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Abstract—A recent research shows that 88% of Android appli-
cations that use cryptographic APIs make at least one mistake.
For this reason, several tools have been proposed to detect crypto
API misuses, such as CryptoLint, CMA, and CogniCryptSAST.
However, these tools depend heavily on manually designed rules,
which require much cryptographic knowledge and could be
error-prone. In this paper, we propose an approach based on
probabilistic models, namely, hidden Markov model and n-gram
model, to analyzing crypto API usages in Android applications.
The difficulty lies in that crypto APIs are sensitive to not only API
orders, but also their arguments. To address this, we have created
a dataset consisting of crypto API sequences with arguments,
wherein symbolic execution is performed. Finally, we have also
conducted some experiments on our models, which shows that (i)
our models are effective in capturing the usages, detecting and
locating the misuses; (ii) our models perform better than the
ones without symbolic execution, especially in misuse detection;
and (iii) compared with CogniCryptSAST, our models can detect
several new misuses.

Index Terms—Cryptographic API, Android, API analysis,
hidden Markov model, n-gram

I. INTRODUCTION

According to a report from IDC [1], Android is the most
popular platform for smartphones, with almost 87% the mar-
ket share in 2019. As a result, Android users started to
accumulate a large amount of sensitive and private data on
their personal mobile devices that requires confidentiality
protection [2]. Besides filesystem-level encryption, one typical
way to achieve data confidentiality is to implement custom,
application-specific solutions using supported cryptographic
APIs (crypto APIs for short). For example, developers can
encrypt user data before storing it on the device or transmitting
it over the network.

However, developers can easily make mistakes in imple-
menting and using cryptography in their Android applications
due to either a lack of cryptographic knowledge or human
error, and such mistakes often lead to a false sense of security.
A recent research shows that 88% of Android applications that
use crypto APIs make at least one mistake [3]. What’s worse,
as shown in [4], usage updates are unlikely to fix crypto API
misuses.

To address this problem, several tools have been proposed
to detect crypto API misuse, such as CryptoLint [3], CMA [5],
and CogniCryptSAST [6]. However, these tools depend heavily
on manually designed rules or models, which require much
cryptographic knowledge and could be error-prone. Some
existing heuristic approaches on general API usage can be

applied on crypto APIs, such as hidden Markov model [7]–
[10], n-gram model [11]–[13], and deep learning [14]. But
these approaches focus on API orders, leaving arguments out
of consideration, so that they are insufficient for crypto APIs,
because crypto APIs are sensitive to not only the API orders,
but also their arguments. For example, if AES algorithm is
used, then the key size should be 128, 192, or 256, but not
the others. There are some existing approaches targeting at
API arguments [15], [16], but API orders are not considered.

In this paper, we propose an approach to analyzing crypto
API usages in Android applications, based on probabilistic
models, namely, hidden Markov model and n-gram model,
which require less cryptographic knowledge. Different from
existing work, we create a dataset consisting of crypto API
sequences with arguments. For that, we perform symbolic
analysis (i.e., a simple variant of symbolic execution) on
program traces extracted from Android applications, and pre-
serve the crypto ones. In order to capture the usage as
correct as possible, we also leverage the error reports from
CogniCryptSAST [6] to classify the API sequences. Moreover,
using these probabilistic models, we propose a new approach
to analyzing crypto API usage, which is based on the assump-
tion that the correct API entails a higher probability of an API
sequence while the misuse one does the opposite.

Several experiments have been conducted to evaluate our
approach. Firstly, we used our models to analyze the crypto
API usage, including the usage detection and the misuse
location. The experimental results have shown that our models
can not only capture the correct usages, but also detect the
misuses. Secondly, we compared our models with existing
approaches using probabilistic models, which have demon-
strated that our models perform better than the ones without
symbolic execution, especially in misuse detection. Finally,
we also compared our models with a state-of-the-art tool
CogniCryptSAST [6], and found that our models can detect
several new misuses, most of which are due to a wrong
argument.

The remainder of this paper is organized as follows. Sec-
tion II describes our approach, followed by the experimental
results in Section III. Section IV presents the related work,
followed by some concluding remarks in Section V.

