conduct a larger scale of
evaluation with more complex subjects in our future work.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their comments and suggestions. This work is supported in part by
National Natural Science Foundation of China (Grants #61872339,
#61472405, #61932021, #61972260, #61772347, #61836005), NSF grant
IIS-1633271, Guangdong Basic and Applied Basic Research Founda-
tion under Grant #2019A1515011577, and Huawei PhD Fellowship,
MSRA Collaborative Research Grant.



ASE ’20, September 21–25, 2020, Virtual Event, Australia Y. Li et al.

REFERENCES
[1] Maaz Bin Safeer Ahmad and Alvin Cheung. 2016. Leveraging Parallel Data

Processing Frameworks With Verified Lifting. In Proceedings Fifth Workshop on
Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. 67–83.

[2] Adam Baldwin. 2016. Regular Expression Denial Of Service Affecting Express.js.
https://medium.com/node-security/

[3] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico
Sorio. 2014. Automatic Synthesis Of Regular Expressions From Examples. IEEE
Computer 47, 12 (2014), 72–80.

[4] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2014.
Playing Regex Golf With Genetic Programming. In Genetic and Evolutionary
Computation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014.
1063–1070.

[5] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016.
Inference Of Regular Expressions For Text Extraction From Examples. IEEE
Trans. Knowl. Data Eng. 28, 5 (2016), 1217–1230.

[6] Michela Becchi and Srihari Cadambi. 2007. Memory-Efficient Regular Expres-
sion Search Using State Merging. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, 6-12 May 2007, Anchorage, Alaska, USA. IEEE,
1064–1072.

[7] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. 2010.
Learning Deterministic Regular Expressions For The Inference Of Schemas From
XML Data. TWEB 4, 4 (2010), 14:1–14:32.

[8] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. 2010.
Inference Of Concise Regular Expressions And DTDs. ACM Trans. Database Syst.
35, 2 (2010), 11:1–11:47.

[9] Anne Brüggemann-Klein. 1993. Unambiguity Of Extended Regular Expressions
In SGML Document Grammars. In Algorithms - ESA ’93, First Annual European
Symposium, Bad Honnef, Germany, September 30 - October 2, 1993, Proceedings.
73–84.

[10] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. 2017. Exploring Regular
Expression Comprehension. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017. 405–416.

[11] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine,
Thomas McGuire, and Michael O’Neill. 2017. A Search For Improved Perfor-
mance In Regular Expressions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017. 1280–
1287.

[12] Russ Cox. 2007. Regular ExpressionMatching Can Be Simple And Fast (But Is Slow
In Java, Perl, PHP, Python, Ruby, ...). https://swtch.com/~rsc/regexp/regexp1.html

[13] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: Synthesizing
Command Repairs From Examples. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. 582–592.

[14] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact Of Regular Expression Denial Of Service (ReDoS) In Practice: An
Empirical Study At The Ecosystem Scale. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,
FL, USA, November 04-09, 2018. 246–256.

[15] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. 2019. Why Aren’t Regular Expressions A Lingua Franca?
An Empirical Study On The Re-Use And Portability Of Regular Expressions. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. 443–454.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. 337–340.

[17] Erling Ellingsen. 2019. Regex Golf. https://alf.nu/RegexGolf
[18] Kevin Ellis and Sumit Gulwani. 2017. Learning To Learn Programs FromExamples:

Going Beyond Program Structure. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017. 1638–1645.

[19] Stack Exchange. 2016. Outage Postmortem. http://stackstatus.net/post/
147710624694/outage-postmortem-july-20-2016

[20] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
2017. Component-Based Synthesis Of Table Consolidation And Transformation
Tasks From Examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. 422–436.

[21] Henning Fernau. 2009. Algorithms For Learning Regular Expressions From
Positive Data. Inf. Comput. 207, 4 (2009), 521–541.

[22] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Struc-
ture Transformations From Input-Output Examples. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015. 229–239.

