
Inclusion Algorithms for One-Unambiguous Regular Expressions and Their
Applications

Haiming Chena, Zhiwu Xub

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
bCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

One-unambiguous regular expressions are used in DTD and XML Schema. It is known that inclusion for
one-unambiguous regular expressions is in PTIME. However, there has been few studies on algorithms for the
inclusion. In this paper we present algorithms for checking inclusion of one-unambiguous regular expressions.
A classical way is based on automata, following which one algorithm is provided and improvements are given.
The other algorithm is based on derivatives, utilizing a property presented here that the number of derivatives
of a one-unambiguous regular expression is finite. We have applied the algorithms to XML typechecking. The
results of experiments with the algorithms are also included. First we give comparisons of the efficiency of
our algorithms by experiments. Since after our work Hovland has given another algorithm, we also included
his algorithm in the experiments. The results show that both of our algorithms are more efficient than
Hovland’s algorithm for one-unambiguous regular expressions, and under the inclusion mode (see Section
6) the derivative-based algorithm is more efficient than the automata-based one for small expressions, while
for large expressions the latter is more efficient. Then we have conducted preliminary experiments by
implementing typechecking of XML using the algorithms. The results show that typechecking using our
algorithms is more efficient than typechecking using XDuce. Comparisons of the algorithms with CDuce are
also given.

Keywords: One-unambiguous regular expressions, inclusion, algorithms, applications

1. Introduction

Extensible Markup Language (XML) is a simple, very flexible text format for semistructured data, which
is popular for the Web and other applications. Usually in XML applications data are provided with schemas
that the XML data must conform to. These schemas are very helpful for XML manipulation. In many
tasks it is required to check inclusion of schemas (i.e., the set of XML documents satisfying one schema5

is contained in the set of documents satisfying the other one), for example, in query processing, schema
update, typechecking, and so on. In many cases, the inclusion problem of XML schemas is closely related to
the inclusion problem of regular expressions [1]. Thus it is useful to study the inclusion problem of regular
expressions used in XML schemas.

Many results for the complexity of the inclusion problem for regular expressions exist. For traditional10

regular expressions, inclusion is PSPACE-complete [2]. Martens et al. [1] give complexity of decision problems
for CHAin Regular Expressions (CHAREs) occurring in practice in XML schemas. Their results show that
inclusion is already co-NP-complete for very innocent expressions such as expressions with factors of the
form a or a∗. Several researchers give complexity for regular expressions with interleaving and/or numerical
occurrence indicators [3, 4, 5]. Inclusion for these expressions is in EXPSPACE. In order to get tractable15

inclusion checking, Suzuki [6] proposes a polynomial-time algorithm for solving a subproblem of the inclusion
problem defined by edit operations.

Email addresses: chm@ios.ac.cn (Haiming Chen), xuzhiwu@szu.edu.cn (Zhiwu XU)

Preprint submitted to Elsevier January 5, 2021

The most commonly used XML schema languages are Document Type Definition (DTD) and XML
Schema which are recommended by W3C [7, 8]. In these scheme languages, One-unambiguous regular ex-
pressions [9] are used. Therefore, algorithms for one-unambiguous regular expressions are useful in practice.20

And the complexity of inclusion problem for these scheme languages reduces to the complexity of inclusion
problem of one-unambiguous regular expressions [1]. One-unambiguous regular expressions reflect the re-
quirement that a symbol in the input word is matched uniquely to a position in a regular expression without
looking ahead in the word. As one-unambiguous regular expressions can be transformed to deterministic
finite automata (DFAs) in polynomial time, inclusion for one-unambiguous regular expressions is in PTIME.25

However, there has been few studies on algorithms for the inclusion for this kind of regular expressions in
the literature before us. In addition, there are some suggestions on using some other regular expressions
instead of one-unambiguous ones in these scheme languages, mainly because the latter is not a syntactic
concept. But the complexity of inclusion problem will probably become higher, and here we will focus on
one-unambiguous regular expressions.30

In this paper, we first present two inclusion algorithms for one-unambiguous regular expressions. A
classical way to solve this inclusion problem is based on automata, namely, to convert the one-unambiguous
regular expressions into automata and then compare the automata. Brüggemann-Klein and Wood [9] have
shown that the Glushkov automaton [10, 11] for a one-unambiguous regular expression is deterministic. We
have already shown in [12] that for a one-unambiguous regular expression in star normal form, the equation35

automaton [13] is deterministic, and the Brzozowski’s deterministic automaton [14] can be easily computed.
Hence any one of the DFAs above can be used in the algorithm. Two improvements on the basic algorithm are
also given: (1) we first consider only the reachable states from the start state (i.e., the trim automata), which
could improve a little both the time and space complexities (see Table 1); (2) instead of constructing the
product automaton, we employ a ME1

-directed search (see Section 3.2 for more detail), which could improve40

the space complexities. Moreover, although the complexities are still PTIME, both improvements enable us
to reduce the time and space requirements in practice. Another algorithm is based on derivatives [14]. For
one-unambiguous regular expressions, we give an equivalent calculation of derivatives, and show that the
number of derivatives is finite, while this may be infinite for general regular expressions. Then an algorithm
for inclusion is given, which repeatedly calculates the derivatives of the expressions and will give an answer45

in this process. Table 1 summaries the complexities of our inclusion algorithms with the assumption that
ΣE1 ⊆ ΣE2 , where Trim-Automata and ME1 -Directed denote two improved versions of the automata-based
algorithm, and |E|, ||E|| and ΣE denote the size, width and alphabet of E, respectively (see Section 2 for
more detail).

Table 1: Complexities of the inclusion algorithms on L(E1) ⊆ L(E2).

Time Space

Automata-Based O(‖E1‖ · ‖E2‖ · |ΣE2
|) O(‖E1‖ · ‖E2‖ · |ΣE2

|)
Trim-Automata O(‖E1‖ · ‖E2‖ · |ΣE1 |) O(‖E1‖ · ‖E2‖ · |ΣE1 |)
ME1

-Directed O(‖E1‖ · ‖E2‖ · |ΣE1
|) O(‖E1‖ · |ΣE1

|+ ‖E2‖ · |ΣE2
|)

Derivative-Based O((|E1|2 + |E2|2)‖E1‖2‖E2‖2) O(|E1|2‖E1‖+ |E2|2‖E2‖)

Then we briefly present the applications of our algorithms to one of the tasks mentioned above, that is,50

XML typechecking. XML typechecking is one important issue of XML processing, in which XML schema
languages are regarded as types and subtype relations (i.e. inclusion relations) are checked at compile-time
to ensure type correctness of programs. In particular, we developed typechecking methods for DTDs and
for regular tree grammars with disjoint production rules (RRTGs). Investigation reveals that 13.5% XML
documents in practice contains a reference to a DTD [15], so typechecking methods for DTDs are useful in55

practice. For those XML schemas that are not DTDs, we can use the typechecking method for RRTGs.
At last we conduct some experiments with the algorithms. We first conduct some experiments to evaluate

the efficiency of our algorithms. We also compare our algorithms with Hovland’s algorithm [16], which is
guaranteed to decide the inclusion problem if the second expression E2 is one-unambiguous, and might either

2

decide the problem correctly or report that the one-ambiguity is a problem if E2 is one-ambiguous. The60

results show that both of our algorithms are more efficient than Hovland’s algorithm for one-unambiguous
regular expressions, and under the inclusion mode (see Section 6) the derivative-based algorithm is more
efficient than the automata-based one for small expressions, while for large expressions the latter is more
efficient. Finally, we conduct some experiments to compare our XML typechecking algorithms, where our
inclusion algorithms are used, with XDuce [17], an XML processing language which supports regular tree65

languages as schemas, on XML typechecking. The results show that both our typechecking algorithms are
more efficient than XDuce. Comparisons of the algorithms with CDuce [18] are also given.

Extension statement: Part of the preliminary work of the above has been published in the Proceed-
ings of the 5th International Colloquium on Theoretical Aspects of Computing (ICTAC’08) [19]. This paper
further contains largely improved representation with more contents, all proofs and our new recent results,70

which include applications of our algorithms onto XML typechecking, the comparison of the inclusion algo-
rithms, and the experiments to compare our XML typechecking algorithms, where our inclusion algorithms
are applied, with XDuce and CDuce.

Section 2 introduces notation required in the paper. Section 3 presents the automata-based algorithm.
Section 4 gives the derivative-based algorithm. Section 5 briefly introduces the applications of our algo-75

rithms. Sections 6 and 7 describe the experiments for inclusion algorithms and their applications on XML
typechecking respectively. Section 8 contains related work. Section 9 gives concluding remarks.

2. Notation

We assume the readers are familiar with basic regular languages and automata theory [20], so we introduce
here only some notation used later in the paper.80

2.1. Regular Expressions

Let Σ be an alphabet of symbols and ε denote the empty word. |Σ| denotes the size of Σ, and Σ∗ is
the set of all words over Σ. A regular expression E over Σ is ∅, ε or a ∈ Σ, or the union E1 + E2, the
concatenation E1E2 or the star E∗1 , where E1 and E2 are two regular expressions. For a regular expression
E, the language specified by E is denoted by L(E). The size of E, denoted by |E|, is the length of E85

when written in postfix (parentheses are not counted); the (alphabetic) width of E, denoted by ‖E‖, is the
number of symbols occurring in E; and the (smallest) alphabet of E, denoted by ΣE , is the set of symbols
that occur in E.

For a regular expression E over Σ and a symbol a ∈ Σ, we define the following sets:
first(E) = {b | bw ∈ L(E), b ∈ Σ, w ∈ Σ∗}90

last(E) = {b | wb ∈ L(E), w ∈ Σ∗, b ∈ Σ}
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}
followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v 6= ε, b ∈ Σ, w ∈ Σ∗}

2.2. One-unambiguous Regular Expressions

One-unambiguous regular expressions are also called deterministic regular expressions, which came from95

Brüggemann-Klein and Wood [9].
For a regular expression we can mark symbols with subscripts so that in the marked expression each

marked symbol occurs only once. For example (a1 + b1)∗a2b2(a3 + b3) is a marking of the expression
(a+ b)∗ab(a+ b). A marking of an expression E is denoted by E]. The reverse of marking is the dropping
of subscripts from the marked symbols, denoted by \. Then we have (E])\ = E. We extend the notation for100

words and automata in an obvious way. One-unambiguous expressions are defined as follows:

Definition 2.1. An expression E is one-unambiguous if and only if, for all words uxv, uyw ∈ L(E]) s.t.
|x| = |y| = 1, if x 6= y then x\ 6= y\. A regular language is one-unambiguous if it is denoted by some
one-unambiguous expression.