II. APPROACH

In this section, we present our approach to analyzing crypto
API usages in Android applications. Figure 1 shows the



Fig. 1. Framework of Our Approach

framework of our approach, which consists of three tasks:
static analysis, model building and API usage analysis. The
first task, namely, static analysis, is meant to extract program
traces from Android applications and then perform symbolic
analysis on these traces, yielding crypto API sequences. The
model building task aims to build probabilistic models based
on the dataset that is created from an Android application
dataset via the first task. Finally, using the models built above,
the last task tries to analyze the crypto API sequences for a
given Android application, including the usage detection and
the misuse location. In what follows, we depict each task of
our approach in detail.

A. Static Analysis

This section is devoted to crypto API sequence extraction
from an Android application in the instruction level, which
consists of three steps: pre-processing, trace extraction, and
symbolic analysis.

Pre-Processing. Android applications are distributed in
markets in the form of APK. An APK is a compressed archive
of Dalvik bytecode for execution, resources, assets, certifi-
cates, and an XML manifest file. Among them, the Dalvik
bytecode for execution, namely, the file named classes.dex1,
will be extracted for further analysis.

For ease of extracting traces, we leverage the disassembler
Apktool [17] to disassemble the dex files. After disassembling,
the dex files are converted to smali files, which give us the
readable code in the smali language. We use smali code,
instead of Java code, because the disassembling is lossless in
that the smali files support the full functionality of the original
dex files.

For simplicity, we focus on the API sequences that would
be possibly executed, so we use FlowDroid [18] to extract
the reachable methods for each APK. Moreover, to create
an API usage dataset, we also perform a state-of-the-art tool
CogniCryptSAST [6] on each APK to detect possible crypto
API misuses, which are used to classify the crypto API
sequences.

Trace Extraction. Generally, a smali file contains the
definition of a separate class, either a general class or an inner
class, in the Java source code. So we extract the traces class

1There may be several additional dex files with the name “classesi.dex” in
large APKs.

by class and method by method for all smali files contained
in an APK.

To do this, we first use the static analysis of CDGDroid [19]
to identify all the instructions in a method and build its control-
flow graph (CFG) with the instructions as nodes and the first
instruction as the starting node. Then we traverse the CFG to
extract the possible traces for each reachable method.

The procedure of method traversing is given in Algorithm 1,
which takes a method m as input and returns a set trs of
possible program traces. The algorithm first initializes the set
trs as an empty set (line 1) and puts into an empty set S the
initial state with the starting node of the method m, an empty
trace, and an empty set of backward edges (i.e., edges that
go back to some visited nodes) (lines 2-3). It then iterates the
set S state by state (lines 4-19). For each state, the algorithm
continues to append the current instruction ins into the current
trace tr and updates the current instruction as its unique
successive one, once the out-degree of the current instruction
is 1 (i.e., only one successive instruction) and it is not a return
instruction (lines 6-8). Otherwise, the current instruction ins
is appended into the current trace tr (line 9). If ins is a
return one, then the current trace tr is added into the trace
set trs (line 10-11). Finally, for each successive instruction,
the algorithm checks whether the edge to it exists in the
current backward set or not (line 13). If not, the algorithm
makes a copy of the trace and the backward set, respectively
(lines 14-15). Moreover, if the successive instruction nxt has
been visited before, the edge to it would be recorded into the
backward set to avoid repeated looping (lines 16-17). After
that, the state with the successive instruction nxt, the new
trace ntr and the new backward set nbw is added into the
state set S, if the state does not exist in S (lines 18-19). Note
that, we traverse any loop at most once for any trace, which
is ensured by the backward edge checking.

Some APKs encapsulate the Crypto APIs for ease of use
or as a part of a common utility. Then when encrypting or
decrypting, the encapsulated APIs are called instead. Hence,
to address this situation, we consider inter-procedural analysis
for trace extraction. Moreover, we also found method calls in
such a situation would not be too deep, so we limit ourselves
with a depth d for method calls.