[23] Python Software Foundation. 2018. PyPI–The Python Package Index. https:
//pypi.org/

[24] Dominik D. Freydenberger and Timo Kötzing. 2015. Fast Learning Of Restricted
Regular Expressions And DTDs. Theory Comput. Syst. 57, 4 (2015), 1114–1158.

[25] E. Mark Gold. 1978. Complexity Of Automaton Identification From Given Data.
Information and Control 37, 3 (1978), 302–320.

[26] Benoît Groz and Sebastian Maneth. 2017. Efficient Testing And Matching Of
Deterministic Regular Expressions. J. Comput. Syst. Sci. 89 (2017), 372–399.

[27] Sumit Gulwani. 2011. Automating String Processing In Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. 317–330.

[28] William R. Harris and Sumit Gulwani. 2011. Spreadsheet Table Transformations
From Examples. In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011. 317–328.

[29] Louis G. Michael IV, James Donohue, James C. Davis, Dongyoon Lee, and Fran-
cisco Servant. 2019. Regexes Are Hard: Decision-Making, Difficulties, And Risks
In Programming Regular Expressions. In 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019. 415–426.

[30] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. 2013. Static Analysis For
Regular Expression Denial-of-Service Attacks. In Network and System Security -
7th International Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings.
135–148.

[31] Nate Kushman and Regina Barzilay. 2013. Using Semantic Unification ToGenerate
Regular Expressions From Natural Language. In Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA. 826–836.

[32] Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions
From Examples For Introductory Automata Assignments. In Proceedings of the
2016 ACMSIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November
1, 2016. 70–80.

[33] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and H. V. Jagadish. 2008. Regular Expression Learning
For Information Extraction. In 2008 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2008, Proceedings of the Conference, 25-27 October
2008, Honolulu, Hawaii, USA, A meeting of SIGDAT, a Special Interest Group of the
ACL. 21–30.

[34] Yeting Li, Xiaolan Zhang, Jialun Cao, Haiming Chen, and Chong Gao. 2019.
Learning K-Occurrence Regular Expressions With Interleaving. In Database
Systems for Advanced Applications - 24th International Conference, DASFAA 2019,
Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Part II. 70–85.

[35] Cheng-Hung Lin, Chen-Hsiung Liu, and Shih-Chieh Chang. 2011. Accelerating
Regular Expression Matching Using Hierarchical Parallel Machines On GPU.
In Proceedings of the Global Communications Conference, GLOBECOM 2011, 5-9
December 2011, Houston, Texas, USA. IEEE, 1–5.

[36] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and
Regina Barzilay. 2016. Neural Generation Of Regular Expressions From Natural
LanguageWithMinimal Domain Knowledge. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. 1918–1923.

[37] Anders Møller. 2017. dk.brics.automaton – Finite-State Automata and Regular
Expressions for Java. https://www.brics.dk/automaton/

[38] Inc. NPM. 2018. NPM. https://www.npmjs.com/
[39] Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Automatic

Repair Of Regular Expressions. PACMPL 3, OOPSLA (2019), 139:1–139:29.
[40] Jun-U. Park, Sang-Ki Ko, Marco Cognetta, and Yo-Sub Han. 2019. SoftRegex:

Generating Regex From Natural Language Descriptions Using Softened Regex
Equivalence. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019.
6424–6430.

[41] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017. Slow-
Fuzz: Automated Domain-Independent Detection Of Algorithmic Complexity
Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. 2155–2168.

[42] Asiri Rathnayake. 2015. Semantics, Analysis And Security Of Backtracking Regular
Expression Matchers. Ph.D. Dissertation. University of Birmingham, UK.

[43] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis For Regular Ex-
pression Exponential Runtime Via Substructural Logics. CoRR abs/1405.7058

https://medium.com/node-security/
https://swtch.com/~rsc/regexp/regexp1.html
https://alf.nu/RegexGolf
http://stackstatus.net/post/147710624694/ outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/ outage-postmortem-july-20-2016
https://pypi.org/
https://pypi.org/
https://www.brics.dk/automaton/
https://www.npmjs.com/


FlashRegex: Deducing Anti-ReDoS Regexes from Examples ASE ’20, September 21–25, 2020, Virtual Event, Australia

(2014).
[44] Thomas Rebele, Katerina Tzompanaki, and Fabian M. Suchanek. 2018. Adding

Missing Words To Regular Expressions. In Advances in Knowledge Discovery
and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC,
Australia, June 3-6, 2018, Proceedings, Part II. 67–79.