3

For example, a∗aa∗ is not one-unambiguous, since there are two words a1a2, a2a3 ∈ L(a∗1a2a
∗
3) such that105

a1 6= a2 but a\1 = a\2. While aa∗ is one-unambiguous, which describes the same language as a∗aa∗.
As shown by Brüggemann-Klein [21], we have the following result.

Proposition 2.1. It can be decided in linear time whether a regular expression is one-unambiguous.

2.3. Glushkov Automaton and Star Normal Form

The Glushkov automaton (or position automaton) is introduced independently by Glushkov [10] and110

McNaughton and Yamada [11].

Definition 2.2. Given a regular expression E, we define its Glushkov automaton ME as a 5-tuple (QE ,Σ, δE , qE , FE),
where:
(1). QE = ΣE] ∪ {qE}
(2). δE(qE , a) = {x | x ∈ first(E]), x\ = a}, for a ∈ Σ115

(3). δE(x, a) = {y | y ∈ follow(E], x), y\ = a}, for x ∈ ΣE] and a ∈ Σ

(4). FE =

{
last(E]) ∪ {qE}, if ε ∈ L(E),
last(E]), otherwise

Example 2.1. The Glushkov automaton ME1
of the regular expression E1 = (ab(c+ ε))∗ is in Figure 1,

where a11, b
1
2, c

1
3 denote the mark symbols a1, b2, c3 in E]

1 respectively.

qE1 a11 b12 c13
a b c

a

a

Figure 1: The Glushkov automaton of (ab(c + ε))∗.

Let L(M) denote the language accepted by the automaton M . As shown by Glushkov [10], McNaughton120

and Yamada [11] and Brüggemann-Klein and Wood [9], we have the following properties.

Proposition 2.2. L(ME) = L(E).

Proposition 2.3. A regular expression E is one-unambiguous if and only if ME is deterministic.

A naive algorithm to compute Glushkov automata takes time cubic in the size of the expression.
Brüggemann-Klein [21] gave a quadratic time algorithm for regular expressions in star normal form, which125

takes linear time for one-unambiguous regular expressions.
Star normal forms of regular expressions are defined as follows [21]:

Definition 2.3. A regular expression E is in star normal form if, for each starred subexpression H∗ of E,
followlast(H]) ∩ first(H]) = ∅ and ε /∈ L(H).

For example, (a∗b∗)∗ is not in star normal form, while (a + b)∗ is in star normal form, although they130

describe the same language.
Brüggemann-Klein and Wood [21] have proved any regular expression can be transformed into star

normal form in linear time.

Proposition 2.4. Given a regular expression E, it can be transformed into star normal form in linear time.

4

2.4. Derivatives135

Derivatives of regular expressions were introduced by Brzozowski [14], which are defined as follows:

Definition 2.4. Given a regular expression E and a symbol a, the derivative da(E) of E with respect to a
is defined inductively as follows:

da(∅) = da(ε) = ∅

da(b) =

{
ε, if b = a
∅, otherwise

da(F +G) = da(F) + da(G)

da(FG) =

{
da(F)G+ da(G), if ε ∈ L(F)
da(F)G, otherwise

da(F ∗) = da(F)F ∗

The derivatives can be extended with respect to a word: dε(E) = E and dwa(E) = da(dw(E)). Taking
E1 from Example 2.1 for example, da(E1) = b(c+ ε)(ab(c+ ε))∗ and dab(E1) = (c+ ε)(ab(c+ ε))∗.

Given a regular expression E, the set of all the derivatives of E is denoted by D(E). In general, D(E)
may be infinite without some reductions by similarity. While under similarity, there exists a finite number of140

derivatives in D(E), which are called the characteristic derivatives of E [14]. And an equivalent automaton
can be constructed from the characteristic derivative set [14].

Proposition 2.5. Given a regular expression E on Σ and a finite set Dc(E) of characteristic derivatives for
E, let M be the automaton (Dc(E),Σ, δ, E, F), where F = {ε ∈ L(Ec) | Ec ∈ Dc(E)} and δ(Ec, a) = da(Ec).
Then L(M) = L(E).145

3. Automata-Based Algorithm

As one-unambiguous regular expressions can be directly converted to DFAs [9, 12], we give a basic
algorithm for one-unambiguous regular expressions based on automata in this section.

3.1. The Algorithm

A classical way to check inclusion of regular expressions is to convert the regular expressions into au-150

tomata and then compare the automata. Brüggemann-Klein and Wood [9] have shown that the Glushkov
automaton [10, 11] for a one-unambiguous regular expression is deterministic. We have already shown in [12]
that the equation automaton [13] for a one-unambiguous regular expression in star normal form is determin-
istic, and the Brzozowski’s deterministic automaton [14] can also be easily computed for a one-unambiguous
regular expression in star normal form. Hence any one of the Glushkov DFA, Brzozowski’s DFA, or equation155

DFA can be used in the algorithm. As an example, here we just show how Glushkov DFA is used in the
algorithm. The other two types of the DFAs above are similar.

Given two one-unambiguous regular expressions E1 and E2, our aim is to determine whether the inclusion
relation L(E1) ⊆ L(E2) holds or not. As ΣE1 6⊆ ΣE2 implies L(E1) 6⊆ L(E2), we assume ΣE1 ⊆ ΣE2 in the
following. To do that, we first convert the expressions into Glushkov automata, and then check the inclusion160

of the automata. This yields an automata-based algorithm, which consists of the following four steps:
Step (1): construct the automata ME1

and ME2
from the expressions E1 and E2 respectively.

The Glushkov DFA can be computed by the algorithm in [21]. Let ME1
= (QE1

,ΣE1
, δE1

, qE1
, FE1

) with
‖E1‖+ 1 states, and ME2 = (QE2 ,ΣE2 , δE2 , qE2 , FE2) with ‖E2‖+ 1 states.
Step (2): compute an automaton M ′ for the complement of L(ME2).165

We first make ME2
complete if it is not. Suppose the complete one is M ′E2

= (Q′E2
,ΣE2

, δ′E2
, qE2

, FE2
), then

let M ′ = (Q′E2
,ΣE2

, δ′E2
, qE2

, Q′E2
− FE2

). It is clear that L(M ′) = L(M ′E2
) = L(ME2).

Step (3): construct an automaton B such that L(B) = L(ME1
) ∩ L(M ′).

The automaton can be constructed by product, that is, B = (QE1
×Q′E2

,Σ, δ, (qE1
, qE2

), FE1
×(Q′E2

−FE2
)),

where Σ = ΣE1
∪ ΣE2

and δ((p, q), a) = (δE1
(p, a), δ′E2

(q, a)).170

5

Step (4): check whether L(B) = ∅ holds or not. If it does, the algorithm returns TRUE, otherwise FALSE.
This can be solved by a search on the graph G = (Q,E), where Q = QE1 ×Q′E2

, E is the set of transitions
of B. If there is a path from the start state to an accepting state, then L(B) is not empty.

Clearly, the overall process implements checking L(E1) ∩ L(E2) = ∅. So the algorithm is correct.

Theorem 3.1. Given two one-unambiguous regular expressions E1 and E2, the algorithm returns TRUE if175

and only if L(E1) ⊆ L(E2).

Proof. The correctness of Step (1) is ensured by Proposition 2.1 in [21] and Steps (2)-(4) are straightfor-
ward.

Example 3.1. Let E1 be the expression from Example 2.1 and E2 be (abc∗)∗. The constructed Glushkov
automaton ME1 is shown in Figure 1, and the other computations of the algorithm is shown in Figure 2,180

where qt denotes the trap state of M ′E2
, q0, q1, q2 and q3 denote the pair states (qE1 , qE2), (a11, a

2
1), (b12, b

2
2)

and (c13, c
2
3) respectively. It is clear that L(B) = ∅.

(1) qE2 a21 b22 c23
a b c

a

ca

(2) qE2 a21 b22 c23

qt

a b c
a

a c

b, c

a, c
b

b

a, b, c

(3) q0 q1 q2 q3

...

a b c

a

a

a cb

Figure 2: (1) Glushkov automaton of (abc∗)∗; (2) Automaton M ′; (3) Main parts of automaton B.

Consider the complexity of the algorithm. In Step (1), the computation of ME1
and ME2

can be
done in O(|E1|) and O(|E2|) time respectively [21]. In Step (2), the computation of M ′E2

can be done in
O(|QE2

||ΣE2
|) = O((‖E2‖ + 1)|ΣE2

|) time and the construction of M ′ is in linear time. In Step (3), the185

construction of B can be computed in O((||E1||+1)(||E2||+2)(|ΣE1 ∪ΣE2 |)) = O(||E1|| · ||E2|| · |ΣE1 ∪ΣE2 |)
time. Finally, let us consider Step (4). For a DFA B, |E| ≤ |Q| · |ΣE1 ∪ ΣE2 |. It is known that a search
on G can be done in O(|Q| + |E|) time ([22, P. 534]). Therefore the time complexity is O(|Q| + |E|) =
O(‖E1|| · ||E2|| · |ΣE1

∪ΣE2
|). The running time of the overall computation is O(‖E1‖ · ‖E2‖ · |ΣE1

∪ΣE2
|).

By the assumption of ΣE1
⊆ ΣE2

, O(‖E1‖ · ‖E2‖ · |ΣE1
∪ ΣE2

|) = O(‖E1‖ · ‖E2‖ · |ΣE2
|). Moreover, the190

space required by the algorithm is O(‖E1‖ · ‖E2‖ · |ΣE2 |) as well.

3.2. Improvements

In this section, we present some improvements for the algorithm above, by using properties of the
automata, such as the valid paths ending with any accepting state.

For an automaton M = (Q,Σ, δ, q0, F), a path in the automaton M is defined as a sequence of the form195

q1a1q2a2 . . . qnanqn+1, where qi ∈ Q, ai ∈ Σ, n ≥ 1 and δ(qi, ai) = qi+1. Given a path p in the product

6

automaton B constructed in Step (3), i.e., p = (q11 , q
2
1)a1 . . . (q

1
n, q

2
n)an(q1n+1, q

2
n+1), we write p[(q1i , q

2
i)\q1i]

for the path obtained from p by replacing every state (q1i , q
2
i) in p by q1i , i = 1, . . . , n + 1. We also extend

this notation to a path set P from B such that P [(q1i , q
2
i)\q1i] = {p[(q1i , q2i)\q1i] | p ∈ P}. As the automaton

M ′ in Step (2) is complete and deterministic and, by assumption, ΣE1
⊆ ΣE2

, we have the following two200

properties.

Property 3.2. Let P1 = {p | p is a path starting from (qE1 , qE2) in B}, P2 = {p2 | p2 is a path starting
from qE1 in ME1}, then P1[(q1i , q

2
i)\q1i] = P2, and |P1| = |P2|.