The inter-procedural analysis is based on the intra-
procedural analysis (i.e., Algorithm 1), which is shown in
Algorithm 2. To start with, the algorithm invokes Algorithm 1
to extract the set trs of the intra-procedural traces for the
method m (line 1). If the current depth d is not larger than 0,
then the intra-procedural trace set trs is returned immediately
(line 2-3). Then the algorithm iterates on each trace tr in trs to
identify and expand the possible method calls (lines 5-12). And
for each instruction ins of the target trace tr, the algorithm
performs the following analysis (lines 7-11): if the instruction
ins calls a method m and its definition exists in the APK,
then the algorithm extracts a possible inter-procedural trace
set from the called method m by a recursive call with a depth
d − 1, and expands the called instruction ins by the traces



Algorithm 1: Trace_Extraction
input : a reachable method m
output: a possible trace set trs

1 trs← ∅;
2 S ← ∅;
3 S.add((m.start, [], {}));
4 while S is not empty do
5 (ins, tr, bw)← pop S;
6 while |m.cfg(ins)| == 1 and ins is not return do
7 tr.append(ins);
8 ins← m.cfg(ins);

9 tr.append(ins);
10 if ins is return then
11 trs.add(tr);

12 for each nxt in m.cfg(ins) do
13 if (ins, nxt) /∈ bw then
14 ntr ← copy tr;
15 nbw ← copy bw;
16 if nxt ∈ ntr then
17 nbw.add((ins, nxt));

18 if (nxt, ntr, nbw) /∈ S then
19 S.add((nxt, ntr, nbw));

20 return trs

Algorithm 2: Trace_Extraction_inter
input : a reachable method m and a depth d
output: a possible trace set trs

1 trs← Trace_Extraction(m);
2 if d ≤ 0 then
3 return trs;

4 inter trs← {};
5 for each trace tr in trs do
6 temp trs← {[]};
7 for each instruction ins in tr do
8 if ins calls m and m’s definition exists then
9 temp trs← temp trs · {[begin ins]} ·

Trace_Extraction_inter(m, d− 1) ·
{[end ins]};

10 else
11 temp trs← temp trs · {[ins]};

12 inter trs.add(temp trs);

13 return inter trs;

extracted from m via language product2 (lines 8-9), where
begin and end are used to mark the beginning and the ending
of a method call, respectively; otherwise, the instruction ins
remains the same (lines 10-11). Finally, the expanded trace set
is returned (line 13).

Symbolic Analysis. After the traces are extracted, we
perform symbol analysis, that is, a simple variant of symbolic
execution, on each trace and then choose to keep those APIs
that are interested, that is, related to crypto APIs.

The procedure of symbolic analysis is given in Algorithm 3,

2E.g., {[a, b], [c]} · {[d], [e, f ]} = {[a, b, d], [a, b, e, f ], [c, d], [c, e, f ]}.

Algorithm 3: Symbol_Analysis
input : a trace tr
output: an API sequence

1 env ← initialize parameters from declarations;
2 seq ← [];
3 for each inst in tr do
4 (opcode, args r, args w)← parse inst;
5 for each arg in args r do
6 read arg from env;

7 syminst← concat(opcode, args r);
8 if syminst calls m then
9 if m is related to crypto then

10 seq.append(syminst);

11 else
12 syminst← return type(m);

13 for each arg in args w do
14 write arg as syminst into env;

15 return seq;

which takes a trace tr as input and returns a possibly empty
API sequence. The algorithm starts with an environment env
that are constructed from the declarations of the corresponding
methods where the trace tr is extracted (line 1) and an
empty sequence seq of APIs (line 2). Then the algorithm
iterates on each instruction inst in the target trace tr to
update the instruction and the environment and identify the
interesting APIs (lines 3-14). Specifically, for each instruction
inst, the algorithm first parses it into a triple consisting of
the opcode opcode, those arguments args r that inst would
read from, and those arguments args w that inst would
write into (line 4). There are 222 opcodes in total listed
in Android Dalvik-bytecode list [20], and for simplicity, we
group them into several categories according to their semantics
and arguments. Next, the algorithm updates each argument in
args r with respect to the environment env (lines 5-6) and
constructs a symbolic expression syminst from the opcode
and the updated arguments (line 7). The interesting case is that
a method m is called by the current instruction (line 8). If m
is related to crypto APIs, then it is appended into the current
sequence seq (lines 9-10). Otherwise, the symbolic expression
syminst is replaced by the return type of m (lines 11-12).
This means that symbolic execution is only performed on the
instructions or expressions that are related to crypto APIs,
while the others are abstracted as their types, which is mainly
to avoid user-defined methods or complex expressions. Finally,
the collected API sequence seq is returned (line 15).