[45] RegExLib. 2019. Regular Expression Library. http://regexlib.com/
[46] David E. Shaw, William R. Swartout, and C. Cordell Green. 1975. Inferring LISP

Programs From Examples. In Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, September 3-8, 1975.
260–267.

[47] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.
ReScue: Crafting Regular Expression DoS Attacks. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018. 225–235.

[48] Rishabh Singh. 2016. BlinkFill: Semi-Supervised Programming By Example For
Syntactic String Transformations. PVLDB 9, 10 (2016), 816–827.

[49] Rishabh Singh and Sumit Gulwani. 2012. Learning Semantic String Transforma-
tions From Examples. PVLDB 5, 8 (2012), 740–751.

[50] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016.
326–340.

[51] Eric Spishak, Werner Dietl, and Michael D. Ernst. 2012. A Type System For
Regular Expressions. In Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs, FTfJP 2012, Beijing, China, June 12, 2012. 20–26.

[52] Satoshi Sugiyama and Yasuhiko Minamide. 2014. Checking Time Linearity Of
Regular Expression Matching Based On Backtracking. Information and Media
Technologies 9, 3 (2014), 222–232.

[53] Bryan Sullivan. 2010. New Tool: SDL Regex Fuzzer. https://cloudblogs.microsoft.
com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer

[54] Ken Thompson. 1968. Regular Expression Search Algorithm. Commun. ACM 11,
6 (1968), 419–422.

[55] Brink van der Merwe, Nicolaas Weideman, and Martin Berglund. 2017. Turning
Evil Regexes Harmless. In Proceedings of the South African Institute of Computer
Scientists and Information Technologists, SAICSIT 2017, Thaba Nchu, South Africa,
September 26-28, 2017. 38:1–38:10.

[56] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing Highly
Expressive SQL Queries From Input-Output Examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. 452–466.

[57] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. 2016. FIDEX: Filtering Spread-
sheet Data Using Examples. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October
30 - November 4, 2016. 195–213.

[58] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce W. Wat-
son. 2016. Analyzing Matching Time Behavior Of Backtracking Regular Expres-
sion Matchers By Using Ambiguity Of NFA. In Implementation and Application
of Automata - 21st International Conference, CIAA 2016, Seoul, South Korea, July
19-22, 2016, Proceedings. 322–334.

[59] Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig. 2017. Static
Detection Of DoS Vulnerabilities In Programs That Use Regular Expressions. In
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part II. 3–20.

[60] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016.
Synthesizing Transformations On Hierarchically Structured Data. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. 508–521.

[61] Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration Of Regular Expression
Matching For Large Datasets: Exploring The Implementation Space. In Computing
Frontiers Conference, CF’13, Ischia, Italy, May 14 - 16, 2013, Hubertus Franke,
Alexander Heinecke, Krishna V. Palem, and Eli Upfal (Eds.). ACM, 18:1–18:10.

[62] Sai Zhang and Yuyin Sun. 2013. Automatically Synthesizing SQL Queries From
Input-Output Examples. In 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15,
2013. 224–234.

[63] Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu,
and Dongmei Zhang. 2018. SemRegex: A Semantics-Based Approach For Generat-
ing Regular Expressions From Natural Language Specifications. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018. 1608–1618.

http://regexlib.com/
https://cloudblogs.microsoft. com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer
https://cloudblogs.microsoft. com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Synthesis Algorithm
	4.1 k-OA Synthesis
	4.2 Regex Extraction

	5 Repair Algorithm
	6 Evaluation
	6.1 Benchmarks and Existing Tools
	6.2 Evaluation of Regex Synthesis
	6.3 Evaluation of Incorrect Regex Repair
	6.4 Evaluation of SL Regex Repair

	7 Threats to FlashRegex's Validity
	8 Related Work
	9 Conclusion
	References