Proof. Given p ∈ P1, by the definition of B, p[(q1i , q
2
i)\q1i] ∈ P2. Given p2 ∈ P2, since M ′ is complete and

ΣE1
⊆ ΣE2

, there exists a path p ∈ P1 such that p[(q1i , q
2
i)\q1i] = p2. So P1[(q1i , q

2
i)\q1i] = P2. As M ′ is205

deterministic, the number of paths in B could not be more than the number of paths in ME1
. On the other

hand, due to the fact that M ′ is complete and ΣE1 ⊆ ΣE2 , the number of paths in B could not be less than
the number of paths in ME1 .

Property 3.3. Let P1 = {p | p is a path starting from (qE1
, qE2

) and ending with an accepting state in B},
P2 = {p2 | p2 is a path starting from qE1

and ending with an accepting state in ME1
}, then P1[(q1i , q

2
i)\q1i] ⊆210

P2, and |P1| ≤ |P2|.

Proof. It follows from Property 3.2 and the fact of FE1 × (Q′E2
− FE2) ⊆ FE1 ×Q′E2

.

An automaton is called a trim one if it only contains states reachable from the start state. As illustrated
in Example 3.1, the product automaton B constructed in Step (3) might contain some unreachable states,
that is, B might be non-trim. Following the properties above, the trim version of B can be constructed215

directly with the guide of ME1
, which thus improve the inclusion algorithm. The product construction

algorithm is shown as follows:

Q = {(qE1
, qE2

)}
for (p, q) ∈ Q and a ∈ Σ s.t. (p, q) is unmarked and δE1

(p, a) is defined do
δ((p, q), a) = (δE1(p, a), δ′E2

(q, a))220

Q = Q ∪ {(δE1(p, a), δ′E2
(q, a))}

mark (p, q) in Q
end for

Let the automaton constructed by the product construction algorithm denote as Bc. This construction
is more efficient than the previous construction of B, since only the reachable paths are considered during225

construction.

Lemma 3.4. The automaton Bc constructed by the product construction algorithm is trim.

Proof. According to Property 3.2, there exists a one-to-one correspondence between the reachable paths in
B and ME1

. This enables us to construct Bc with respect to the reachable paths in ME1
.

Example 3.2. The trim automaton Bc of Example 3.1 is shown in Figure 3, which is smaller than B,230

where qi’s are the same to those in B.

q0 q1 q2 q3
a b c

a

a

Figure 3: The trim automaton Bc of Example 3.1.

It is clear L(B) = L(Bc), following Property 3.3. Moreover, if Bc does not contain any accepting state,
then L(Bc) = ∅, otherwise L(Bc) 6= ∅. Therefore, to check L(B) = ∅ can be simply reduced to checking

7

whether Bc contains an accepting state or not. For that, we can further improve Steps (3) and (4) by a
ME1-directed search on ME1 and M ′, without constructing the automaton Bc for the intersection, which is235

shown as follows:

Q = {(qE1 , qE2)}
for (p, q) ∈ Q and a ∈ Σ s.t. (p, q) is unmarked and δE1

(p, a) is defined do
if both δE1

(p, a) and δ′E2
(q, a)) are accepting states then

return FALSE240

else
Q = Q ∪ {(δE1(p, a), δ′E2

(q, a))}
mark (p, q) in Q

end if
end for245

return TRUE

During the search, if there exists an accepting state, then it stops immediately and returns FALSE. Only
if there are no accepting states, a complete search is done, which is equivalent to the construction of Bc.
Therefore, it has the same time complexity as the one using Bc if L(Bc) = ∅, while is more efficient otherwise.
Besides, it is more efficient in space since Bc is not constructed fully.250

Example 3.3. Let E1 and E2 be the expressions from Example 3.1 and let us check L(E2) ⊆ L(E1)
instead. The trim automaton Bc for this check is shown in Figure 4, where qi’s are the same as those in
B, qt1, qt2 and qt3 denotes the pair state (a21, qt), (b22, qt) and (c23, qt) respectively and qt is the trap state of
M ′E1

. Guided by the directed search, the algorithm will stop with FALSE once it reaches the accepting state
qt3, without further visiting.255

q0 q1 q2 q3

qt3qt2qt1

a b c

a

a

c

c
a

c

a

b

Figure 4: The trim automaton Bc of Example 3.3.

Consider the complexity of the algorithm using Bc. In Step (3), the construction of Bc can be computed
in O((||E1|| + 1)(||E2|| + 2)|ΣE1 |) = O(||E1|| · ||E2|| · |ΣE1 |) time. In Step (4), to check the existence of
an accepting state is in linear time. Indeed, the accepting states have been marked in the construction of
automata. If in Step (3) we use a variable to keep this information, then the existence of an accepting
state is already known and the checking is done clearly in constant time. Therefore, the running time of the260

overall computation is O(‖E1‖ · ‖E2‖ · |ΣE1
|). The space complexity is O(‖E1‖ · ‖E2‖ · |ΣE1

|).
For the ME1-directed search algorithm, the time complexity is O(‖E1‖ · ‖E2‖ · |ΣE1 |), but the space

complexity is O(‖E1‖ · |ΣE1 |+ ‖E2‖ · |ΣE2 |).
In addition, we can further improve the algorithm by adopting the technique of up to congruence [23],

which can help us to find the equivalent states to reduce the DFAs, at the cost of the equivalence computa-265

tions.
In the following, we use the automata-based algorithm to denote the one using Glushkov DFA with

ME1-directed search, unless it is explicitly specified.

8

4. Derivative-Based Algorithm

In this section, we present an algorithm based on the derivatives to determine the inclusion of two270

one-unambiguous regular expressions. The idea is that if an expression is included in another expression
then all the derivatives of the first expression are included in those of the second one, which is inspired by
Brzozowski’s work [24] and Antimirov’s work [25].

As shown by Brüggemann-Klein and Wood [9], the derivatives of a one-unambiguous regular expression
in star normal form are also one-unambiguous regular expressions in star normal form. This yields a275

characterization of one-unambiguity: for each regular expression E in star normal form, one-unambiguity
of E can be characterized solely in terms of the sub-expressions of E.

Proposition 4.1 ([9]). Let E be a regular expression in star normal form.

• E = ∅, E = ε, or E = a ∈ Σ: E is one-unambiguous.

• E = F + G: E is one-unambiguous if and only if F and G are one-unambiguous and first(F) ∩280

first(G) = ∅.

• E = FG:

(i) If L(E) = ∅, then E is one-unambiguous.

(ii) If L(E) 6= ∅ and ε ∈ L(F), then E is one-unambiguous if and only if F and G are one-
unambiguous, first(F) ∩ first(G) = ∅, and followlast(F) ∩ first(G) = ∅.285

(iii) If L(E) 6= ∅ and ε /∈ L(F), then E is one-unambiguous if and only if F and G are one-
unambiguous and followlast(F) ∩ first(G) = ∅.

• E = F ∗: E is one-unambiguous if and only if F is one-unambiguous and followlast(F)∩first(F) = ∅.

When one-unambiguous expressions are concerned, we can have the following simpler construction of
derivatives.290

Proposition 4.2. For a one-unambiguous regular expression E in star normal form, the derivative of E
by a symbol a can be computed as follows:

da(∅) = da(ε) = ∅

da(b) =

{
ε, if b = a
∅, otherwise

da(F +G) =

 da(F), if a ∈ first(F)
da(G), if a ∈ first(G)
∅, otherwise

da(FG) =

 da(F)G, if a ∈ first(F)
da(G), if a ∈ first(G) and ε ∈ L(F)
∅, otherwise

da(F ∗) = da(F)F ∗

Proof. We only need to prove E = F +G or FG.
Assume E = F + G, then first(F) ∩ first(G) = ∅ by Proposition 4.1. So if a ∈ first(F) then

a /∈ first(G), and thus da(G) = ∅, da(E) = da(F). The same to a ∈ first(G). If both a /∈ first(F) and
a /∈ first(G), then clearly da(E) = ∅.295

Assume E = FG, by Definition 2.4, da(E) is da(F)G + da(G) if ε ∈ L(F), or da(F)G otherwise. Here
we just show first(F) ∩ first(G) = ∅, the remaining proof is similar to that of the above for E = F + G.
If L(E) = ∅, obviously first(F) ∩ first(G) = ∅. Otherwise (i.e.,L(E) 6= ∅), according to Proposition 4.1,
first(F) ∩ first(G) = ∅ holds as well.

9

Compared with the standard definition of general regular expressions, the main difference lies in the300

treatment of union and concatenation. For example, da(εa∗) = da(a∗) = da(a)a∗ = εa∗. While with respect
to the standard definition, we would get da(εa∗) = da(ε)a∗ + da(a∗) = ∅a∗ + εa∗. Moreover, in the case of
one-unambiguous regular expressions, the number of derivatives is finite, as shown below.

Theorem 4.3. For a one-unambiguous regular expression E in star normal form, the cardinality of the set
D(E) of derivatives is less than or equal to ‖E‖+ 1.305

Proof. As dε(E) = E, we only need to prove that the number of derivatives of E with respect to non-empty
words, denoted nd(E), is less than or equal to ‖E‖. We prove this by induction.

Base. If E = ∅, ε, or a ∈ Σ, the above statement holds trivially.
Induction. (i). E = F +G. It is easily verified from definitions in Proposition 4.2 that, for a non-empty

word w ∈ Σ+, the derivatives of E is (conditions of rhs are omitted in the sequel of the proof)

dw(F +G) =

 dw(F)
dw(G)
∅

By induction, nd(F) ≤ ‖F‖ and nd(G) ≤ ‖G‖. Hence nd(F +G) ≤ nd(F) + nd(G) ≤ ‖F‖+ ‖G‖ = ‖E‖.
(ii). E = FG. Using the definitions in Proposition 4.2, we have

dw(FG) =

 dw(F)G
dv(G) for all v ∈ Σ+ s.t. w = uv, u ∈ L(F)
∅

By induction, nd(F) ≤ ‖F‖ and nd(G) ≤ ‖G‖. So nd(FG) ≤ nd(F) + nd(G) ≤ ‖F‖+ ‖G‖ = ‖E‖.310

(iii). E = F ∗. Similarly, we have

dw(F ∗) = dv(F)F ∗ for all v ∈ Σ+ s.t. w = uv, u ∈ Σ∗

By induction, nd(F) ≤ ‖F‖. Therefore nd(F∗) ≤ nd(F) ≤ ‖F‖ = ‖E‖. This concludes the inductive
step.

Example 4.1. Let E1 be the expressions from Example 2.1. The derivative set D(E1) of E1 is {E1, b(c+
ε)(ab(c+ ε))∗, (c+ ε)(ab(c+ ε))∗}.