Let us consider the snippet code shown in Figure 2.
The API sequence extracted from this snippet code is
given in Table I, which are reformatted for easy under-
standing, that is, erasing interface information and reorder-
ing method names and arguments. For example, in our
dataset, the last API of Table I is “invoke-virtual { invoke-
static { “AES/CBC/PKCS5Padding” }, Ljavax/crypto/Cipher;-
>getInstance(Ljava/lang/String;)Ljavax/crypto/Cipher;, [B },



Fig. 2. Snippet Code from an APK

Ljavax/crypto/Cipher;->doFinal([B)[B”. The symbol expres-
sions show that both API orders and API arguments are
collected.

Two different traces from an identity method could yield
two API sequences of the same, which should be the same
usage, so only one sequence is collected. However, if traces
are from different methods, then all the copies are retained, as
they are clearly different usages.

As a notice, to make it easy to follow, we present trace
extraction and symbolic analysis separately. But this way
could give rise to inefficient algorithms to use in practice.
In fact, trace extraction and symbolic analysis can be carried
out together: just let states in Algorithm 1 maintain the API
sequences directly as well as environments.

B. Model Building

In this section, we use hidden Markov model [21] and n-
gram model [22] to build our model, respectively.

Hidden Markov Model. Hidden Markov model (HMM)
is a generative probabilistic model that describes the process
of generating sequences, and has been applied in speech
recognition, speech synthesis, machine translation, and so on.
Recently, HMM is used to analyze API usages as well [7]–
[10].

A HMM for API usage [9] can be formalized as a 5-
Tuple (Q,V, π,A,B), where Q is a set of K hidden states,
V is a set of M interesting APIs (in our case, APIs are
associated with some symbolic arguments or types), π is the
initial state distribution specifying that each state qi has a
probability πi to be selected as the starting state of the model,
A is the transition matrix of size K × K specifying the
state transition probabilities (e.g., ai,j is the probability that
the model changes from state qi to state qj), and B is the
generating matrix of size K×M specifying that the emission
probabilities of each state (e.g., bi,n is the probability to call
method mn when the model is in state qi). As seen, the HMM
for API usage has K +K2 +K ×M parameters.

We employ a modified version of Baum-Welch algorithm
presented in [9] to train our HMM for API usage, wherein
forward and backward probabilities are used. In detail, the
forward probability αi,t is defined as the probability of seeing

partial method sequence m1,m2, . . . ,mt and being in state qi
at time t given the model λ:

αi,t = P (m1,m2, . . . ,mt, qt = qi | λ)

and the backward probability βi,t is defined as the probability
of seeing the ending partial sequence mt+1, . . . ,mT given
state qi at time t and the model λ:

βi,t = P (mt+1, . . . ,mT | qt = qi, λ)

where qt denotes the hidden state at time t. Based on the
forward and backward probabilities, the probability of an API
sequence s = m1,m2, . . . ,mT can be computed by any
position t in it:

P (s) =

K∑
i=1

αi,tβi,t

N-Gram Model. An n-gram model (NGM) is a type of
probabilistic language model for predicting the next item in
such a sequence in the form of a (n-1)-order Markov model. N-
gram models are now widely used in probability, communica-
tion theory, computational linguistics, computational biology,
and data compression. And there exist some research work on
API usage analysis that uses n-gram [11]–[13].

In an n-gram model for API usage, the probability of an
API sequence is estimated by generating the sequence word by
word3; and the probability of each word in a sequence is only
determined by the conditional probabilities of the previous
n − 1 tokens. Given a sequence s = m1,m2,m3, . . . ,mT ,
its probability is estimated as:

P (s) =

T∏
i=1

P (mi|hi)

where hi denotes the history sequence mi−n+1, . . . ,mi−1 of
size at most n − 1. For example, if n = 3 (i.e., using a 3-
gram model) and T = 4, then the probability of the sequence
s = m1,m2,m3,m4 is

P (s) = P (m1)P (m2|m1)P (m3|m1,m2)P (m4|m2,m3)

We use the procedure presented in [13] to build our n-gram
model.

C. API Usage Analysis

In this section, we present how to analyze a crypto API
sequence, including the usage detection and the misuse loca-
tion. The first task aims to detect whether a given crypto API
sequence is a correct usage or not. If not, then the second
task would locate the possible misused APIs. Both tasks are
based on the assumption that the correct API could higher the
probability of an API sequence while the misused one does
the opposite. The approach works for both HMM and NGM,
so we do not specify the model in the following.