These two properties above enable us to construct an equivalent automaton for a one-unambiguous315

regular expression E in star normal form directly from its finite derivative set, rather than a characteristic
derivative set such as Brzozowski’s aci-similar derivative set [14]. More on this automaton are studied in
[12].

Proposition 4.4. ([12]) Given a one-unambiguous regular expression E on Σ in star normal form. Let M
be the automaton (D(E),Σ, δ, E, F), where F = {ε ∈ L(E0) | E0 ∈ D(E)} and δ(E0, a) = da(E0). Then320

L(M) = L(E).

With the derivative automaton in mind, we present a derivative-based inclusion algorithm for one-
unambiguous regular expressions. The idea is to reduce the inclusion of two one-unambiguous regular
expressions E1 and E2 to the inclusion of their derivatives with respect to the first set. As mentioned in
Section 2, any regular expression can be converted into star normal form in linear time, so we assume that325

one-unambiguous regular expressions are in star normal form (if not, the algorithm in [21] is applied first).
The detail of the algorithm is shown as follows, where A denotes a set containing expression pairs that have
been checked and is set initially to empty.

include(E1, E2, A)
if ε ∈ L(E1) and ε /∈ L(E2) then return FALSE330

if first(E1) 6⊆ first(E2) then return FALSE

10

for a ∈ first(E1) do
t1 = da(E1), t2 = da(E2),
if (t1, t2) /∈ A then
if include(t1, t2, A ∪ {E1, E2})=FALSE then335

return FALSE
end for
return TRUE

Indeed, the inclusion checking of E1 and E2 can be treated as the emptiness checking for an automaton
M recognizing the language L(E1) \ L(E2), where all the derivative pairs of E1 and E2 form the states of340

M (thanks to the finite number of the derivatives for one-unambiguous regular expressions in star normal
form), those states satisfying first(E1) 6⊆ first(E2) are (the ones leading to) the accepting ones and A is
the set of reached states that have been visited currently. Therefore, if L(E1) \L(E2) is nonempty, then the
algorithm include will reach an accepting state. This ensures the correctness of the algorithm include.

Theorem 4.5. Given two one-unambiguous regular expressions E1 and E2, the algorithm include returns345

TRUE if and only if L(E1) ⊆ L(E2).

Proof. Following Theorem 4.3, the cardinality of the derivative set D(Ei) of Ei is finite. Let Mi denote
the automaton (D(Ei),ΣEi

, δi, Ei, Fi), where Fi = {ε ∈ L(E) | E ∈ D(Ei)} and δi(E, a) = da(E) for each
E ∈ D(Ei). By Proposition 4.4, we have L(Mi) = L(Ei). According to automata theory, the algorithm is
essentially the emptiness checking for an automaton M representing (a reachable part) of a direct product350

M1 × ¬M2, without the construction of M1,M2 and M . That is, the algorithm is to check whether there
exists a reachable accepting state in M . Due to the finite number of states, the algorithm terminates. In
the remaining we prove the following statement instead:

include returns FALSE ⇐⇒ L(E1) 6⊆ L(E2)

⇐=: Assume that there exists a word w such that w ∈ L(E1) \ L(E2). Then there is an accepting355

state (E′1, E
′
2) for M such that δ((E1, E2), w) = (E′1, E

′
2), where E′i ∈ D(Ei), ε ∈ L(E′1) and ε /∈ L(E′2).

Clearly include returns FALSE, according to the first IF statement. Moreover, if there exists a state
(E′′1 , E

′′
2) among (E1, E2) and (E′1, E

′
2), that is δ((E1, E2), w′) = (E′′1 , E

′′
2), w′w′′ = w, |w′′| > 0, satisfying

first(E′′1) 6⊆ first(E′′2), then include returns FALSE in advance.
=⇒: If a state (E′1, E

′
2) satisfying ε ∈ L(E′1) and ε /∈ L(E′2) is reached during the checking, that is,360

an accepting state of M is reached, then, L(M) is nonempty, which deduces L(E1) 6⊆ L(E2). Otherwise,
assume that a state (E′1, E

′
2) satisfying first(E′1) 6⊆ first(E′2) is reached during the checking and that

a ∈ first(E′1) \ first(E′2), where E′i ∈ D(Ei). Then the state (da(E′1), da(E′2)), that is (da(E′1), ∅), can be
reached, and for any w ∈ L(da(E′1)), the state (daw(E′1), ∅) can be reached as well. Moreover, it is clear
that ε ∈ L(daw(E′1)) and ε /∈ ∅, that is, the state (daw(E′1), ∅) is an accepting state of M . Therefore, L(M)365

is nonempty, which deduces L(E1) 6⊆ L(E2).

Example 4.2. Let E1 and E2 be the expressions from Example 3.1 and let us check L(E1) ⊆ L(E2).
Since both E1 and E2 are in star normal form, we directly apply the algorithm include on them:

E1 = (ab(c+ ε))∗,
E2 = (abc∗)∗,370

1: first(E1) = first(E2) = {a},
A = {(E1, E2)},
da(E1) = b(c+ ε)(ab(c+ ε))∗ r11,
da(E2) = bc∗(abc∗)∗ r21,
2: first(r11) = first(r21) = {b},375

A = {(E1, E2), (r11, r21)},
db(r11) = (c+ ε)(ab(c+ ε))∗ r12,
db(r21) = c∗(abc∗)∗ r22,
3: first(r12) = first(r22) = {a, c},
A = {(E1, E2), (r11, r21), (r12, r22)},380

11

da(r12) = r11,
da(r22) = r21,
(da(r12), da(r22)) ∈ A,
dc(r12) = E1,
dc(r22) = r22,385

4: first(E1) = {a}, first(r22) = {a, c},
A = {(E1, E2), (r11, r21), (r12, r22), (E1, r22)},
da(E1) = r11,
da(r22) = r21,
(da(E1), da(r22)) ∈ A.390

include returns TRUE, so L(E1) ⊆ L(E2).

Example 4.3. Let E1 and E2 be the expressions from Example 4.2 and let us check L(E2) ⊆ L(E1)
instead: the first three steps are the same as those in Example 4.2, while the fourth step is as follows

dc(r22) = r22,
dc(r12) = E1,395

4: first(r22) = {a, c}, first(E1) = {a},
first(r22) 6⊆ first(E1),
include returns FALSE, so L(E2) 6⊆ L(E1).

The bound is worst case optimal, one example is the expression abc. The set of derivatives for abc is
{abc, bc, c, ε}, whose cardinality is 4 (i.e., ‖abc‖ + 1). Therefore, the number of pairs of expressions to be400

checked in include is bounded to ‖E1‖ · ‖E2‖, which ensures the termination of the algorithm.
Although the derivative-based algorithm is rather simple, the worst case complexity is higher than the

automata-based one. Recall from [13], any partial derivative of E is either ε or a subexpression of E or a
concatenation of subexpressions where the number of subexpressions is no greater than the number of occur-
rences of concatenation and Kleene star appearing in E. Therefore, in the worst case, a partial derivative of405

E may have a size up to |E|2. According to [12], derivatives of a one-unambiguous regular expression have
the same form as the partial derivatives of the expression. Taking the possible time of comparisons in the
algorithm include into account, the worst-case time complexity is O((|E1|2 + |E2|2)‖E1‖2‖E2‖2). Also the
worst-case space complexity is O(|E1|2‖E1‖+ |E2|2‖E2‖). However, in practice, computation rarely reaches
the upper bounds. For example, in Example 4.2, there could be up to 4 × 4 = 16 pairs of derivatives, but410

there are only 5 pairs in A and 5 comparisons to be done.
Virtually the search strategy of the derivative-based algorithm is similar to the ME1

-directed search
presented in Section 3, without the need to compute all the derivatives in advance. Similar to the technique
up to congruence [23] for the automata-based algorithm, Brzozowski’s aci-similarity [14] can be used here
to reduce the search, at the cost of the similarity computations. For example, assume the current pair is415

(r1 + r2, r) and the visited set A contains (r2 + r1, r + r). In that case, the matching of (r1 + r2, r) with
(r2 + r1, r + r) in A succeeds, as r1 + r2 (resp. r) is similar to r2 + r1 (resp. r + r) under aci-similarity.
Thus we do not need to check (r1 + r2, r).

5. Applications

As mentioned in the Introduction, the inclusion algorithms for one-unambiguous regular expressions can420

be used in many tasks. In this section, we present the applications of our inclusion algorithms to one of the
tasks, that is, XML typechecking.

Briefly speaking, one important issue of XML processing is typechecking, in which XML schema languages
are regarded as types and subtype relations (i.e. inclusion relations) are checked at compile-time to ensure
type correctness of programs. Many languages, such as XDuce, CDuce, etc., adopt unranked regular tree425

languages as types, however the complexity is EXPTIME for the inclusion of regular tree languages or,
equivalently, tree automata. So the focus of prior research is on finding subclasses of regular tree languages
for which subtyping is more efficient. For examples, Suzuki [6] proposes a polynomial-time algorithm for

12

solving a subproblem of the inclusion problem for DTDs defined by edit operations. Champavššre et al. [26]
present a polynomial-time algorithm for testing inclusion between deterministic unranked tree automata430

and DTDs. Complexities of decision problems for several subclasses of XML schema languages involving
subclasses of regular expressions are given in [1, 27].

In this section, we developed type checking algorithms for DTDs and for regular tree grammars with
disjoint production rules (RRTGs). As shown in Proposition 2.4, every regular expression can be transformed
into star normal form in linear time. So we assume that regular expressions are in star normal form (if not,435

the algorithm in [21] is applied first).

5.1. DTD Typechecking

XML schemas, such as DTD and XML Schema, are represented as regular expression types in typed
XML processing languages, such as XDuce. Regular expressions types T (in XDuce) are defined as follows:

T ::= l[T] || T, T || T |T || T∗ || N || ()440

where the cases express label, concatenation, union, repetition, type name (type variable) and empty se-
quence respectively. We write T? short for T |() and T+ short for T |T∗.

A type definition consists of type declarations of the form type N = T . Type name N is interpreted by
type expression T which may contain any of the defined type names. Each type definition describes a set of
XML documents. Type constructors of the form l[...] denote tree nodes with the label l in XML documents445

(i.e., XML structures of the form 〈l〉...〈/l〉). Type String equals to PCDATA in XML.
An example of type definitions using regular expression types is as follows (from XDuce source):

type Addrbook = addrbook[Person∗]
type Person = person[Name, Tel?, Email∗]
type Name = name[String]
type Tel = tel[String]
type Email = email[String]

For the type definition of DTDs, type names and labels are in one-to-one correspondence. The definition
above satisfies the one-to-one correspondence condition, thus is a DTD. Given a label l, let Nl be the type
name corresponding to the label l in the DTD and rl be the regular expression in right-hand side of the
type declaration of Nl.450

Definition 5.1. Given a regular expression type T , its depth dp(T) is defined as follows:

dp(l[T]) = 1 + dp(T)
dp(T1, T2) = max(dp(T1), dp(T2))
dp(T1|T2) = max(dp(T1), dp(T2))
dp(T∗) = dp(T)
dp(N) = 1
dp(()) = 0

For example, considering the type definition above, dp(Name) = 1 and dp(Person) = 2.

Definition 5.2. Given a regular expression type T , its top-level type tlt(T) is defined as follows:

tlt(l[T]) = Nl

tlt(T1, T2) = tlt(T1), tlt(T2)
tlt(T1|T2) = tlt(T1)|tlt(T2)
tlt(T∗) = tlt(T)∗
tlt(N) = N
tlt(()) = ()

For example, tlt(email[String]) = Email and tlt(name[String], email[String]∗) = Name,Email∗.

13

Dp(T1) ≤ 1
Π(T1, T2)

T1 ≤ T2
(1)

T1 = l[T]
Π(Nl, T2) T ≤ rl

T1 ≤ T2
(2)

Dp(T1) > 1, T1 = T3, T4
Π((tlt(T3), tlt(T4)), T2) T3 ≤ tlt(T3) T4 ≤ tlt(T4)

T1 ≤ T2
(3)

Dp(T1) > 1, T1 = T3|T4
Π((tlt(T3)|tlt(T4)), T2) T3 ≤ tlt(T3) T4 ≤ tlt(T4)

T1 ≤ T2
(4)

Dp(T1) > 1, T1 = T∗
Π(tlt(T1), T2) T ≤ tlt(T)

T1 ≤ T2
(5)

Figure 5: Subtyping Rules for DTDs.

Subtyping is the most important issue in type checking, which refines the typing rules such that a value
of any subtype of T can be safely used as a value of T . Let T1 ≤ T2 denote type T1 is a subtype of type
T2. For simplicity, we assume that T2 is a regular expression over type names. This does not lose generality455

because T2 can be replaced with a new type name N by adding a temporary type declaration type N = T2
into the type definition, if T2 contains some labels.

Due to the one-to-one correspondence, subtyping of DTDs can be reduced to the inclusion of regular
expressions on top-level type names if the corresponding labels are the same, where our algorithms can be
applied. For example, to check person[Name,Email∗] ≤ Person, we can reduce it to check the inclusion460

between Name,Email∗ and the content of Person, that is Name, Tel?, Email∗. The subtyping algorithm
of DTDs is described by the rules in Figure 5, where Π(r1, r2) is the inclusion function which determines
if regular expression r1 is included in r2. Note that, Π(r1, r2) can be any inclusion algorithm of one-
unambiguous regular expressions, such as our algorithms presented above.

Consider the following two type expressions465

T1 = person[Name,Email∗]∗
T2 = Person∗

The checking procedure of T1 ≤ T2 is illustrated in Figure 6. The procedure shows the subtyping check of
T1 ≤ T2 is finally reduced to several inclusion checks of one-unambiguous regular expressions. Besides, the
algorithm can be improved by memoization such that the inclusion of each pair of regular expressions is470

checked only once. Indeed, this improvement has been implemented in our algorithm (see the discussion in
Section 7.2).

5.2. Subtyping Algorithm for RRTG

In this section, we present a subtyping algorithm for regular tree grammars with disjoint production
rules (RRTG for short) [28], where our inclusion algorithms for regular expressions can be applied. RRTG475

can describe the commonly used XML schema languages such as DTDs and XML Schemas. Here we briefly
introduce some notions of RRTG and how our inclusion algorithms are used in the subtyping algorithm of
RRTG. For technical details readers can refer to [28].

Given a regular expression r, let τ(r) denote the set of terminal strings derived by r, and L(r) denote
the regular language specified by r.480

14

Return TRUE

Π(Person∗, P erson∗)

Return TRUE

Π(Person, Person)

Return TRUE

Π((Name,Email∗), (Name, Tel?, Email∗))
Name,Email∗ ≤ rperson

(1)

person[Name,Email∗] ≤ Person
(2)

person[Name,Email∗]∗ ≤ Person∗
(5)

Figure 6: Procedure of person[Name,Email∗]∗ ≤ Person∗.

(1) Store → store (Regulars,Discounts)
(2) Regulars → Dvd1∗
(3) Discounts → Dvd2, Dvd2∗
(4) Dvd1 → dvd (Title, Price)
(5) Dvd2 → dvd (Title, Price,Dis)
(5) Title → title PCDATA
(7) Price → price PCDATA
(8) Dis → dis PCDATA

Figure 7: Grammar for DTD Store.

Definition 5.3. A regular tree grammar with disjoint production rules (RRTG) G is a regular tree grammar
in which any two production rules Ni → liri and Nj → ljrj satisfy either li 6= lj, or τ(ri) ∩ τ(rj) = ∅.

Let us consider the regular tree grammar G1 (not in normal form) in Figure 7, which describes a
simple database of DVD store, where the lowercase words are labels and the words with the first letter
capitalized are non-terminals. We have L(Dvd1) = {Dvd1} and τ(Dvd1) = {dvd (title, price)} (PCDATA485

are ignored). Both Rules (2) and (3) of G1 contain no label. According to Definition 5.3, the intersection
τ(Dvd1∗) ∩ τ(Dvd2, Dvd2∗) is not required to be an empty set. Rules (4) and (5) have the same label dvd
at their right-hand sides, but τ(Title, Price) ∩ τ(Title, Price,Dis) = ∅. So G1 is a RRTG.

In most statically typed XML processing languages, type systems are implemented based on regular
expression types, and subtyping is reduced to the inclusion between tree automata, which is not efficient490

enough. While for RRTG, since any two production rules are disjoint, this enables us to find an unique
type T for each bottom level expression l[r] such that l[r] ≤ T , which can be reduced to the inclusion of the
content expressions, and then check the subtyping between the types obtained by replacing bottom level
expression l[r] by its super-type T , yielding an efficient subtyping algorithm.

Let us consider RRTG G1 and suppose to check T1 ≤ T2, where495

T1 = store(Dvd1, dvd(Title, Price), dvd(Title, Price,Dis))
T2 = Store

The checking procedure of T1 ≤ T2 is shown in Figure 8, where T, P and D are short for Title, Price and
Dis, respectively, and Π(r1, r2) denotes the inclusion check between r1 and r2. Note that, since G1 is a
RRTG, we can find the unique super types Dvd1 and Dvd2 for the bottom label expressions dvd(T, P) and500

dvd(T, P,D) respectively, which are reduced to the inclusion check of regular expressions on type names.
Then we will check the subtyping with respect to the replaced types store(Dvd1, Dvd1, Dvd2) instead, which
can be reduced to the inclusion check as well. Likewise, memoization has been used to improve the algorithm.

6. Experiments for Inclusion Algorithms

In this section, we conduct some experiments to evaluate our algorithms. We also compare our algorithms505

against Hovland’s algorithm [16], which is guaranteed to decide the inclusion problem if the second expression

15

Return TRUE

Π((T, P), (T, P))

dvd(T, P) ≤ Dvd1

Return TRUE

Π((T, P,D), (T, P,D))

dvd(T, P,D) ≤ Dvd2
Dvd1, dvd(T, P), dvd(T, P,D) ≤ Dvd1, Dvd1, Dvd2

Return TRUE

Π((Dvd1, Dvd1, Dvd2), (Dvd1∗, Dvd1, Dvd2∗))
store(Dvd1, Dvd1, Dvd2) ≤ Store

store(Dvd1, dvd(T, P), dvd(T, P,D)) ≤ Store

Figure 8: Procedure of store(Dvd1, dvd(T, P), dvd(T, P,D)) ≤ Store.

E2 is one-unambiguous, and might either decide the problem correctly or report that the one-ambiguity is
a problem if E2 is one-ambiguous.

We have implemented our inclusion algorithms and Hovland’s algorithm in C++. We use binary trees to
encode the postfix expressions of one-unambiguous regular expressions and their derivatives, and implement510

automata as conventional five-field structs, with two-dimensional arrays of integers to represent the transition
functions. Prior to inclusion checking, we check the nullable and compute the first set for each subexpression
via a bottom-up and incremental traversal on the binary tree, which costs linear time. At last, we implement
the algorithms as shown in Section 3 and Section 4.

Test Cases. To evaluate the algorithms, we perform the experiments on randomly generated one-515

unambiguous regular expression pairs. Similar to D. Colazzo et al.’s work [29], we generate our expression
pairs using two modes. The first mode is to generate both two expressions in a pair (E1, E2) randomly:
we randomly generate 100 expressions as E2 whose length ranges from 1 to 150, and then for each E2 we
randomly generate 10 expressions as E1 based on the alphabet of E2, yielding 150000 pairs of expressions.
However, as discussed in [29], the problem of generating random regular expressions for inclusion is not520

trivial: when a random pair of regular expressions is generated, even if they share the same alphabet, the
probability that one of the two expressions is included in the other is extremely low (about 0.0279% for
regular expressions). Likewise, the problem for the case of one-unambiguous regular expressions could be
extremely low as well. Indeed, only 280 pairs among 150000 satisfy the inclusion relation, most of which
have length smaller than 5. So these pairs could test the algorithms in a negative case.525

Hence, the second mode is to generate random expression pairs such that they satisfy the inclusion
relation. Motivated by D. Colazzo et al.’s work [29], our idea is to generate a random one-unambiguous
regular expression E2 first, and then apply a set of probabilistic rewriting rules on E2 to obtain another
expression E1 such that E1 is one-unambiguous and is included in E2, yielding a pair (E1, E2). The rewriting
rules we used here are given in the following:530

• for pattern ε or a, return the pattern itself;

• for pattern E1|E2, let Er
i be the expression obtained by applying the rewriting rules on Ei, then return

Er
1 |Er

2 , Er
1 |E2, E1|Er

2 , E1|E2, Er
2 |Er

1 , Er
2 |E1, E2|Er

1 or E2|E1 randomly;

• for pattern E1.E2, let Er
i be the expression obtained by applying the rewriting rules on Ei, then return

Er
1 .E

r
2 , Er

1 .E2, E1.E
r
2 or E1.E2 randomly; If ε ∈ L(E1), then Er

2 or E2 can be returned as well;535

• for pattern (E1)∗, let Er
1 be the expression obtained by applying the rewriting rules on E1, then return

(Er
1)∗, (E1)∗, Er

1 or E1 randomly.