The first task is intuitive and simple: just check whether
the probability of a given API sequence is higher than the

3In our situation, words are crypto APIs with some symbolic arguments or
types.



TABLE I
CRYPTO API SEQUENCE FOR THE SNIPPET CODE

LN ID Symbol Expression
5 se1 invoke-direct Ljavax/crypto/spec/SecretKeySpec;->init( Ljavax/crypto/spec/SecretKeySpec;, [B, “AES” )
7 se2 invoke-static Ljavax/crypto/Cipher;->getInstance( “AES/CBC/PKCS5Padding” )

12 se3 invoke-direct Ljavax/crypto/spec/IvParameterSpec;->init( Ljavax/crypto/spec/IvParameterSpec;, [B )
14 se4 invoke-virtual Ljavax/crypto/Cipher;->init( se2, 0x2, Ljavax/crypto/spec/SecretKeySpec;, Ljavax/crypto/spec/IvParameterSpec; )
15 se5 invoke-virtual Ljavax/crypto/Cipher;->doFinal( se2, [B )

threshold. So the key is to set up a reference probability for
the threshold, which is computed based on the distribution of
probabilities of all unique API sequences used for training our
models. We currently use the 80% percentile as the threshold.

Once a sequence is detected as a misuse (i.e., lower than the
threshold), we shall identify the possible misuse locations. For
that, we define the probability of an API m used in a location
l of an API sequence s = m1,m2,m3, . . . ,mT with l ≤ T as
the probability of the sequence obtained by replacing ml with
m:

P (m | s, l) = P (s[ml 7→ m])

These probabilities clearly can be used as the scores for all
the APIs such that we can sort all the APIs according to their
probabilities for any location of any sequence. Then based on
the sorting, we define the distance of an API m used in a
location l of a sequence s as the order in the corresponding
ordered list for l and s:

dis(m | s, l) = order({P (m′ | s, l) | m′ ∈ APIs})

Generally, the misuse APIs would have a lower probability
and thus have a large distance. Accordingly, we identify the
misuse locations for a misuse sequence s as the ones that
have a top-k distance among all the locations of s, where k
is a small integer.

III. EXPERIMENTS

This section presents the experimental results, including
model selection, API usage analysis, and comparison with
CogniCryptSAST.

A. Dataset and Evaluative Criteria

To create our dataset, we collect 87375 APKs from the
benign samples of AndroZoo [23], released from 2016 to 2019.
We currently focus on the libraries of “javax.crypto”. So we
perform a quick scan on the collected APKs to filter out that
have not used any API from the target libraries, and keep
the remaining 19766 ones for our dataset. Next, we extract
the API sequences from the selected APKs via the analysis
in Section II-A. Then we filter out the sequences of length
smaller than 5, which we think should not be a complete
usage, and identify the reported errors by CogniCryptSAST
among the remaining sequences, yielding the dataset for
crypto API usages. Moreover, among these selected APKs, we
take 11856 APKs as the training set, 3957 as the validation
set, and 3953 as the testing set. Table II lists some results
of the dataset, where Positive (resp, Negative) denotes the

TABLE II
API SEQUENCES FROM APK DATASET

Dataset Positive Negative
Num Min Max Avg Num Min Max Avg

Training 8890 5 23 6.96 17509 5 41 7.36
Validation 3381 5 23 8.24 4747 5 41 7.34

Testing 3478 5 30 6.82 5296 5 41 7.38

sequences that contain no error (resp, some errors) reported by
CogniCryptSAST, Num denotes the total number of sequences,
Min, Max, and Ave denote the minimum length, the maximum
length, and the average length for the extracted API sequences,
respectively.

In our experiments, we use the following performance
measures to quantitatively validate the experimental results.
Accuracy is the most intuitive performance measure and it
is simply a ratio of correctly predicted observation to the
total observations. Precision is the ratio of correctly pre-
dicted positive observations to the total predicted positive
observations, and Recall is the ratio of correctly predicted
positive observations to all observations in actual class. F1
score is the weighted average of Precision and Recall, that is,
(2 ·Precision ·Recall)/(Precision+Recall). Intuitively, the
higher the measures above, the better the model.

B. Model Selection

As shown in Section II-B, there is a hyper-parameter K (i.e.,
the state number) for HMM that needed to be fixed. For that,
we take the range [5, 15] as the candidate for K. This is due
to that the minimum length is 5 and that the average length
of the extracted API sequences ranges from 6 to 8. And for
each value in the candidate, we build a HMM taking it as the
state number K from the positive sequences4 in the training
set. After all the models are built, we then perform them on
the validation set and select a model according to the results.