In detail, we randomly generate 100 expressions as E2 whose length ranges from 1 to 150, using the random
generator in [30]; and for each expression E2 we generate 10 expressions as E1 by applying the rewrite rules
above, yielding 150000 pairs of expressions.540

Fortunately, besides satisfying the inclusion relation, the rewritten expression obtained from the ap-
plication of the rewriting rules above on a one-unambiguous expression is also one-unambiguous, which
is formalized in Lemma 6.1. Therefore, we do not need the one-unambiguous checking on the rewritten
expressions.

16

Lemma 6.1. Let E be a one-unambiguous regular expression and Er be the rewritten expression obtained545

from the application of the rewriting rules above on E. Then L(Er) ⊆ L(E) and Er is also one-unambiguous.

Proof. Without loss of generality, we assume that E is not empty. We prove a stronger statement: the
rewritten expression Er is also one-unambiguous and satisfies that L(Er) ⊆ L(E), first(Er) ⊆ first(E)
and followlast(Er) ⊆ followlast(E), which deduces this lemma immediately. We prove the statement by
induction on the structure of E and Er.550

• E is ε or a. Then Er = E, thus the result follows.

• E is E1|E2. Here we only show the case of Er = Er
1 |Er

2 , where Er
i is the expression obtained by

applying the rewriting rules on Ei and i = 1, 2; the other cases can be proved similarly. According
to Proposition 4.1, we know that E1, E2 are one-unambiguous and first(E1) ∩ first(E2) = ∅. By
induction on Ei, we have Er

i is also one-unambiguous and satisfies that L(Er
i) ⊆ L(Ei), first(E

r
i) ⊆555

first(Ei) and followlast(Er
i) ⊆ followlast(Ei). As first(E1) ∩ first(E2) = ∅, we can further get

first(Er
1) ∩ first(Er

2) = ∅. According to Proposition 4.1 again, Er is one-unambiguous. Moreover,
L(Er) = L(Er

1) ∪ L(Er
2) ⊆ L(E1) ∪ L(E2) = L(E). Similarly, we have first(Er) ⊆ first(E) and

followlast(Er) ⊆ followlast(E). Thus the result follows.

• The other cases are similar.560

We used the generator in [30] to generate one-unambiguous regular expressions. This generator is
based on the context-free grammars for one-unambiguous regular expressions and thus can generate one-
unambiguous regular expressions directly. In detail, given an alphabet Σ and a length l, this generator
starts from any nonterminal uniformly, as any nonterminal can be the start symbol for the grammar charac-565

tering the one-unambiguous regular expressions on Σ. Then during the generation, this generator selects a
production for each nonterminal uniformly from the ones that satisfy some length-control conditions, which
could lead the generation to terminating with an expression such that the length is as close to l as possible.
There is an alternation to generate one-unambiguous regular expressions: first use a generator for regular
expressions (or automata), then decide whether the generated expressions are deterministic. However, as570

demonstrated in [30], this solution is so inefficient (e.g., to generate 100 one-unambiguous regular expres-
sions with length 50 requires the generator to generate about 8618 regular expressions with a ratio 1.2%)
that it is not feasible for generating one-unambiguous regular expressions. Therefore, only the generator in
[30] is used here.

Experiments. We run each inclusion algorithm on the pairs generated by each mode, and account the575

runtime in milliseconds. To avoid the perturbations introduced by system activity, we ran each experiment
100 times, discarded the best and the worst performance, and computed the average of the remaining times.
The experiments are run on a workstation with Intel Xeon Silver 4214 Processor, 64GB RAM, Ubuntu 18.04.

The experimental results for each algorithm under each mode are given in Figure 9, where the horizontal
axis denote the sum of the lengths of expression pairs, and DFA, DERV, HEAD respectively denote our580

automata-based algorithm, our derivative-based algorithm, and Hovland’s Header-form-based algorithm,
with the suffix “-R” and “-I” respectively denoting the random mode (i.e., the first mode) and the inclusion
mode (i.e., the second mode).

First, it can be seen from the results (Figures 9(a), 9(c) and 9(e)) that the performances in the random
mode are much better than the ones in the inclusion mode, which are consistent with the discussion above.585

In detail, the derivative-based algorithm and Hovland’s algorithm perform much more efficiently on the pairs
generated in the random mode than on the ones generated in the inclusion mode, while the performances of
the automata-based algorithm are almost the same for expressions with size smaller than 100 in both modes.
The main reason is that the automata-based algorithm will construct two corresponding Glushkov DFAs for
both expressions, which costs most of the runtime, regardless of whether the inclusion of the two expressions590

was satisfied or not. However, thanks to the improvements, the complement automata and intersection
automata need not to be constructed fully, so the automata-based algorithm in the random mode performs

17

(a) Results of DFA in Two Modes (in ms). (b) Results in Random Mode (in ms).

(c) Results of DERV in Two Modes (in ms). (d) Results in Inclusion Mode on Small Expressions (in ms).

(e) Results of HEAD in Two Modes (in ms). (f) Results in Inclusion Mode on Large Expressions (in ms).

Figure 9: Results for Different Algorithms.

a little more efficiently in the inclusion mode for expressions with size larger than 100. Moreover, in the
inclusion mode, the runtime for all the algorithm increases, as the size increases. In particular, the runtime of
the automata-based algorithm increases almost linearly, while both the runtimes of the derivative-based and595

Hovland’s algorithm increase quadratically. In addition, from the results we can also see that the runtime
of Hovland’s algorithm grows much faster than those of both our algorithms.

Figure 9(b) shows the comparison of three algorithms in the random mode, from which we can see that
the derivative-based algorithm performs the best (due to that looking for a reason to fail is easy to spot),
while the automata-based algorithm does the worst (due to the constructing of Glushkov DFAs).600

As Hovland’s algorithm grows too fast, the comparison of three algorithms in the inclusion mode is shown
in two subfigures: Figure 9(d) shows the results on sizes ranging from 1 to 100 (i.e., small expressions) and
Figure 9(f) gives the results on sizes ranging from 200 to 300 (i.e., large expressions). The results show
the derivative-based algorithm is more efficient on small expressions (e.g., smaller than 100), while the
automata-based algorithm performs better on large expressions (e.g., larger than 200). This is because the605

derivative-based algorithm performs, in a sense, a breadth-first exploration of the two compared expressions,

18

and smaller expressions tend to have a smaller amount of such exploration. Moreover, compared with
Hovland’s algorithm, both of our algorithms are more efficient. Although Hovland’s algorithm has a better
performance on very small expressions (e.g., smaller than 10), it becomes time-consuming very quickly as
the size increases, while both of our algorithms can check the expression pairs with size no larger than610

300 in 0.2 seconds. The reason is that Hovland’s algorithm can deal with not only the one-unambiguous
expressions, but also some one-ambiguous cases, thus it needs to consider more cases than ours. Indeed, our
derivative-based algorithm can be viewed as a simple inference system of Hovland’s consisting of a variant
of Rule (Axm) (to check the inclusion of the First sets) and Rule (Letter). It is also easy to extend our
algorithms to deal with general regular expressions, but the complexity will be increased as well.615

To sum up, both our algorithms are more efficient than Hovland’s algorithm on the whole. We suggest
to use the automata-based algorithm in practice, since it performs well for both modes, that is, the runtime
is acceptable no matter what is the relation between two expressions.

7. Experiments for XML Typechecking

In this section, we present some experiments to see the effectivity of our inclusion algorithms applied on620

XML typechecking and to examine the practical efficiency of our typechecking algorithms for DTD and for
RRTG. For that, we conducted some preliminary experiments to compare our typechecking algorithms with
XDuce, an XML processing language which supports regular tree languages as schemas. Comparisons with
CDuce are also included.

As both XDuce and CDuce are implemented in OCaml, we also implement our typechecking algorithms625

for DTD and for RRTG in OCaml, where the automata-based inclusion algorithm is used and reimplemented
in OCaml for a fair comparison. The experiments in this section are run under the environment: Intel
Pentium 4 CPU 3.0GHz, 512MB RAM, Ubuntu.

7.1. Comparison with XDuce

In this section, we conducted some preliminary experiments to compare our typechecking algorithms630

with XDuce. To do that, we apply our typechecking algorithms and XDuce on the same test suite, which
covers the actually used scenarios of XML processing, including fragment extraction, type conversion and
so on. The test suite consists of the following examples, all of which, except the last one, are collected from
XDuce [32]:

addrbook: defines a DTD of an address book file and extracts a phone book from a XML file.635

bookmarks: converts a Netscape bookmark file (a subset of type HTML) into a file of full HTML type
with an external DTD (xhtml1-transitional.dtd).

html2latex: converts a file (of type HTML) into a LATEX file (of type string) with an external DTD
(xhtml1-transitional.dtd).

ns2xbel: converts a Netscape bookmark file into XBEL format with an external DTD (xbel-1.0.dtd).640

rng2xduce: converts a file of type Relax NG into XDuce format.
polysample: is a simple polymorphic program.
dvdstore: extracts the dvd data from a input file with respect to the type definition of DVD store given

in Section 5.2, which is a RRTG but not a DTD. This is a test case written by ourselves for testing our
algorithm for RRTG. Detailed XDuce code for dvdstore is contained in Appendix A.645

The size of these examples in the test suite are shown in Table 2, which are measured by line of code,
where size and sizee respectively represents the size of the example and the size of the external DTD
called by the example (the dash ‘-’ means no external DTDs). Some examples are small in size (e.g., 35),
while some are not (e.g., 451). Some examples call larger external DTDs (e.g., html2latex), which will be
converted to the corresponding type definitions of the program during processing, while some are not (e.g.,650

bookmarks). The content models in the examples are all one-unambiguous, which indicates the inclusion
algorithms for one-unambiguous are helpful in practice.

We run each example in the test suite with our typechecking algorithm for DTD, and our algorithm
for RRTG and XDuce respectively, and then collect the typechecking times in seconds. The experimental

19

Table 2: Sizes for examples.
addrbook bookmarks html2latex ns2xbel rng2xduce polysample dvdstore

size 67 216 300 77 451 83 35
sizee - 1198 1198 94 - - -

Table 3: Experimental results for XML typechecking (in s).

Example XDuce DTD RRTG

addrbook 0.003188 0.001367 0.001532
bookmarks 0.581173 0.156781 0.163633
html2latex 1.204572 0.280307 0.297592
ns2xbel 0.002295 0.001122 0.001202

rng2xduce 0.594637 0.219868 0.223946
polysample 0.002016 0.001059 0.001157
dvdstore 0.532574 - 0.302241

results are shown in Table 3, where XDuce denotes the typechecking time needed by XDuce, DTD denotes655

the typechecking times needed by our typechecking algorithm for DTD (the dash ‘-’ means the example
is not performed), and RRTG denotes the typechecking times needed by our typechecking algorithm for
RRTG.

The experimental results show that both our typechecking algorithms for DTD and RRTG are more
efficient than XDuce. This is mainly because our typechecking algorithms make full use of the one-to-one660

correspondence for DTD and the disjoint condition for RRTG. Moreover, from Table 3, we can also see
that the typechecking algorithm for DTD is more efficient than the one for RRTG. The reason is that the
typechecking algorithm for RRTG needs to find an unique type for each bottom level expression, while the
one for DTD needs not and thus is simpler.

7.2. Comparison with CDuce665

In this section, we conducted some preliminary experiments to compare our typechecking algorithms
with CDuce [18].

For the comparison, we collect the example addrbook, including XDuce and CDuce codes, from the
benchmarks of CDuce (i.e., CDuce vs. XDuce, Addrbook) [33]. Detailed XDuce code is given in Appendix
B. Then we run the example addrbook for many times with XDuce, CDuce and our typechecking algorithm670

for RRTG. In detail, we let the major function mekTelbook of addrbook run and repeat n times during the
experiments. This is twofold: one is to ensure the accuracy of time, the other is we found XDuce optimizes
the typechecking algorithm by memoizing the intermediate results to avoid repeated checking. Finally, the
typechecking times are collected in seconds.

The experimental results are shown in Figure 10, where the horizontal axis denotes the number of times675

n that mekTelbook is repeated and the vertical axis denotes the typechecking times that needed by XDuce,
CDuce and our RRTG algorithm, respectively.

From the experimental results, we can see that CDuce is more efficient than XDuce and RRTG for a one-
time typechecking (i.e., when n is small). This is mainly because that CDuce makes several improvements on
XDuce, including increased runtime efficiency and improved typechecking efficiency. In particular, CDuce680

adopts non-uniform automata [34], a merger between top-down deterministic automata and bottom-up
deterministic automata, to improve typechecking algorihm. While both XDuce and ours work in a top-
down way. Moreover, the experimental results also indicate that both XDuce and RRTG become more
efficient than CDuce as n increases. This is due to the memoization of the intermediate results used in
XDuce and RRTG. In our opinion, the memoization can highly improve efficiency in practice, as it is helpful685

to avoid the frequent and repeated subtype checking.

20

Figure 10: Comparison of XDuce, CDuce and RRTG.

8. Related Work

One-unambiguous regular expressions. One-unambiguous regular expressions have been a topic
of research since they were formally defined by Brüggemann-Klein and Wood [9], also under the name of
deterministic regular expressions or weakly deterministic regular expressions. Most of existing works are690

on determinism (i.e., whether a regular expression possibly with some extensions is one-unambiguous) [9,
35, 36, 37, 38, 39, 40], generalization (i.e., to extend the definition of one-unambiguous regular expres-
sions) [41, 42, 43, 44, 45], definability (i.e., where a regular language or expression can be defined by a
one-unambiguous regular expressions) [46, 47, 48], or descriptional complexity (i.e., the size complexity of
the smallest representation for a one-unambiguous regular expression) [49]. However, there are few works on695

the algorithms for the inclusion problem of one-unambiguous regular expressions. In the paper, we focus on
the inclusion and presents two algorithms, one is based on automata and the other one is based on deriva-
tives. Hovland [16] gives another algorithm, which is similar to our derivative-based algorithm. Moreover,
we also conduct some experiments to compare our algorithms with Hovland’s, which shows that both of our
algorithms are efficient than Hovland’s.700

Inclusion of XML schemas. A schema S2 includes a schema S1 if for any document d that is
valid against S1, d is valid against S2. Martens et al. [1] study the relations between complexity for
decision problems for DTD and XML Schema (single-type SDTD) and complexity for decision problems for
the corresponding regular expressions, and show that for inclusion the complexity bounds for the regular
expressions carry over to DTD and XML Schema, so it suffices to restrict attention to the complexity of705

regular expressions to derive complexity bounds for XML schema languages.
Martens et al. [1] give complexity of decision problems for several subclasses of regular expressions called

CHAREs occurring in practice in XML schemas. Their results show that inclusion is already co-NP-complete
for very innocent expressions such as expressions with factors of the form a or a∗. If the number of occurrences
of the same symbol in expressions is bounded by some k (RE≤k), inclusion is in PTIME. Several authors710

give complexity for regular expressions with interleaving and/or numerical occurrence indicators [3, 4, 5].
These expressions are allowed in schema languages like XML Schema and Relax NG. Inclusion for these
expressions is in EXPSPACE.

One-unambiguous regular expressions are used in DTD and XML Schema. Since one-unambiguous
regular expressions can be transformed to DFAs in linear time, inclusion for this kind of expressions is715

in PTIME. However, there are few algorithms for the inclusion. Chen and Chen [19] give the first two
algorithms, and Hovland [16] gives another algorithm.

For DTD inclusion, Suzuki [6] proposes a polynomial-time algorithm for solving a subproblem of the
inclusion problem for regular expressions defined by edit operations. However, the algorithm does not cover
the inclusion problem for one-unambiguous regular expressions.720

Ghelli et al. [50] propose a restricted class of regular expressions with interleaving and counting, give
the notion of conflict freedom, and a cubic algorithm for the symmetric inclusion of conflict-free types.
This algorithm has been further refined in Colazzo et al. [51], where a quadratic-time algorithm has been
defined. Colazzo et al. [29, 52] describe quadratic-time algorithm for asymmetric inclusion. The algorithm

21

requires the supertype to be conflict free, while the subtype can be any type. Colazzo et al. [53, 54] present725

an algorithm that is linear time in the common situations and resorts to the quadratic, constraints-based
approach only for some special cases. The class also does not cover one-unambiguous regular expressions.

Amavi et al. [55] proposes a method to verify whether a possibly-recursive XML type is “approxima-
tively” included in another XML type, where the approximation consists in weakening the father-children
relationships. While our typechecking algorithms require “full” inclusion.730

XML processing languages. Typechecking algorithms are proposed in XML processing languages
like XDuce [17], CDuce [18], XHaskell [56], and so on. These algorithms solve the inclusion problem for
regular tree languages. Inclusion is EXPTIME-complete in general, and there is no complexity results for the
algorithms in the case of DTD or XML Schema. When considering polymorphic types, both polymorphic
version of XDuce [57] and Vouillon’s work [58] have to give up something. While XHaskell [56] mixes Haskell735

type classes with XDuce’s regular expression types, it has two main drawbacks. First, every polymorphic
variable must be annotated. Second, even without inference of explicit annotations (which they do not
address), their system requires several restrictions for decidability. The work given in [59, 60, 61] provides
the theoretical basis and the algorithmic tools needed to design and implement polymorphic functional
languages for semi-structured data. In particular, the results pave the way to the polymorphic extension740

of CDuce. As a follow up of [59], Gesbert et al. [62] encode the subtyping relation of (polymorphic) XML
types [59] into a tree logic, and use a satisfiability solver to efficiently decide it. How to extend our inclusion
algorithms to polymorphic versions is a future work.

9. Concluding Remarks

We proposed two algorithms for checking inclusion of one-unambiguous regular expressions. One algo-745

rithm is based on automata and the other one is based on derivatives. Then we presented the application of
the algorithms to XML typechecking, namely DTD typechecking and RRTG typechecking. Finally we gave
experimental studies of the algorithms. We first compared the time efficiency of our algorithms together
with Hovland’s algorithm. The results show under the inclusion mode (wherein pairs satisfying the inclu-
sion relation are generated) the derivative-based algorithm is more efficient than the automata-based one750

for small expressions (i.e., the total length of two expressions is smaller than 100), and for large expressions
the latter is more efficient. They also show that both of our algorithms are more efficient than Hovland’s
algorithm for one-unambiguous regular expressions. We also conducted some experiments by applying the
algorithms to typechecking of XML, which show that our algorithms are helpful and quite efficient for XML
typechecking.755

Further experiments with more examples are still useful. Extending our algorithms to support interleav-
ing and counting, and considering polymorphism are all important future works. The algorithms can also
be used to other tasks of XML processing that require checking inclusion of schemas, which remain as future
works.

Acknowledgment760

We thank Lixiao Zheng for her careful reading and helpful comments on the writing of an earlier version
of the paper. We also thank the editor and the anonymous reviewers for their constructive comments.
This work was supported by National Natural Science Foundation of China under Grants Nos. 61872339,
61472405, 61972260 and 61502308, and Guangdong Basic and Applied Basic Research Foundation under
Grant No. 2019A1515011577.765

References

[1] Martens W, Neven F, Schwentick T. Complexity of decision problems for XML schemas and chain regular expressions.
SIAM Journal on Computing, 2009, 39(4):1486 – 1530.

[2] Stockmeyer L J, Meyer A R. Word problems requiring exponential time (preliminary report). In Proceedings of the 5th
Annual ACM Symposium on Theory of Computing, 1973, pp. 1 – 9.770

22

[3] Mayer A J, Stockmeyer L J. Word problems - this time with interleaving. Information and Computation, 1994, 115(2):293
– 311.

[4] Kilpeläinen P, Tuhkanen R. One-unambiguity of regular expressions with numeric occurrence indicators. Information and
Computation, 2007, 205:890–916.

[5] Gelade W, Martens W, Neven F. Optimizing schema languages for XML: numerical constraints and interleaving. SIAM775

Journal on Computing. 38(5): 2021-2043 (2009)
[6] Suzuki N. An edit operation-based approach to the inclusion problem for DTDs. In Proceedings of the 2007 ACM

Symposium on Applied Computing (SAC’07), 2007, pp. 482 – 488.
[7] Bray T et al. XML 1.1 (Second Edition). W3C Recommendation, 2006.
[8] Sperberg-McQueen C M, Thompson H. XML Schema, 2005. http://www.w3.org/XML/Schema.780

[9] Bruggemann-Klein A, Wood D. One-unambiguous regular languages. Information and Computation, 1998, 142(2):182–
206.

[10] Glushkov V M. The abstract theory of automata. Russian Math, Surveys, 1961, 16:1 – 53.
[11] McNaughton R, Yamada H. Regular expressions and state graphs for automata. IEEE Trans. on Electronic Computers,

1960, 9(1):39 – 47.785

[12] Chen H. Finite automata of expressions in the case of star normal form and one-unambiguity. Technical report, ISCAS-
LCS-10-11, June 2010.

[13] Antimirov V. Partial derivatives of regular expressions and finite automaton constructions. Theoretical Computer Science,
1996, 155:291 – 319.

[14] Brzozowski J A. Derivatives of regular expressions. J. ACM, 1964, 11(4):481–494.790

[15] Steven Grijzenhout, Maarten Marx. The quality of the XML Web. Web Semantics: Science, Services and Agents on the
World Wide Web, 2013, 19:59-68.

[16] Hovland D. The inclusion problem for regular expressions. Journal of Computer and System Sciences, 2012, 78(6):1795–
1813.