The results for HMM with different state numbers on the
validation set are given in Table III, which show that the
performances of the models are quite close, although with
different state numbers. In particular, the HMM with 12 states
obtains the highest accuracy and the highest precision, while
the HMM with 8 states achieves the highest recall and the
highest F1 score. As a result, the HMM with 8 states is
selected.

4We take only the positives as we would like the models to capture the
correct usages.



TABLE III
RESULTS FOR HMM WITH DIFFERENT STATE NUMBERS

K Accuracy Precision Recall F1
5 66.68% 58.54% 68.17% 62.99%
6 66.60% 58.44% 68.29% 62.98%
7 65.92% 57.71% 67.61% 62.27%
8 67.23% 59.15% 68.58% 63.52%
9 66.83% 58.73% 68.08% 63.06%

10 66.70% 58.57% 68.20% 63.02%
11 66.80% 58.72% 67.99% 63.02%
12 67.45% 59.51% 68.05% 63.50%
13 67.37% 59.43% 67.90% 63.39%
14 67.37% 59.40% 68.11% 63.46%
15 67.19% 59.24% 67.73% 63.20%

TABLE IV
RESULTS FOR NGM WITH DIFFERENT GRAM SIZES

N Accuracy Precision Recall F1
3 68.08% 60.09% 69.26% 64.35%
4 69.68% 62.10% 69.56% 65.62%
5 70.90% 63.39% 71.10% 67.02%

Likewise, we need to fix a hyper-parameter N (i.e., the
gram size) for NGM. The selection procedure is similar to
the above. We currently set the gram size ranges from 3 to
5. This is because (i) 3-gram, 4-gram, and 5-gram models,
as shown in [13], generated reasonable results; and (ii) the
average length of the extracted API sequences ranges from 6
to 8.

The results for NGM with different gram sizes on the
validation set are given in Table IV. From the results, we
can see that 5-gram model performs best in all the evaluative
criteria. Hence, 5-gram model is selected. Compared with
HMM, NGM performs slightly better on the validation set.

C. API Usage Analysis

Using the selected models, we perform experiments to
analyze the crypto API usages, including the usage detection
and the misuse location, on the testing set.

Usage Detection. The usage detection results are given in
the top half part of Table V, where Sym-HMM and Sym-
NGM denote our selected HMM and NGM, respectively; and
Baseline denotes the results of a random predictor wherein half
the positives and half the negatives are assumed to be predicted
correctly. The results indicate that both our models obtain a
better result than the baseline on the testing set. Compared
with Sym-NGM, Sym-HMM achieves (a better recall and) a
better F1 score.

In addition to the correct usages, we also concern about the
misuse usages. For that, we turn over the positives and the
negatives, and recompute the corresponding evaluative criteria
(marked with a superscript “T”), which is shown in Table V
as well. From the results, we can see that both our models
perform well in terms of all the evaluative criteria as well.
And Sym-NGM performs better than Sym-HMM.

Moreover, we also compare our models with the no-
symbolic-execution versions, namely, a variant of Nguyen et.

Fig. 3. API Misuse Location

al.’s approach [9] on crypto APIs (using HMM but no symbolic
execution, denoted as No-HMM) and a variant of Wang et. al.’s
approach [13] on crypto APIs (using n-gram model but no
symbolic execution, denoted as No-NGM). As our symbolic
analysis has already captured the dependences between the
objects in the libraries of “javax.crypto”, we drop off the
symbolic expressions in the API sequences of our dataset and
use them to build No-HMM and No-NGM in the same way
as shown in Section III-B.

The results are given in the bottom half part of Table V,
from which, we can see that No-HMM and No-NGM can
capture the correct usages as well, which is in accordance
with existing work [9], [13]. However, the usage information
they capture contains only the API dependence orders, such
that they are not good at detecting the misuse crypto APIs. As
shown in Table V, both the F1 scores of No-HMM and No-
NGM on the misuse detection are quite close to the random
baseline.