[17] Hosoya H, Pierce B. XDuce: a statically typed XML processing language. ACM Transactions on Internet Technology,795

2003, 3(2):117–148.
[18] Benzaken V, Castagna G, Frisch A. CDuce: An XML centric general-purpose language. In ACM SIGPLAN International

Conference on Functional Programming (ICFP), 2003, pp. 51 – 63.
[19] Chen H, Chen L. Inclusion test algorithms for one-unambiguous regular expressions. In Proceedings of the 5th International

Colloquium on Theoretical Aspects of Computing (ICTAC’08), LNCS 51602008, 2008, pp. 96–110.800

[20] Sheng Y. Regular languages. In Grzegorz R, Arto S, editors, Handbook of Formal Languages: Volume 1 Word, Language,
Grammar, 1997, pp. 41–110.

[21] Bruggemann-Klein A. Regular expressions into finite automata. Theoretical Computer Science, 1993, 120:197 – 213.
[22] Cormen H, Leiserson C E, Rivest R L, Stein C. Introduction to Algorithms. The MIT Press, 2001.
[23] Filippo Bonchi, Damien Pous. Hacking Nondeterminism with Induction and Coinduction Commun. ACM, 2015, 58(2):87-805

95.
[24] Brzozowski J A. Roots of Star Events. J. ACM, 1967, 14(3):466-477.
[25] Antimirov V. Rewriting regular inequalities. In Proc. of the 10th International Symposium on Fundamentals of Compu-

tation Theory, volume 965, 1995, pp. 116–125.
[26] Champavère J, Gilleron R, Lemay A, Niehren J. Efficient inclusion checking for deterministic tree automata and DTDs. In810

Proceedings of Second International Conference on Language and Automata Theory and Applications, 2008, pp. 184–195.
[27] Martens W, Neven F, Schwentick T, Bex G J. Expressiveness and complexity of XML Schema. ACM Trans. Database

Syst., 2006, 31(3):770–813.
[28] Chen L, Chen H. Subtyping algorithm of regular tree grammars with disjoint production rules. In Proceedings of the 7th

International Colloquium on Theoretical Aspects of Computing (ICTAC’10), LNCS 6255, 2010, pp. 45–59.815

[29] Colazzo D, Ghelli G, Pardini L, Sartiani C. Efficient asymmetric inclusion of regular expressions with interleaving and
counting for XML type-checking. Theoretical Computer Science, 2013, 492(24):88–116.

[30] H. Chen, P. Lu, Z. Xu. Towards an Effective Syntax for Deterministic Regular Expressions. Technical Report. Institute
of Software Chinese Academy of Sciences, 2018.

[31] XDuce Webpage. http://xduce.sourceforge.net/.820

[32] CDuce Benchmarks. http://www.cduce.org/bench.html#xduce.
[33] Frisch A. Regular Tree Language Recognition with Static Information. Ifip Advances in Information and Communication

Technology, 2004, 155:661-674.
[34] Kilpeläinen P. Checking determinism of XML Schema content models in optimal time. Information Systems, 2011,

36(3):596 – 617.825

[35] Groz B, Maneth S. Efficient testing and matching of deterministic regular expressions. J. Comput. Syst. Sci. 89: 372-399
(2017)

[36] Lu P, Bremer J, Chen H. Deciding determinism of regular languages. Theory of Computing Systems, 2015, 57(1):97–139.
[37] Chen H, Lu P. Checking determinism of regular expressions with counting. Information and Computation, 2015, 241:302

– 320.830

[38] Lu P, Peng F, Chen H, Zheng L. Deciding determinism of unary languages. Information and Computation, 2015, 245:181
– 196.

[39] Peng F, Chen H, Mou X. Deterministic regular expressions with interleaving. In Proceedings of the 12th International
Colloquium on Theoretical Aspects of Computing (ICTAC 2015), 2015, pp. 203–220.

[40] Dora G, Rosa M, Derick W. Block-deterministic regular languages. In Proceedings of the 7th Italian Conference on835

23

http://www.w3.org/XML/Schema
http://xduce.sourceforge.net/
http://www.cduce.org/bench.html#xduce

Theoretical Computer Science (ICTCS 2001), 2001, pp. 184–196.
[41] Han Y, Wood D. Generalizations of 1-deterministic regular languages. Information and Computation, 2008, 206(9):1117

– 1125.
[42] Caron P, Han Y, Mignot L. Generalized one-unambiguity. In Proceedings of the 15th International Conference on

Developments in Language Theory (DLT 2011), 2011, pp. 129–140.840

[43] Caron P, Mignot L, Miklarz C. On the hierarchy of block deterministic languages. In Proceedings of the 20th International
Conference on Implementation and Application of Automata (CIAA 2015), 2015, pp. 63–75.

[44] Caron P, Mignot L, Miklarz C. On the hierarchy of generalizations of one-unambiguous regular languages. Theoretical
Computer Science, 2016, (679):95–106

[45] Huang E, Wang D, Liou D. Development of a deterministic XML schema by resolving structure ambiguity of HL7 messages.845

Computer Methods and Programs in Biomedicine, 2005, 80(1):1 – 15.
[46] Wojciech C, Claire D, Katja L, Wim M. Deciding definability by deterministic regular expressions. Journal of Computer

and System Sciences, 88 (2017): 75–89.
[47] Markus L, Matthias N. Definability by weakly deterministic regular expressions with counters is decidable. In Mathematical

Foundations of Computer Science 2015, 2015, pp. 369–381.850

[48] Katja L, Wim M, Matthias N. Closure properties and descriptional complexity of deterministic regular expressions.
Theoretical Computer Science, 2016, 627:54 – 70.

[49] Ghelli G, Colazzo D, Sartiani C. Efficient inclusion for a class of XML types with interleaving and counting. In Proceedings
of the 11th International Symposium on Database Programming Languages (DBPL 2007), LNCS 4797, 2007, pp. 231 –
245.855

[50] Colazzo D, Ghelli G, Sartiani C. Efficient inclusion for a class of XML types with interleaving and counting. Inf. Syst,
2009, 34(7):643–656.

[51] Colazzo D, Ghelli G, Sartiani C. Efficient asymmetric inclusion between regular expression types. In Proceedings of the
12th International Conference on Database Theory (ICDT’09), 2009, pp. 174–182.

[52] Colazzo D, Ghelli G, Pardini L, Sartiani C. Almost-linear inclusion for XML regular expression types. ACM Transactions860

on Database Systems (TODS), 2013, 38(3):15:1–15:45.
[53] Colazzo D, Ghelli G, Pardini L, Sartiani C. Linear inclusion for XML regular expression types. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management (CIKM09), 2009, pp. 137–146. ,.
[54] Joshua A, Jacques C, Mirian H, Pierre R. Weak inclusion for XML types. In Proceedings of the 16th International

Conference on Implementation and Application of Automata, 2011, pp. 30–41.865

[55] Sulzmann M, Lu K. XHaskell - adding regular expression types to Haskell. Implementation and Application of Functional
Languages, 2007, pp. 75–92.

[56] Hosoya H, Frisch A, Castagna G. Parametric polymorphism for XML. ACM TOPLAS, 2009, 32(1):1–56.
[57] Vouillon J. Polymorphic regular tree types and patterns. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL’06), 2006, pp. 103 – 114.870

[58] Castagna G, Xu Z. Set-theoretic foundation of parametric polymorphism and subtyping. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’11), 2011, pp. 94–106.

[59] Castagna G, Nguyn K, Xu Z, Im H, Lenglet S, Padovani L. Polymorphic functions with set-theoretic types. part 1: Syntax,
semantics, and evaluation. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’14), January 2014, pp. 5–17.875

[60] Castagna G, Nguyn K, Xu Z, Abate P. Polymorphic functions with set-theoretic types. part 2: Local type inference
and type reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’15), 2015, pp. 289–302.

[61] Gesbert N, Genevès P, Layäıda N. Parametric polymorphism and semantic subtyping: the logical connection. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11), 2011, pp. 107–116.880

24

Appendix A. XDuce code for the example dvdstore

(* dvdstore.q *)

type Store = store[Regulars, Discounts]

type Regulars = Dvd1*

type Discounts = Dvd2, Dvd2*

type Dvd1 = dvd[(Title, Price)]

type Dvd2 = dvd[(Title, Price, Discount)]

type Title = title[String]

type Price = price[String]

type Discount = discount[String]

type Mydvds = Mydvd*

type Mydvd = mydvd[(Title, Price, Discount)]

fun main (val fn as String): Mydvds = match load xml(fn) with

store[val dvds as (Dvd1*,Dvd2,Dvd2*)] − > mkmyDvd1(dvds)

| Any − > raise(”Error”)

fun mkmyDvd1 (val dvds as (Dvd1*,Dvd2,Dvd2*)): Mydvds =

match dvds with

dvd[title[val t], price[val p]], val rest

− > mydvd[title[t], price[p],discount[”0.5”]], mkmyDvd1(rest)

| dvd[title[val t], price[val p], discount[val d]], val rest

− > mydvd[title[t], price[p], discount[d]], mkmyDvd2(rest)

fun mkmyDvd2 (val dvd2s as Dvd2*): Mydvds =

match dvd2s with

dvd[title[val t], price[val p], discount[val d]], val rest

− > mydvd[title[t], price[p], discount[d]], mkmyDvd2(rest)

| () − > ()

let val = main(”dvdstore.xml”)

25

Appendix B. XDuce code for the example addrbook (CDuce code is ommtited)

(* addrbook.q *)

type Addrbook = addrbook[Person*]

type Person = person[(Name,Tel?,Email*)]

type Name = name[String]

type Tel = tel[String]

type Email = email[String]

type Entry = entry[(Name,Tel)]*

fun main (val fn as String) : Entry =

match load xml(fn) with

addrbook[val ps as Person*] − > mkTelbook(ps)

| Any − > raise(”Error”)

fun mkTelbook (val ps as Person*) : Entry =

match ps with

person[name[val n], tel[val t], val e], val rest

− > entry[name[n], tel[t]], mkTelbook(rest)

| person[name[val n], val e], val rest − > mkTelbook(rest)

| () − > ()

let val = main(”large-xduce.xml”)

26

	Introduction
	Notation
	Regular Expressions
	One-unambiguous Regular Expressions
	Glushkov Automaton and Star Normal Form
	Derivatives

	Automata-Based Algorithm
	The Algorithm
	Improvements

	Derivative-Based Algorithm
	Applications
	DTD Typechecking
	Subtyping Algorithm for RRTG

	Experiments for Inclusion Algorithms
	Experiments for XML Typechecking
	Comparison with XDuce
	Comparison with CDuce

	Related Work
	Concluding Remarks
	XDuce code for the example dvdstore
	XDuce code for the example addrbook (CDuce code is ommtited)