Compared with No-HMM (resp. No-NGM), Sym-HMM
(resp. Sym-NGM) performs 11.77% (resp. 16.82%) better on
the usage detection in term of F1 score. Moreover, our models
still perform well on the misuse detection, and can improve
35.35% and 28.29% in term fo F1 score for HMM and NGM,
respectively. This indicates that our approach is preferable
to crypto APIs, even to domain-specific API usage analysis,
because domain-specific APIs are sensitive to not only API
orders, but also their arguments.

Nevertheless, there are still some rooms for improvement
in our solution. For example, when creating an IvParameter-
Spec object, it needs to ensure that the byte array passed
to the object should be generated randomly. But in our
symbolic analysis, the methods that are not in the libraries of
“javax.crypto” are abstracted, so that such methods for random
generation are lost. We can enhance our abstraction to address
this problem, which is left for future work.

Misuse Location. To evaluate our misuse location, we
performed it on the negatives in the testing set and checked
whether our reported top-k locations hit the ones reported by
CogniCryptSAST. The results are shown in Figure 3, which
demonstrated our location approach is effective. In detail, top-
1 can achieve about 78% accuracy for both Sym-HMM and
Sym-NGM. And the accuracy increases rapidly when k is not
larger than 3; after that, it goes slowly.

D. Comparison with CogniCryptSAST

Finally, we compare our models using top-1 as the misuse
location with a state-of-the-art tool CogniCryptSAST [6]. For



TABLE V
DETECTION RESULTS ON TESTING SET FOR DIFFERENT MODELS

Model Accuracy Precision Recall F1 PrecisionT RecallT F1T

Sym-HMM 70.38% 59.93% 76.28% 67.12% 81.02% 66.50% 73.05%
Sym-NGM 71.23% 61.60% 72.83% 66.75% 79.73% 70.19% 74.65%

Baseline 50.00% 39.64% 50.00% 44.22% 60.36% 50.00% 54.69%
No-HMM 57.23% 47.68% 81.11% 60.05% 77.00% 41.54% 53.97%
No-NGM 57.67% 47.73% 71.19% 57.14% 72.06% 48.79% 58.19%

TABLE VI
COMPARISON WITH COGNICRYPTSAST

APK Sym-HMM Sym-NGM CogniCryptSAST
N AP E N AP E N E

*runy 0 0 0 0 0 0 3 3
*Client 0 0 0 0 0 0 1 1
*collage 2 0 2 1 0 1 0 0
*Hero 1 0 0 1 0 0 1 0
*bonso 0 0 0 0 0 0 3 3

*dictionary 0 0 0 0 0 0 3 3
*Erudit 10 0 8 10 0 8 8 8
*client 8 2 6 8 2 6 6 6
*diner 6 1 5 6 1 5 6 6
*cake 0 0 0 0 0 0 3 3
*retro 0 0 0 0 0 0 0 0
*stock 6 1 5 6 1 5 7 6

*byapps 0 0 0 0 0 0 0 0
*game 0 0 0 0 0 0 3 3
*4791 2 0 1 1 0 0 0 0
*Apps 6 1 5 6 1 5 7 6

*diamond 4 3 1 1 0 1 2 2
*kingvip 7 2 5 7 2 5 7 6

*troll 6 1 5 6 1 5 0 0
*charles 1 0 1 1 0 1 0 0
*pvsh 1 0 1 1 0 1 0 0

*sytadin 1 0 0 1 0 0 1 1
*artkiss 0 0 0 0 0 0 3 3
*input 11 7 4 13 8 5 10 10
*scope 6 2 4 6 2 4 4 4

*ventura 8 4 4 8 4 4 4 4
*racks 12 3 9 12 3 9 11 11

*pushtan 4 0 4 4 0 4 5 5
*wallet 4 0 4 4 0 4 5 5

*newspapers 6 2 4 6 2 4 6 5
*babyplan 8 2 4 8 2 4 6 6

*share 4 0 4 4 0 4 9 8
*sounds 4 1 3 4 1 3 3 3

*travel eng 4 2 2 4 2 2 2 2
*awadcar 3 0 3 3 0 3 3 3

*white 1 0 1 1 0 1 1 1
*metro 1 0 1 1 0 1 1 1
*sogno 2 0 2 2 0 2 1 1

*compass 4 2 1 4 2 1 1 1
*monster 3 2 1 3 2 1 2 2

Total 146 38 100 143 36 99 138 132

that, we perform all the tools on 40 APKs. The results are
given in Table VI, where N denotes the number of errors that
are reported by any tool, E denotes the number of actual errors
by manual inspection, AP denotes the errors that are caused
by argument passing in our models.

In total, Sym-HMM, Sym-NGM, and CogniCryptSAST re-
port 146, 143 and 138 errors for these 40 APKs, respectively.
On these reported errors, we perform a manual inspection

for further analysis. Firstly, we found there are 88 errors in
common for all tools, and 2 more common errors reported by
both Sym-NGM and CogniCryptSAST. Secondly, among the
reported errors, 100, 99, and 132 ones are actual for Sym-
HMM, Sym-NGM, and CogniCryptSAST, respectively, that is,
the accuracies for the tools are 68.49%, 69.23%, and 95.65%,
respectively. One reason for this is that, in our models, an
API taking a misuse API as an argument could be reported
simultaneously, as it could have the same large distance as the
misuse one. We call this reason as argument passing. Clearly,
these errors caused by argument passing are duplicated. There
are 38 and 36 such kind of errors for Sym-HMM and Sym-
NGM, respectively. Setting these duplicated errors aside, the
accuracies of our models can reach 92.59% and 92.52%,
respectively, both of which are quite close to the one of
CogniCryptSAST. Finally, we also found that 12 (resp. 10)
actual errors reported by Sym-HMM (resp. Sym-NGM) are
not reported by CogniCryptSAST, most of which are due to
a wrong argument. Conversely, there are 44 (resp. 43) actual
errors reported by CogniCryptSAST are not reported by Sym-
HMM (resp. Sym-NGM), among which, 75.0% (resp. 88.9%)
are due to the abstraction as discussed in Section III-C.

IV. RELATED WORK

This section presents some recent related work on crypto
API usage analysis.

Android. Egele et al. [3] proposed a light-weight static tool
CryptoLint to identify misuses of crypto APIs for Android
applications, taking six rules as a guide. Later, Shao et al. [5]
proposed a systematic tool CMA, combining both static and
dynamic analysis, based on a manually built model of crypto
misuse vulnerabilities. And a similar analysis to Shao et
al.’s is presented by Chatzikonstantinou et al. [24] as well.
Ma et al. presented a tool CDRep for automatically repair-
ing crypto misuse defects in Android applications, wherein
CryptoLint [3] and CMA [5] is used in detection, and a
set of manually created patch templates is used in repairing.
Muslukhov et al. [25] developed a static tool BinSight to
attribute crypto APIs misusage to its source, wherein the rules
in CryptoLint [3] is used. Krüger et al. [6] proposed a static
tool CogniCryptSAST to detect the crypto misuses in Android
applications, using a designed rule set rewritten in a definition
language CrySL from the Java Cryptography Architecture
documentation. Gao et al. [4] tried to infer crypto API usage
rules from the developer updates but obtained a negative result,
wherein CogniCryptSAST [6] is used to identity misusage.



Java. Nadi et al. [26] performed an empirical investigation
into the obstacles developers face while using the Java crypto
APIs. Krüger et al. [27] provided a toolkit CogniCrypt to
support Java developers with the use of crypto APIs. Paletov
et al. [28] proposed an approach to infer crypto API rules
for Java programs from code changes. Duncan et al. [29]
presented a methodology for automatically checking security
properties in JavaScript code. Wickert et al. [30] built a dataset
of parametric crypto misuses from real-world java projects,
with the help of CogniCryptSAST [6].

Apart from the Android platform or Java-specific applica-
tions, there are some other approaches for other platforms or
languages. Li et al. [31] developed a tool iCryptoTracer to
detect the crypto misusage for iOS applications, using the
rules similar to CryptoLint [3]. Gorski et al. [32] presented
an approach to help Python developers on crypto API misuse.
Mindermann et al. [33] performed an exploratory study on the
usage of Rust crypto APIs.

V. CONCLUSION

In this paper, we have proposed an approach based on prob-
abilistic models to analyzing crypto API usages in Android
applications. To build the models, we have created a dataset
consisting of crypto API sequences with arguments. We also
have carried out some interesting experiments to evaluate our
models, which show that our models are capable of capturing
the usages, detecting and locating the misuses; and perform
better than some existing approaches based on probabilistic
models.

As for future work, we will enhance our abstraction to
detect more misuses and consider more domain-specific API
libraries. We will also consider the crypto API recommenda-
tion as well as the usage rule mining from existing codes.
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